Plasma Wakefield Accelerator Experiments and their Diagnostics Patric Muggli University of Southern California

Similar documents
Plasma-based Acceleration at SLAC

Measurements of Short Bunches at SPPS and E-164X

Demonstration of Energy Gain Larger than 10GeV in a Plasma Wakefield Accelerator

Results of the Energy Doubler Experiment at SLAC

E-162: Positron and Electron Dynamics in a Plasma Wakefield Accelerator

E-157: A Plasma Wakefield Acceleration Experiment

A Meter-Scale Plasma Wakefield Accelerator

Plasma Wakefield Acceleration Presented by: Bob Siemann On behalf of: The E157, E162, E-164, E-164X, E167 Collaborations

STATUS OF E-157: METER-LONG PLASMA WAKEFIELD EXPERIMENT. Presented by Patrick Muggli for the E-157 SLAC/USC/LBNL/UCLA Collaboration

Accelerators Beyond LHC and ILC

Overview of accelerator science opportunities with FACET ASF

PoS(EPS-HEP2017)533. First Physics Results of AWAKE, a Plasma Wakefield Acceleration Experiment at CERN. Patric Muggli, Allen Caldwell

Electron Acceleration in a Plasma Wakefield Accelerator E200 FACET, SLAC

E164. High Gradient Plasma-Wakefield Acceleration Using Ultrashort. Electron Bunches

Linac Driven Free Electron Lasers (III)

First results from the plasma wakefield acceleration transverse studies at FACET

FACET*, a springboard to the accelerator frontier of the future

Wakefield Acceleration in Dielectric Structures

II) Experimental Design

E200: Plasma Wakefield Accelera3on

A proposed demonstration of an experiment of proton-driven plasma wakefield acceleration based on CERN SPS

Wakefield Acceleration in Dielectric Structures

Generation and characterization of ultra-short electron and x-ray x pulses

Dynamic focusing of an electron beam through a long plasma

Ionization Injection and Acceleration of Electrons in a Plasma Wakefield Accelerator at FACET

Chan Joshi UCLA With help from Weiming An, Chris Clayton, Xinlu Xu, Ken Marsh and Warren Mori

Beam-plasma Physics Working Group Summary

High Energy Gain Helical Inverse Free Electron Laser Accelerator at Brookhaven National Laboratory

Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers. Zhirong Huang SLAC, Stanford University May 13, 2013

gradient Acceleration Schemes, Results of Experiments

Opportunities and Challenges for X

FURTHER UNDERSTANDING THE LCLS INJECTOR EMITTANCE*

O rion. The ORION Facility at SLAC. Bob Siemann AAC Workshop, June 15, 2000

Experimental Observation of Energy Modulation in Electron Beams Passing. Through Terahertz Dielectric Wakefield Structures

AWAKE: The Proton Driven Plasma Wakefield Acceleration Experiment at CERN. Alexey Petrenko on behalf of the AWAKE Collaboration

Proton-driven plasma wakefield acceleration

SPPS: The SLAC Linac Bunch Compressor and Its Relevance to LCLS

Status of linear collider designs:

Particle Driven Acceleration Experiments

Proton Driven Plasma Wakefield Acceleration

Tuning Techniques And Operator Diagnostics for FACET at SLAC National Accelerator Laboratory. Chris Melton SLAC Accelerator Operations

Proton-driven plasma wakefield acceleration

LOLA: Past, present and future operation

Echo-Enabled Harmonic Generation

SPARCLAB. Source For Plasma Accelerators and Radiation Compton. On behalf of SPARCLAB collaboration

The AWAKE Experiment: Beam-Plasma Interaction Simulations

Wakefield in Structures: GHz to THz

First observation of Current Filamentation Instability (CFI)

Ultra-High Gradient Dielectric Wakefield Accelerator Experiments

6 Bunch Compressor and Transfer to Main Linac

Microbunching Workshop 2010 March 24, 2010, Frascati, Italy. Zhirong Huang

Compressor and Chicane Radiation Studies at the ATF. Gerard Andonian, UCLA High Power Workshop January 14-16, 2009 UCLA

Accelerator Science at SLAC: Overview. Eric R. Colby SLAC National Accelerator Laboratory Advanced Accelerator Research Department

Beam Dynamics. Gennady Stupakov. DOE High Energy Physics Review June 2-4, 2004

Measuring very low emittances using betatron radiation. Nathan Majernik October 19, 2017 FACET-II Science Workshop

Beam compression experiments using the UCLA/ATF compressor

SPARCLAB. Source For Plasma Accelerators and Radiation Compton with Laser And Beam

Characterization of an 800 nm SASE FEL at Saturation

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site

Short Bunch Length Measurements

M. J. Hogan, C. O Connell, R. Siemann, and D. Watz Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309

Power efficiency vs instability (or, emittance vs beam loading) Sergei Nagaitsev, Valeri Lebedev, and Alexey Burov Fermilab/UChicago Oct 18, 2017

Electron acceleration behind self-modulating proton beam in plasma with a density gradient. Alexey Petrenko

Beam Echo Effect for Generation of Short Wavelength Radiation

E-157: A 1.4 Meter long Plasma Wakefield Acceleration Experiment Using a. 30GeV Electron Beam from the Stanford Linear Accelerator Center Linac +

Present Capabilities and Future Concepts for Intense THz from SLAC Accelerators

FACET-II Design, Parameters and Capabilities

4 FEL Physics. Technical Synopsis

UCLA Neptune Ramped Bunch Experiment. R. Joel England UCLA Department of Physics and Astronomy Particle Beam Physics Laboratory May 19, 2004

ASTRA simulations of the slice longitudinal momentum spread along the beamline for PITZ

Parameter selection and longitudinal phase space simulation for a single stage X-band FEL driver at 250 MeV

Measurement of wakefields in hollow plasma channels Carl A. Lindstrøm (University of Oslo)

Observation of Coherent Optical Transition Radiation in the LCLS Linac

The status and evolution of plasma wakefield particle accelerators

High energy gains in field-ionized noble gas plasma accelerators

Wakefields and beam hosing instability in plasma wake acceleration (PWFA)

FACET-II Design Update

Femtosecond Width X-ray Generation with the SLAC Linac and the FFTB Beamline *

arxiv: v1 [physics.plasm-ph] 12 Nov 2014

Plasma Wakefield Acceleration of an. Intense Positron Beam

High quality electron beam generation in a proton-driven hollow plasma wakefield accelerator

Collider design issues based on proton-driven plasma wakefield acceleration

Acceleration at the hundred GV/m scale using laser wakefields

A 6 GeV Compact X-ray FEL (CXFEL) Driven by an X-Band Linac

Free-electron laser SACLA and its basic. Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center

Recent developments in the Dutch Laser Wakefield Accelerators program at the University of Twente: New external bunch injection scheme.

SL_COMB. The SL_COMB experiment at SPARC_LAB will operate in the so-called quasinonlinear regime, defined by the dimensionless charge quantity

LCLS-II SCRF start-to-end simulations and global optimization as of September Abstract

An Introduction to Plasma Accelerators

Beam Shaping and Permanent Magnet Quadrupole Focusing with Applications to the Plasma Wakefield Accelerator

Review of Beam Driven Plasma Wakefield Accelerators

Short Pulse, Low charge Operation of the LCLS. Josef Frisch for the LCLS Commissioning Team

X-Band RF Harmonic Compensation for Linear Bunch Compression in the LCLS

Evidence for high-energy and low-emittance electron beams using ionization injection of charge in a plasma wakefield accelerator

Linear Collider Collaboration Tech Notes

Particle Beam Diagnostics

Outlook for PWA Experiments

Research Topics in Beam Physics Department

Low slice emittance preservation during bunch compression

Time resolved transverse and longitudinal phase space measurements at the high brightness photo injector PITZ

Transcription:

Plasma Wakefield Accelerator Experiments and their Diagnostics Patric Muggli University of Southern California muggli@usc.edu Work supported by US Dept. of Energy

OUTLINE Motivation Plasma Wakefield Accelerator (PWFA) Experimental Setup Beam-driven Plasma-based Accelerator OTR and Beam Transverse Dynamics in PWFA (e - and e + ) CTR and Longitudinal Dynamics in PWFA Trapped Electrons Bunch Trains Energy Doubling Summary and conclusions

OUTLINE Motivation Plasma Wakefield Accelerator (PWFA) Experimental Setup Beam-driven Plasma-based Accelerator OTR and Beam Transverse Dynamics in PWFA (e - and e + ) CTR and Longitudinal Dynamics in PWFA Trapped Electrons Bunch Trains Energy Doubling Summary and conclusions

PARTICLE ACCELERATORS The 2.4-mile circumference RHIC ring is large enough to be seen from space CERN LHC 8.6 km, 5.3 mi SLAC SLC BNL RHIC 1222 m e - /e + 0-50GeV in 3km Some of the largest and most complex (and most expensive) scientific instruments ever built! All use rf technology to accelerate particles Can we make them smaller (and cheaper) and with a higher energy?

FUTURE LEPTON COLLIDER Linear accelerator to avoid synchrotron radiation limitation (~γ 4 /r 2 ~ E 4 /m 4 r 2 ) Energy frontier: 0.5-3 TeV(?), e - /e + Accelerator length: 1 TeV <50 MeV/m >20 km and $$$$$ Is there a high-gradient alternative to rf technology? Plasmas?

1-D r!" E r Relativistic Plasma Wave: = # $ 0 " E = m 1/ 2 % e $ c2 ' # &! 0 WHY PLASMA-BASED ACCELERATORS? k p E =! pe c E = n e e " 0 $ " pe = n ' e & e2 ) %# 0 m e ( 1/ n 2 e ( 100 n ( e cm )3 ) = 1GV / m @ n e =10 14 cm -3 (f pe 100 GHz) Large E z (accelerating) fields lasting 1 period! λ p E z LARGE Collective response! Plasma: Already (partially) ionized! No damage! H: fully ionized Li: Φ LiI =5.45 ev (easy!), Φ LiII =75 ev (difficult!) High frequency structure without structure No fabrication, no damage, easy to replace, Plasma wave can be driven by: 1/ 2 Intense laser pulse (LWFA) Short particle bunch (PWFA) c

OUTLINE Motivation Plasma Wakefield Accelerator (PWFA) Experimental Setup Beam-driven Plasma-based Accelerator OTR and Beam Transverse Dynamics in PWFA (e - and e + ) CTR and Longitudinal Dynamics in PWFA Trapped Electrons Bunch Trains Energy Doubling Summary and conclusions

Defocusing PLASMA WAKEFIELD (e - ) Focusing (E r ) Accelerating Decelerating (E z ) --- -- - - - - - - - - --- - -- -------- -- -- - ---- - - - - - - - - - + + + + + + + + + + + + - - + - -- - -- -- - + + + + + + + + + + + + + + + + -- + + + + + + + + + + + + + + + + + + + + + + + + -+ + + + + + + + + - + + + + + + + + + + + + + + + -- - - - - -- ------- - -- --- - - - - - - - -- - - --- -- - -- --- - electron beam Plasma wave/wake excited by a relativistic particle bunch Plasma e - expelled by space charge forces => energy loss + focusing Plasma e - rush back on axis => energy gain Optimize for acceleration and/or focusing (plasma lens) Plasma Wakefield Accelerator (PWFA): high-frequency, high-gradient, strong focusing beam-driven accelerator Large focusing (long propagation distance) + Large accelerating gradient = Large energy gain!

Defocusing PWFA NUMBERS (e - ) Focusing (E r ) Accelerating Decelerating (E z ) --- -- - - - - - - - - --- - -- -------- -- -- - ---- - - - - - - - - - + + + + + + + + + + + + - - + - -- - -- -- - + + + + + + + + + + + + + + + + -- + + + + + + + + + + + + + + + + + + + + + + + + -+ + + + + + + + + - + + + + + + + + + + + + + + + -- - - - - -- ------- - -- --- - - - - - - - -- - - --- -- - -- --- - electron beam Linear theory (n b <<n e ) scaling: Focusing strength: N 2 #10 10 E acc "110(MV / m) N/σ 2 ( $ z /0.6mm) 2 z @ k pe σ z 2 (with k pe σ z <<1) B " r = 1 n e e 2 # 0 c = 3kT / m $ n e (1014 cm %3 ) N=2x10 10 : σ z =600 µm, n e =2x10 14 cm -3, E acc ~100 MV/m, B θ /r=6 kt/m σ z = 20 µm, n e =2x10 17 cm -3, E acc ~100 GV/m, B θ /r=6 MT/m Conventional accelerators: E acc <150 MV/m, B θ /r<2 kt/m (n b >n e )

OUTLINE Motivation Plasma Wakefield Accelerator (PWFA) Experimental Setup Beam-driven Plasma-based Accelerator OTR and Beam Transverse Dynamics in PWFA (e - and e + ) CTR and Longitudinal Dynamics in PWFA Trapped Electrons Bunch Trains Energy Doubling Summary and conclusions

PWFA EXPERIMENTS @ SLAC 3 km Long-bunch Experiments Short-bunch experiments e - /e + 28.5 GeV N 1.2-1.8x10 10 /bunch e - 28.5, 42 GeV σ z 700 µm σ z 30-20 µm σ r 30 µm k pe σ z 2 σ r 10 µm n e 2x10 14 cm -3 0.1-100 GV/m n e 1-3x10 17 cm -3 L p 1.4 m L p 10, 20, 30, 60, 90, 120 cm Pre-ionized Field-ionized

e - Energy Spectrum X-ray N=1.8 10 10 Coherent σ z =20-12µm Transition E=28.5 GeV Radiation and Interferometer EXPERIMENTAL SET UP IP0: Li Plasma Gas Cell: H 2, Xe, NO n e 0-10 18 cm -3 L 2.5-20 cm Plasma light Optical Transition Radiators Imaging Spectrometer 25m y IP2: x z Cherenkov Radiator Cdt X-Ray Diagnostic, e-/e + Production Dump X-ray Chicane E -Energy resolution 60 MeV Optical Transition Radiation (OTR) y Upstream x y Downstream -1:1 imaging, spatial resolution 9 µm CTR x Peak Current (ka) 25 20 15 10 5 Plasma Light 07142dcpyrovspeakcurrent Cherenkov (aerogel) y,eλ x - Spatial resolution 100 µm - Energy resolution 30 MeV 0 0 200 400 600 CTR Energy (a.u.)

OUTLINE Motivation Plasma Wakefield Accelerator (PWFA) Experimental Setup Beam-driven Plasma-based Accelerator OTR and Beam Transverse Dynamics in PWFA (e - and e + ) CTR and Longitudinal Dynamics in PWFA Trapped Electrons Bunch Trains Energy Doubling Summary and conclusions

TRANSITION RADIATION Charged particles emit transition radiation (TR) when crossing a dielectric boundary (ε(ω)) [ ] I total (") # NI e (") 1+ (N $1) f (") 2 I e (ω)= E(ω) 2 the TR for a single e - Incoherent Coherent (ω<2πc/σ z, λ>0.6σ z ) TR CTR CTR spectrum amplitude given by the bunch form factor f(ω), i.e, the Fourier transform of the longitudinal charge distribution squared (neglecting transverse variations, in the forward direction of observation). f (") 2 = e (#"$ z / c )2 for E r (z) " n(z) = TR peaks at angle 1/γ, forward and backward TR 1 2#$ z e %z 2 / 2$ z 2 (Gaussian bunch) CTR spectrum extends from λ σ z >, (i.e., broad spectrum in the IR/FIR, THz) Optical TR (OTR) for beam transverse size/shape imaging Integrated CTR energy N 2 /σ z, s-to-s relative σ z measurement (N=cst) CTR carries longitudinal bunch shape information at long λ s CTR interferometry

Defocusing PLASMA FOCUSING OF e - Focusing (E r ) Accelerating Decelerating (E z ) --- -- - - - - - - - - --- - -- -------- -- -- - ---- - - - - - - - - - + + + + + + + + + + + + - - + - -- - -- -- - + + + + + + + + + + + + + + + + -- + + + + + + + + + + + + + + + + + + + + + + + + -+ + + + + + + + + - + + + + + + + + + + + + + + + -- - - - - -- ------- - -- --- - - - - - - - -- - - --- -- - -- --- - electron beam Linear theory (n b <<n e ) scaling: Focusing strength: N 2 #10 10 E acc "110(MV / m) N/σ 2 ( $ z /0.6mm) 2 z @ k pe σ z 2 (with k pe σ z <<1) B " r = 1 n e e 2 # 0 c = 3kT / m $ n e (1014 cm %3 ) N=2x10 10 : σ z =600 µm, n e =2x10 14 cm -3, E acc ~100 MV/m, B θ /r=6 kt/m σ z = 20 µm, n e =2x10 17 cm -3, E acc ~ 10 GV/m, B θ /r=6 MT/m Conventional accelerators: E acc <150 MV/m, B θ /r<2 kt/m (n b >n e )

e - Energy Spectrum X-ray N=1.8 10 10 Coherent σ z =20-12µm Transition E=28.5 GeV Radiation and Interferometer EXPERIMENTAL SET UP IP0: Li Plasma Gas Cell: H 2, Xe, NO n e 0-10 18 cm -3 L 2.5-20 cm Plasma light Optical Transition Radiators Imaging Spectrometer 25m y IP2: x z Cherenkov Radiator Cdt X-Ray Diagnostic, e-/e + Production Dump X-ray Chicane E -Energy resolution 60 MeV Optical Transition Radiation (OTR) y Upstream x y Downstream -1:1 imaging, spatial resolution 9 µm CTR x Peak Current (ka) 25 20 15 10 5 0 Plasma Light 07142dcpyrovspeakcurrent 0 200 400 600 CTR Energy (a.u.) Cherenkov (aerogel) y,eλ x - Spatial resolution 100 µm - Energy resolution 30 MeV

" r (µm) PLASMA FOCUSING OF e - Beam Envelope Model for Plasma Focusing Plasma Focusing Force > Beam Emittance Force (β beam =1/K> β plasma ) 200 150 100 50 0 No Plasma n e =0.03!10 14 cm -3 Plasma Lens n e =1.5!10 14 cm -3 3 rd Betatron Pinch Plasma BeamFocusing(z).graph 0 1 2 3 4 5 λ β z (m) OTR Envelope equation:! 2 "!z 2 + K 2 " = # 2 " 3 In an ion channel: K =! pe 2" c # ( n e ) 1/ 2 with a focusing strength: Multiple foci (betatron oscillation) within the plasma σ x,y (z) at fixed n e => σ x,y (n e ) at fixed z σ x,y (n e ) from OTR images! W = E r rc = B " r = 1 2 n e e # 0 c =6 kt/m @ n e =2 10 14 cm -3

! x (µm) 300 250 200 150 100 L=1.4 m! 0 =50 µm # N =12"10-5 m-rad $ 0 =1.16 m % 0 =-0.5 FOCUSING OF e - OTR Images 1m downstream from plasma Large Beam Size (K 1/β 0 ) Plasma OFF Plasma ON Envelope! x (µm) 600 500 400 300 200 Small Beam Size (K 1/β 0 ) Plasma OFF Plasma ON Envelope Equation Fit!=30 µm # N =44"10-5 m-rad $=0.11 m %=0 50 0 PRL 88(13), 154801 (2002) BetaronFitLongBeta.graph PRL 93, 014802 (2004) 07250cwMatchedBetatron.graph 0 0 0.5 1 1.5 2 0 0.5 1 1.5 2 Plasma Density ("10 14 cm -3 ) Focusing of the beam well described by a simple model (n b >n e ): Plasma = No emittance growth observed as n e is increased Ideal Thick Lens Stable propagation over L=1.4 m up to as n e =1.8 10 14 cm -3 100 n e, matched =1.6-2.5 10 14 cm -3 Plasma Density ("10 14 cm -3 ) Channeling of the beam over 1.4 m or >12β 0 => Matched Propagation over long distance!

e - & e + BEAM NEUTRALIZATION F " = q( E plasma + E b + v b # B b ) e - e + " 1 # $ 0 2 3-D QuickPIC simulations, plasma e - density: σ r =35 µm, σ r =700 µm, Ν=1.8 10 10, d=2 mm e - : n e0 =2 10 14 cm -3, c/ω p =375 µm e + : n e0 =2 10 12 cm -3, c/ω p =3750 µm Back Blow Out Back Front 3σ 0 beam Front 3σ 0 beam Uniform focusing force (r,z) No geometric aberrations Non-uniform focusing force (r,z) Aberrations expected!

Transverse Size (µm) EXPERIMENT/SIMULATIONS: e + BEAM SIZE σ x0 =σ y0 =25µm, ε Nx =390 10-6, ε Ny =80 10-6 m-rad, N=1.9 10 10 e +, L=1.4 m 2000 1500 1000 500 x-size y-size Downstream OTR Experiment P390by80BeamSizes6 Transverse Size (µm) 2000 1500 1000 500 x-size y-size Simulations PE390by80resulysOTR6 0 0 1 2 3 4 5 6 n e (10 14 cm -3 ) 0 0 0.5 1 1.5 2 n e (10 14 cm -3 ) Excellent experimental/simulation results agreement! The beam is round with n e 0

e + : BEAM/SLICE EMITTANCE (SIMULATIONS) σ x0 σ y0 25 µm, ε Nx 390 10-6, ε Ny 80 10-6 m-rad, N=1.9 10 10 e +, L 1.4 m n e =2 10 14 cm -3 10-2 P2.00e14E390by80NE2SlicesNx P2.0e14E390by80NE2SlicesNyL a) x-emittance 5 b) y-emittance All 5 All! N (m-rad) 10-3 10-4 x8 Slices contain 20% of charge 1 4 3 2 x38 4 3 2 1 0 0.5 1 1.50 0.5 1 1.5 z (m) z (m) The e + beam exits the plasma with equal emittances and equal transverse sizes Emittance growth for e +, none for e - (no geometric aberrations) P. Muggli et al., PRL 101, 055001 (2008).

OUTLINE Motivation Plasma Wakefield Accelerator (PWFA) Experimental Setup Beam-driven Plasma-based Accelerator OTR and Beam Transverse Dynamics in PWFA (e - and e + ) CTR and Longitudinal Dynamics in PWFA Trapped Electrons Bunch Trains Energy Doubling Summary and conclusions

Defocusing PLASMA WAKEFIELD (e - ) Focusing (E r ) Accelerating Decelerating (E z ) --- -- - - - - - - - - --- - -- -------- -- -- - ---- - - - - - - - - - + + + + + + + + + + + + - - + - -- - -- -- - + + + + + + + + + + + + + + + + -- + + + + + + + + + + + + + + + + + + + + + + + + -+ + + + + + + + + - + + + + + + + + + + + + + + + -- - - - - -- ------- - -- --- - - - - - - - -- - - --- -- - -- --- - electron beam Plasma wave/wake excited by a relativistic particle bunch Plasma e - expelled by space charge forces => energy loss + focusing Plasma e - rush back on axis => energy gain Optimize for acceleration and/or focusing (plasma lens) Plasma Wakefield Accelerator (PWFA): high-frequency, high-gradient, strong focusing beam-driven accelerator Large focusing (long propagation distance) + Large accelerating gradient = Large energy gain!

PLASMA WAKEFIELD FIELDS, e -, e + E 0 =28.5 GeV, σ z =0.63 mm (2.1 ps), σ x =σ y =70 µm e -, N=1.8x10 10 e +, N=1.2x10 10 Head P. Muggli et al., PRL 93, 014802 (2004). B.E. Blue et al., PRL 90, 214801 (2003). Energy gain smaller than, hidden by, incoming energy spread Time resolution needed (1ps, streak camera), but shows the physics e - : Peak energy gain: 279 MeV, L=1.4 m, 200 MeV/m e + : Demonstrate acceleration in plasmas

Damping Ring 50 ps RTL Short Bunch Generation In The SLAC Linac Chirping 1 GeV 9 ps 0.4 ps 20-50 GeV Add 12-meter chicane compressor in linac at 1/3-point (9 GeV) SLAC Linac Compression FFTB <100 fs Existing bends compress to <100 fsec 1.5% 30 ka 80 fsec FWHM 28 GeV Courtesy of SPPS ~1 Å Bunch magnetic compression (N=cst) by a factor of 730/25 29! N 2 #10 10 E acc "110(MV /m) ( $ z /0.6mm) 2 100 MV/m => 100 GV/m!

CTR MICHELSON INTERFEROMETER + E ref. = RTE(t) E var. = TRE(t + 2" /c) I D (t;") = 2 RTE(t) 2 # dt Background +2 # RT 2 E(t)E(t + 2" /c) dt Interferogram/autocorrelation Intensity I D =(E ref. +E var. ) 2 on autocorrelator detector Interference signal normalized to the reference signal Motion resolution z min /2=1 µm or 7 fs (round trip) Mylar: R 2 22%, T 2 78%, RT 0.17 ε r =3.2

Amplitude (a.u) CTR INTERFEROGRAM NDR compressor voltage: 41.8 MV/m, 2-6BNS phase -19º, 12.5µm Mylar 1.5 1 0.5 0-1000 -500 0 500 1000 Delay!z (µm) Trace is symmetric (even if the bunch shape may not be) Many bunches for one trace (beam stability) Large dips on either sides of the peak Modulation far from the peak Gaussian fit to central peak: z 18 µm => σ z 13 µm or 43 fs

Simple model: Power Spectrum (a.u.) 10 0.1 0.001 10-5 10-7 10-9 10-11 10-13 10-15 10-17 MYLAR FABRY-PEROT Gaussian, σ z =20 µm, d=12.7 µm, n= 3.2 Mylar window+splitters Mylar resonances CTRFSpecSigmaz20Mylar12.5_3 10 100 1000 Wavelength (µm) 10 0 10-1 10-2 10-3 10-4 Filter Amplitue (a.u.) Autocorrelation w/o Filter (a.u.) 40 30 20 10 σ z =14 µm CTRautocSigmaz12.7_3 1.2 0.8 0.6 0.4 0.2 σ z =9 µm 0 0-300 -200-100 0 100 200 300 Delay (µm) 1 Autocorrelation with Filter (a.u.) Fabry-Perot resonances: λ=2d/nm, m=1,2,, n=index of refraction Signal attenuated by Mylar beam splitter: (RT) 2 Modulation/dips in the interferogram Additional filtering from (pyro) detector Smaller measured width: σ Autocorrelation < σ bunch!

ENERGY SPECTROMETER (NON-INVASIVE, UPSTREAM OF PLASMA) E Plasma Measure incoming bunch spectrum e - C.D. Barnes. PhD. Thesis, Stanford 2004

BUNCH PROFILE RETRIEVAL M. J. Hogan Phys. Rev. Lett. 95, 054802 (2005). I. Blumenfeld for PRST-AB Bunch Peak Current (ka) 20 15 10 5 0 0 100 200 300 CTR Energy (a.u.) LiTrack code (K. Bane, P. Emma) describes longitudinal compression Bunch peak current or length (and profile) can be retrieved Integrated CTR energy N 2 /σ z, s-to-s relative σ z measurement (N=cst)

SIMILAR IN, SIMILAR OUT 5 10 4 4 10 4 Plasma ON Plasma ON Plasma ON 3IdenticalXsprctra IN 10 GeV Amplitude (a.u.) 3 10 4 2 10 4 E x 1 10 4 0-2.5-2 -1.5-1 -0.5 0 0.5 1 Relative Energy (GeV) Identical incoming energy spectra/events Amplitude (a.u.) 1.2 10 5 1 10 5 8 10 4 6 10 4 4 10 4 Plasma ON Plasma ON Plasma ON 3IdenticalCsprctra OUT Identical outgoing energy spectra/events 2 10 4 0-6 -4-2 0 2 Relative Energy (GeV)

n e 2.6 10 17 cm -3 PWFA ENERGY LOSS Relative Mean Bunch Energy (GeV) 0-0.5-1 -1.5 BPM Measurement Max. Loss:!1.5 GeV Plasma OFF Plasma ON MeanEloss(Pyro)2.55e17-2 0 100 200 300 400 500 600 700 CTR Pyro Amplitude (a.u.) L 10 cm, N 1.8 10 10 Relative Energy of 95% Contour (GeV) 0-1 -2-3 -4 Beam Image Measurement Max. Loss:!3.4 GeV Plasma OFF Plasma ON 95%Eloss(Pyro)2.55e17-5 0 100 200 300 400 500 600 700 CTR Pyro Amplitude (a.u.) Energy loss correlates with CTR energy (1/σ z?) Peak energy gradient 3.4 GeV/10 cm! (or 34 GeV/m!)

e - ENERGY DOUBLING E 0 =42 GeV I. Blumenfeld Nature 445, 2007 Two-screen method to remove tail ambiguity Short spectrometer E 0 2E 0 Energy doubling of e - over L p 85 cm, 2.7x10 17 cm -3 plasma Unloaded gradient 52 GV/m ( 150 pc accel.)

e - ENERGY DOUBLING E 0 =42 GeV I. Blumenfeld et al., Nature 445, 2007 Final Focus Test Beam 3 km e - /e + LINAC 90 cm e - E 0 2E 0 Energy doubling of e - over L p 85 cm, 2.7x10 17 cm -3 plasma Unloaded gradient 52 GV/m ( 150 pc accel.)

OUTLINE Motivation Plasma Wakefield Accelerator (PWFA) Experimental Setup Beam-driven Plasma-based Accelerator OTR and Beam Transverse Dynamics in PWFA (e - and e + ) CTR and Longitudinal Dynamics in PWFA Trapped Electrons Bunch Trains Energy Doubling Summary and conclusions

ORIGIN OF TRAPPED PARTICLES OSIRIS Simulation: Li & He e - in (r-z) Space: n e =1.6 10 17 cm -3 Li at z=11.3 cm Li e - support the wake (not trapped) 3σ z He at z=11.3 cm Multiple trapped e - bunches ~2-3 µ σ z N=0.05x10 10 0.3x10 10 0.25x10 10 He e - born on-axis inside the wake and trapped

EVIDENCE FOR TRAPPED PARTICLES E. Oz et al., Phys. Rev. Lett. 98, 084801 (2007). Incoming: N 1.6 10 10 e - Li I Atomic Lines <18 GV/m >18 GV/m Coherent Cherenkov + CTR Continuum Excess charge/light appear at 18 GV/m or W loss =0.9 GeV Excess charge of the order of incoming charge, 1.6-1.8 10 10 e - Excess visible light >> excess charge Excess visible light<< (excess charge) 2 Partially Coherent

TRAPPED e - CHARCTERISTICS Spectrum of trapped e - TR or Cherenkov visible light: Δz -10 0 10 20 30 40 50 60 Z (µm) λ (nm) x 10 16 6 4 2 Spectral interferences Δλ 0 0.5 1 1.5 2 2.5 λ (nm) Coherent, 10 3-10 5 times more light "z = #2 2"# x 10 4 "# n e ( 1017 cm -3 ) 1.1 2.3 3.2 Trapped particles are emitted in multiple, ultra-short bunches ( µm), spaced by z= λ p fs, multi-gev, mm-mrad trapped bunches! z (µm) 102 84 72! * λ p (µm) calc. * 101 70 59 " p = 2#c $ p = 2#c & n e e 2 ) ( + ' % 0 m * 1 2

OUTLINE Motivation Plasma Wakefield Accelerator (PWFA) Experimental Setup Beam-driven Plasma-based Accelerator OTR and Beam Transverse Dynamics in PWFA (e - and e + ) CTR and Longitudinal Dynamics in PWFA Trapped Electrons Bunch Trains Energy Doubling Summary and conclusions

PARTICLES TO BUNCH ACCELERATION I. Blumenfeld et al., Nature 445, 2007 Drive Bunch Witness Bunch E/E 0 <1 2E 0 E 0 E 0 2E 0 Energy Doubling & E/E 10% Dream! Fake! Not real! Need a bunch train: drive(s) + withness

MULTIBUNCH PWFA Transformer Ratio: R = E + E " Energy Gain: " RE 0 E 0 : incoming energy Bunch Train E + Ramped Bunch Train * Q=1 3 5 E - Kallos, PAC 07 Proceedings *Tsakanov, NIMA, 1999 R=7.9 => multiply energy by 8 in a single PWFA stage! Can be optimized for beam=>wake efficiency

MULTIBUNCH GENERATION @ ATF Correlated energy chirp from linac To Plasma Emittance selection Choose microbunches spacing and widths with mask and beam parameters: N, z, σ z, Q

BUNCH TRAIN IN TIME Coherent Transition Radiation (CTR) Interferometry PLD Detector e - z=434 µm P. Muggli et al., Phys. Rev. Lett. 101, 054801 (2008) N=4 z=226 µm N=3 Autocorrelation leads spacing z N microbunches => 2N-1 peaks Control N and z (I mean t!) Mask: Period D=1270 µm Wire Dia d=500 µm

BUNCH TRAIN @ BNL-ATF Bunch spacing/plasma density condition: z=λ p (resonance) σ z << λ p z 3λ p /2 Plasma wavelength: λ pe =2πc/ω pe, plasma frequency, density n e, ω pe =(n e e 2 /e 0 m) 1/2 Wake fields add up (linear theory) Select # of drive bunches N=1 to 5 Measure witness bunch energy gain vs N (beyond energy doubling!) Same technique will be used at SLAC-FACET for bunch accel.

OUTLINE Motivation Plasma Wakefield Accelerator (PWFA) Experimental Setup Beam-driven Plasma-based Accelerator OTR and Beam Transverse Dynamics in PWFA (e - and e + ) CTR and Longitudinal Dynamics in PWFA Trapped Electrons Bunch Trains Energy Doubling Summary and conclusions

SUMMARY/CONCLUSIONS Extensive PWFA results obtained @ SLAC/FFTB Energy doubling of 42 GeV electrons in 85 cm of plasma Energy Doubling Relevant to a future e - /e + plasma-based accelerator/collider Extensive use of TR (OTR, CTR) Very good understanding of the longitudinal and transverse dynamics of e - and e + bunches in the PWFA Much to do: beam acceleration, high gradient acceleration of positrons, beam quality, PWFA for PWFA-LC?

PWFA-LC Concept (an example) TeV CM Energy 10 s MW Beam Power for Luminosity Positron Acceleration Conventional technology for particle generation & focusing Plasma for acceleration A. Seryi, T. Raubenheimer FACET Program will demonstrate most of a single stage July 7, 2008 FACET@ SLAC

E-167 Collaboration: I. Blumenfeld, F.-J. Decker, M. J. Hogan*, N. Kirby, R. Ischebeck, R. H. Iverson, R. H. Siemann and D. Walz Stanford Linear Accelerator Center C. E. Clayton, C. Huang, C. Joshi*,W. Lu, K. A. Marsh, W. B. Mori and M. Zhou University of California, Los Angeles U C L A T. Katsouleas, P. Muggli*, and E. Oz University of Southern California AE31 Collaboration: E. Kallos, P. Muggli University of Southern California Marcus Babzien, Karl Kusche, Vitaly Yakimenko Brookhaven National Laboratory, Upton, Long Island, NY Work Supported by US Dept. of Energy Thank You! Patric Muggli, * Principal AIS, SLAC, Investigators 11/12/08