First observation of Current Filamentation Instability (CFI)

Size: px
Start display at page:

Download "First observation of Current Filamentation Instability (CFI)"

Transcription

1 First observation of Current Filamentation Instability (CFI) PI - Patric Muggli: University of Southern California Vitaly Yakimenko, Mikhail Fedurin, Karl Kusche, Marcus Babzien: Brookhaven National Laboratory Joana Martins, Luis O. Silva: Instituto Superior Técnico Warren Mori: University of California Los Angeles AAC 2012, Austin TX Chengkun Huang: Los Alamos National Laboratory June 15, 2012 Brian Allen Work supported by DoE and NSF

2 Agenda Overview PIC Simulations Experiment Setup Results Conclusion

3 Current Filamentation Instability (CFI) What is CFI? Particle beam transport in plasmas is subject to Current Filamentation Instability (CFI) CFI results in breakup of the beam into narrow high current filament Enhances/generates magnetic fields and generates radiation Why is it interesting? Basic plasma instability Potential relevance to Astrophysics and Inertial Confinement Fusion (ICF) Afterglow of gamma ray bursts Hot electron transport for Fast Igniter - ICF

4 Characteristics of CFI Characteristics Particular case of the Weibel instability (1) (Temperature anisotropy) Plasma return current s r > c/w pe flows through beam, CFI regime s r << c/w pe return current outside beam, PWFA wakefields Purely transverse electromagnetic instability of relativistic beams - purely imaginary frequency How it occurs Non-uniformities in the transverse beam/plasma profile lead to unequal opposite currents (beam and plasma) and magnetic fields Opposite currents repel each other, leading to instability and filamentation Effects Beam filaments Plasma density perturbations Magnetic field enhancement (or generation) Radiation generation (1) E. Weibel - Phys. Rev. Lett. 2, 83 (1959)

5 Criteria for CFI Criteria for CFI s r >> c/w pe (k p s r >> 1) g 0 >>1 Filament size and spacing ~ c/w pe Growth rate (1) (infinite transverse size): 0 g 0 w pe or 0 w pb g 0 ~ n b ~ Q/(s r2 s z ) s r - Transverse beam size, s z - bunch length, n e - plasma density, n b beam density Q - beam charge, c - speed of light in vacuum, g o - relativistic beam factor Plasma-electron angular frequency: w pe =(n e e 2 /e o m e ) 1/2 Collisionless skin depth: k -1 p =c/w pe Ratio of beam to plasma density: =n b /n e (1) Bret et al., Phys. Rev. Lett. 94, (2005)

6 CFI with ATF Beam ATF Beam Parameters Parameters Value Charge (nc) 1.00 Typical Bunch Transverse Waist Size - s 0x,y (mm) 50 to 100 Bunch Length (ps) 5 Bunch Density (cm -3 ) 6x10 13 Energy (MeV) 58 Normalized Emittance (mm-mrad) 4 to 8(?) g 0 =117 Growth length estimate: =4.2x10 10 s -1 or 7.1 mm at c g 0 >>1, s 0y >> c/w pe for n e > 1.6x10 16 cm -3 CFI should be observable on a cm-length plasma scale (plasma length, L p = 2 cm)

7 Simulations - Beam Filamentation Simulations with QuickPIC Warren Mori ATF Beam and Plasma Simulation Parameters Parameters Value Value Simulation Box - X ( mm, # grids) Simulation Box - Y ( mm, # grids) Simulation Box - Z ( mm, # grids) Plasma Particles/Cell 1 3-D Time Step (mm) 34 Beam Particles - X (#) 512 Beam Particles - Y (#) 512 Beam Particles - Z (#) 128 Relativistic Factor 117 Beam Transverse Waist Size ( mm) 100 Bunch Length (mm) 30 Charge (pc) 200 Plasma Density (cm -3 ) 2.5x10 17 Capillary Length (cm) 2 Skin Depth (c/w pe ) (mm) 10.6 or plasma OFF or plasma ON Filament size 10 µm Filament spacing 20 µm c/w pe ~ 10.6mm

8 Magnetic Energy (A.U.) CFI Growth Rate ( ) Characterize instability by the resulting magnetic energy B perp2 dv Q=400pC Growth rate is beam density (n b ) charge For Q=200 pc, = 8.0x10 10 s -1 or 3.8 mm, agrees with estimated ( =8.6x10 10 s -1 or Q=250pC Q=200pC Q=100pC ATF Case mm) Propagation Distance (cm) Instability appears over available plasma lengths (1 and 2 cm) Parameters: e x,y = 1mm/mrad, all other parameters as shown in simulation parameters table

9 Direct Filament Imaging Micron resolution of transverse bunch Si-window - low scattering, terminates plasma Au coating for Optical Transition Radiation Generation 60 MeV Linac Resolution 3.9mm/line (USAF 1951 Target 50% MTF) Capillary H 2 Gas Si/Au Window Microscope Objective Turning Mirrors 1024 ProEM Princeton Insturments EMCCD Camera e - OTR 15kV Tungesten Beam Stop M. Fedurin Poster WG 5-50

10 Typical Beam and Filament Images Plasma Off Incoming bunch stable: c/w p = 12.3mm Size 10% RMS Charge 1% (cavity) Plasma On Instability/Filamentation Filaments: high count features (higher current density) c/w p = 12.3mm c/w p = 15.4mm c/w p = 15.4mm c/w p = 38.2mm Number, location and position changes On average total count conserved Focusing? Color Maps with background subtraction : a) [0,225], b to f) [0,325]

11 Single to Multiple Filament Transition We Define CFI: Typically multiple filaments CFI Scaling with c/w p Each point may be multiple observations Single Filaments: k p s r <2.2 CFI/Multiple Filaments: k p s r >2.2 1 to 5 observed Merging of Filaments: k p s r >4.5 Observed in simulations Focusing increasing n e Merging

12 Filament Size Scaling High Charge (1.0nC) s 0x =81mm, s 0y =53mm All events c/w p <20mm multiple filaments Low Charge (0.54nC) Scaling for 12<c/w p <42mm Filament merging for c/w p <10mm Low Charge (0.54nC) s 0x =89mm, s 0y =45mm ~n 1/2 b All events single filaments No scaling with c/w p CFI suppressed High Charge (1.0nC) Multiple Single increasing n e Focusing?

13 Summary CFI observed and studied at the ATF Transverse imaging of multiple (1-5) filaments Multiple filaments observed for k p s 0y >2.2 (theory k p s r >1) Filament size and position vary event to event Filaments transverse size scale with plasma skin depth Suppression of CFI with reduced charge ( ~n 1/2 b ) Focusing for k p s r <<1

14 Experiment Experiment on BL #1 Compton Chamber

15 Magnetic Energy (A.U.) Emittance Effects 1 e =1mm-mrad ATF Case Emittance competes with CFI (1) Increased emittance reduces CFI growth rate Similar to temperature effect in Weibel instability (2) 0.1 e =20mm-mrad Plasma Distance (cm) Transverse emittance not an issue for ATF parameters (e N =1-2 mm-mrad) Parameters: e x,y = 1mm-mrad and 20 mm-mrad, all other parameters as shown in simulation parameters table (1) J.R. Cary et al., Phys. Fluids 24, 1818 (1981); (2) L. Silva et. al - Phys. of Plasmas 9, 2458 (2002)

Weibel instability and filamentary structures of a relativistic electron beam in plasma

Weibel instability and filamentary structures of a relativistic electron beam in plasma Mitglied der Helmholtz-Gemeinschaft 7 th Direct Drive and Fast Ignition Workshop Prague, 3-6 May, 009 Weibel instability and filamentary structures of a relativistic electron beam in plasma Anupam Karmakar

More information

Experimental study of nonlinear laser-beam Thomson scattering

Experimental study of nonlinear laser-beam Thomson scattering Experimental study of nonlinear laser-beam Thomson scattering T. Kumita, Y. Kamiya, T. Hirose Department of Physics, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan I.

More information

γmy =F=-2πn α e 2 y or y +ω β2 y=0 (1)

γmy =F=-2πn α e 2 y or y +ω β2 y=0 (1) Relativistic Weibel Instability Notes from a tutorial at the UCLA Winter School, January 11, 2008 Tom Katsouleas USC Viterbi School of Engineering, LA, CA 90089-0271 Motivation: Weibel instability of relativistic

More information

Non-neutral fireball and possibilities for accelerating positrons with plasma

Non-neutral fireball and possibilities for accelerating positrons with plasma Instituto Superior Técnico GoLP/IPFN Non-neutral fireball and possibilities for accelerating positrons with plasma J.Vieira GoLP / Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico, Lisbon

More information

Summary Working Group 4: Plasma Wakefield Acceleration

Summary Working Group 4: Plasma Wakefield Acceleration Summary Working Group 4: Plasma Wakefield Acceleration James Rosenzweig, Andrei Seryi Working group leaders On behalf of the working group AAC 2010 Annapolis, MD June 19, 2010 Future Experimental Facilities

More information

Plasma Wakefield Acceleration of. Positron Bunches. Jorge Vieira

Plasma Wakefield Acceleration of. Positron Bunches. Jorge Vieira GoLP/IPFN Instituto Superior Técnico Plasma Wakefield Acceleration of Jorge Vieira! Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico Lisbon, Portugal http://epp.ist.utl.pt[/jorgevieira]

More information

Plasma-based Acceleration at SLAC

Plasma-based Acceleration at SLAC Plasmabased Acceleration at SLAC Patric Muggli University of Southern California muggli@usc.edu for the E167 collaboration E167 Collaboration: I. Blumenfeld, F.J. Decker, P. Emma, M. J. Hogan, R. Iverson,

More information

3D Simulations of Pre-Ionized and Two-Stage Ionization Injected Laser Wakefield Accelerators

3D Simulations of Pre-Ionized and Two-Stage Ionization Injected Laser Wakefield Accelerators 3D Simulations of Pre-Ionized and Two-Stage Ionization Injected Laser Wakefield Accelerators Asher Davidson, Ming Zheng,, Wei Lu,, Xinlu Xu,, Chang Joshi, Luis O. Silva, Joana Martins, Ricardo Fonseca

More information

Simulation of Relativistic Jet-Plasma Interactions

Simulation of Relativistic Jet-Plasma Interactions Simulation of Relativistic Jet-Plasma Interactions Robert Noble and Johnny Ng Stanford Linear Accelerator Center SABER Workshop, Laboratory Astrophysics WG SLAC, March 15-16, 2006 Motivations High energy

More information

A Meter-Scale Plasma Wakefield Accelerator

A Meter-Scale Plasma Wakefield Accelerator A Meter-Scale Plasma Wakefield Accelerator Rasmus Ischebeck, Melissa Berry, Ian Blumenfeld, Christopher E. Clayton, Franz-Josef Decker, Mark J. Hogan, Chengkun Huang, Richard Iverson, Chandrashekhar Joshi,

More information

High Energy Gain Helical Inverse Free Electron Laser Accelerator at Brookhaven National Laboratory

High Energy Gain Helical Inverse Free Electron Laser Accelerator at Brookhaven National Laboratory High Energy Gain Helical Inverse Free Electron Laser Accelerator at Brookhaven National Laboratory J. Duris 1, L. Ho 1, R. Li 1, P. Musumeci 1, Y. Sakai 1, E. Threlkeld 1, O. Williams 1, M. Babzien 2,

More information

E200: Plasma Wakefield Accelera3on

E200: Plasma Wakefield Accelera3on E200: Plasma Wakefield Accelera3on Status and Plans Chan Joshi University of California Los Angeles For the E200 Collabora3on SAREC Mee3ng, SLAC : Sept 15-17 th 2014 Work Supported by DOE Experimental

More information

Electron Acceleration in a Plasma Wakefield Accelerator E200 FACET, SLAC

Electron Acceleration in a Plasma Wakefield Accelerator E200 FACET, SLAC Electron Acceleration in a Plasma Wakefield Accelerator E200 Collaboration @ FACET, SLAC Chan Joshi UCLA Making Big Science Small : Moving Toward a TeV Accelerator Using Plasmas Work Supported by DOE Compact

More information

Plasma Wakefield Accelerator Experiments and their Diagnostics Patric Muggli University of Southern California

Plasma Wakefield Accelerator Experiments and their Diagnostics Patric Muggli University of Southern California Plasma Wakefield Accelerator Experiments and their Diagnostics Patric Muggli University of Southern California muggli@usc.edu Work supported by US Dept. of Energy OUTLINE Motivation Plasma Wakefield Accelerator

More information

PoS(EPS-HEP2017)533. First Physics Results of AWAKE, a Plasma Wakefield Acceleration Experiment at CERN. Patric Muggli, Allen Caldwell

PoS(EPS-HEP2017)533. First Physics Results of AWAKE, a Plasma Wakefield Acceleration Experiment at CERN. Patric Muggli, Allen Caldwell First Physics Results of AWAKE, a Plasma Wakefield Acceleration Experiment at CERN Patric Muggli, Max Planck Institute for Physics E-mail: muggli@mpp.mpg.de AWAKE is a plasma wakefield acceleration experiment

More information

E-157: A Plasma Wakefield Acceleration Experiment

E-157: A Plasma Wakefield Acceleration Experiment SLAC-PUB-8656 October 2 E-157: A Plasma Wakefield Acceleration Experiment P. Muggli et al. Invited talk presented at the 2th International Linac Conference (Linac 2), 8/21/2 8/25/2, Monterey, CA, USA Stanford

More information

FACET*, a springboard to the accelerator frontier of the future

FACET*, a springboard to the accelerator frontier of the future Going Beyond Current Techniques: FACET*, a springboard to the accelerator frontier of the future Patric Muggli University of Southern California muggli@usc.edu *Facilities for Accelerator Science and Experimental

More information

Delta undulator magnet: concept and project status

Delta undulator magnet: concept and project status Delta undulator magnet: concept and project status Part I: concept and model construction* Alexander Temnykh, CLASSE, Cornell University, Ithaca, New York, USA Part - II: beam test at ATF in BNL + M. Babzien,

More information

Anisotropic electron distribution functions and the transition between the Weibel and the whistler instabilities

Anisotropic electron distribution functions and the transition between the Weibel and the whistler instabilities Anisotropic electron distribution functions and the transition between the Weibel and the whistler instabilities F. Pegoraro, L. Palodhi, F. Califano 5 th INTERNATIONAL CONFERENCE ON THE FRONTIERS OF PLASMA

More information

Novel Features of Computational EM and Particle-in-Cell Simulations. Shahid Ahmed. Illinois Institute of Technology

Novel Features of Computational EM and Particle-in-Cell Simulations. Shahid Ahmed. Illinois Institute of Technology Novel Features of Computational EM and Particle-in-Cell Simulations Shahid Ahmed Illinois Institute of Technology Outline Part-I EM Structure Motivation Method Modes, Radiation Leakage and HOM Damper Conclusions

More information

High energy gains in field-ionized noble gas plasma accelerators

High energy gains in field-ionized noble gas plasma accelerators High energy gains in field-ionized noble gas plasma accelerators Laser and Plasma Accelerators Workshop 2013 Sébastien Corde, September 05, 2013 Outline - High energy gains in Ar - Energy Doubling, up

More information

Ionization Injection and Acceleration of Electrons in a Plasma Wakefield Accelerator at FACET

Ionization Injection and Acceleration of Electrons in a Plasma Wakefield Accelerator at FACET Ionization Injection and Acceleration of Electrons in a Plasma Wakefield Accelerator at FACET N. Vafaei-Najafabadi 1, a), C.E. Clayton 1, K.A. Marsh 1, W. An 1, W. Lu 1,, W.B. Mori 1, C. Joshi 1, E. Adli

More information

arxiv: v1 [physics.plasm-ph] 22 Jan 2014

arxiv: v1 [physics.plasm-ph] 22 Jan 2014 Robustness of the filamentation instability in arbitrarily oriented magnetic field: Full 3D calculation A. Bret arxiv:1401.5631v1 [physics.plasm-ph] 22 Jan 2014 ETSI Industriales, Universidad de Castilla-La

More information

ERL FOR LOW ENERGY ELECTRON COOLING AT RHIC (LEREC)*

ERL FOR LOW ENERGY ELECTRON COOLING AT RHIC (LEREC)* ERL FOR LOW ENERGY ELECTRON COOLING AT RHIC (LEREC)* J. Kewisch, M. Blaskiewicz, A. Fedotov, D. Kayran, C. Montag, V. Ranjbar Brookhaven National Laboratory, Upton, New York Abstract Low-energy RHIC Electron

More information

Injector Experimental Progress

Injector Experimental Progress Injector Experimental Progress LCLS TAC Meeting December 10-11 2001 John Schmerge for the GTF Team GTF Group John Schmerge Paul Bolton Steve Gierman Cecile Limborg Brendan Murphy Dave Dowell Leader Laser

More information

Pushing the limits of laser synchrotron light sources

Pushing the limits of laser synchrotron light sources Pushing the limits of laser synchrotron light sources Igor Pogorelsky National Synchrotron Light Source 2 Synchrotron light source With λ w ~ several centimeters, attaining XUV region requires electron

More information

Compressor and Chicane Radiation Studies at the ATF. Gerard Andonian, UCLA High Power Workshop January 14-16, 2009 UCLA

Compressor and Chicane Radiation Studies at the ATF. Gerard Andonian, UCLA High Power Workshop January 14-16, 2009 UCLA Compressor and Chicane Radiation Studies at the ATF Gerard Andonian, UCLA High Power Workshop January 14-16, 2009 UCLA Collaboration UCLA PBPL G. Andonian, A. Cook, M. Dunning, E. Hemsing, A. Murokh, S.

More information

Experimental Observation of Energy Modulation in Electron Beams Passing. Through Terahertz Dielectric Wakefield Structures

Experimental Observation of Energy Modulation in Electron Beams Passing. Through Terahertz Dielectric Wakefield Structures Experimental Observation of Energy Modulation in Electron Beams Passing Through Terahertz Dielectric Wakefield Structures S. Antipov 1,3, C. Jing 1,3, M. Fedurin 2, W. Gai 3, A. Kanareykin 1, K. Kusche

More information

4 FEL Physics. Technical Synopsis

4 FEL Physics. Technical Synopsis 4 FEL Physics Technical Synopsis This chapter presents an introduction to the Free Electron Laser (FEL) physics and the general requirements on the electron beam parameters in order to support FEL lasing

More information

Results of the Energy Doubler Experiment at SLAC

Results of the Energy Doubler Experiment at SLAC Results of the Energy Doubler Experiment at SLAC Mark Hogan 22nd Particle Accelerator Conference 2007 June 27, 2007 Work supported by Department of Energy contracts DE-AC02-76SF00515 (SLAC), DE-FG03-92ER40745,

More information

Overview of accelerator science opportunities with FACET ASF

Overview of accelerator science opportunities with FACET ASF Overview of accelerator science opportunities with FACET ASF Bob Siemann DOE FACET Review, February 19-20, 2008 OUTLINE I. Plasma Wakefield Acceleration II. Plasma Wakefield Based Linear Colliders III.

More information

Magnetic fields generated by the Weibel Instability

Magnetic fields generated by the Weibel Instability Magnetic fields generated by the Weibel Instability C. M. Ryu POSTECH, KOREA FFP14 Marseille 14.7.15-7.18 Outline I. Why Weibel instability? II. Simulations III. Conclusion Why Weibel instability? The

More information

Lecture 1. Introduction

Lecture 1. Introduction Preparation of the concerned sectors for educational and R&D activities related to the Hungarian ELI project Ion acceleration in plasmas Lecture 1. Introduction Dr. Ashutosh Sharma Zoltán Tibai 1 Contents

More information

E-162: Positron and Electron Dynamics in a Plasma Wakefield Accelerator

E-162: Positron and Electron Dynamics in a Plasma Wakefield Accelerator E-162: Positron and Electron Dynamics in a Plasma Wakefield Accelerator Presented by Mark Hogan for the E-162 Collaboration K. Baird, F.-J. Decker, M. J. Hogan*, R.H. Iverson, P. Raimondi, R.H. Siemann,

More information

Characterization of an 800 nm SASE FEL at Saturation

Characterization of an 800 nm SASE FEL at Saturation Characterization of an 800 nm SASE FEL at Saturation A.Tremaine*, P. Frigola, A. Murokh, C. Pellegrini, S. Reiche, J. Rosenzweig UCLA, Los Angeles, CA 90095 M. Babzien, I. Ben-Zvi, E. Johnson, R. Malone,

More information

Demonstration of Energy Gain Larger than 10GeV in a Plasma Wakefield Accelerator

Demonstration of Energy Gain Larger than 10GeV in a Plasma Wakefield Accelerator Demonstration of Energy Gain Larger than 10GeV in a Plasma Wakefield Accelerator Patric Muggli University of Southern California Los Angeles, USA muggli@usc.edu THANK YOU to my colleagues of the E167 Collaboration:

More information

A proposed demonstration of an experiment of proton-driven plasma wakefield acceleration based on CERN SPS

A proposed demonstration of an experiment of proton-driven plasma wakefield acceleration based on CERN SPS J. Plasma Physics (2012), vol. 78, part 4, pp. 347 353. c Cambridge University Press 2012 doi:.17/s0022377812000086 347 A proposed demonstration of an experiment of proton-driven plasma wakefield acceleration

More information

Ion Acceleration from the Interaction of Ultra-Intense Laser Pulse with a Thin Foil

Ion Acceleration from the Interaction of Ultra-Intense Laser Pulse with a Thin Foil Ion Acceleration from the Interaction of Ultra-Intense Laser Pulse with a Thin Foil Matthew Allen Department of Nuclear Engineering UC Berkeley mallen@nuc.berkeley.edu March 15, 2004 8th Nuclear Energy

More information

Laser-driven proton acceleration from cryogenic hydrogen jets

Laser-driven proton acceleration from cryogenic hydrogen jets Laser-driven proton acceleration from cryogenic hydrogen jets new prospects in tumor therapy and laboratory astroparticle physics C. Roedel SLAC National Accelerator Laboratory & Friedrich-Schiller-University

More information

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site 1 Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site Sakhorn Rimjaem (on behalf of the PITZ team) Motivation Photo Injector Test Facility at

More information

LCLS Injector Straight Ahead Spectrometer C.Limborg-Deprey Stanford Linear Accelerator Center 8 th June 2005

LCLS Injector Straight Ahead Spectrometer C.Limborg-Deprey Stanford Linear Accelerator Center 8 th June 2005 LCLS Injector Straight Ahead Spectrometer C.Limborg-Deprey Stanford Linear Accelerator Center 8 th June 2005 Summary The spectrometer design was modified to allow the measurement of uncorrelated energy

More information

Beam-plasma Physics Working Group Summary

Beam-plasma Physics Working Group Summary Beam-plasma Physics Working Group Summary P. Muggli, Ian Blumenfeld Wednesday: 10:55, Matt Thompson, LLNL, "Prospect for ultra-high gradient Cherenkov wakefield accelerator experiments at SABER 11:25,

More information

Plasma Wakefield Acceleration Presented by: Bob Siemann On behalf of: The E157, E162, E-164, E-164X, E167 Collaborations

Plasma Wakefield Acceleration Presented by: Bob Siemann On behalf of: The E157, E162, E-164, E-164X, E167 Collaborations Bob Siemann SLAC HEPAP Subpanel on Accelerator Research Plasma Wakefield Acceleration Facilities and Opportunities Concluding Remarks Dec 21, 2005 HEPAP Accel Research Subpanel 1 Plasma Wakefield Acceleration

More information

Waseda University. Design of High Brightness Laser-Compton Light Source for EUV Lithography Research in Shorter Wavelength Region

Waseda University. Design of High Brightness Laser-Compton Light Source for EUV Lithography Research in Shorter Wavelength Region Waseda University Research Institute for Science and Engineering Design of High Brightness Laser-Compton Light Source for EUV Lithography Research in Shorter Wavelength Region Research Institute for Science

More information

Compact Wideband THz Source

Compact Wideband THz Source Compact Wideband THz Source G. A. Krafft Center for Advanced Studies of Accelerators Jefferson Lab Newport News, VA 3608 Previously, I have published a paper describing compact THz radiation sources based

More information

The Weakened Weibel Electromagnetic Instability of Ultra-Intense MeV Electron Beams in Multi-Layer Solid Structure

The Weakened Weibel Electromagnetic Instability of Ultra-Intense MeV Electron Beams in Multi-Layer Solid Structure Progress In Electromagnetics Research M, Vol. 59, 103 109, 2017 The Weakened Weibel Electromagnetic Instability of Ultra-Intense MeV Electron Beams in Multi-Layer Solid Structure Leng Liao and Ruiqiang

More information

SL_COMB. The SL_COMB experiment at SPARC_LAB will operate in the so-called quasinonlinear regime, defined by the dimensionless charge quantity

SL_COMB. The SL_COMB experiment at SPARC_LAB will operate in the so-called quasinonlinear regime, defined by the dimensionless charge quantity SL_COMB E. Chiadroni (Resp), D. Alesini, M. P. Anania (Art. 23), M. Bellaveglia, A. Biagioni (Art. 36), S. Bini (Tecn.), F. Ciocci (Ass.), M. Croia (Dott), A. Curcio (Dott), M. Daniele (Dott), D. Di Giovenale

More information

ASTRA simulations of the slice longitudinal momentum spread along the beamline for PITZ

ASTRA simulations of the slice longitudinal momentum spread along the beamline for PITZ ASTRA simulations of the slice longitudinal momentum spread along the beamline for PITZ Orlova Ksenia Lomonosov Moscow State University GSP-, Leninskie Gory, Moscow, 11999, Russian Federation Email: ks13orl@list.ru

More information

Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging

Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging G. Golovin 1, S. Banerjee 1, C. Liu 1, S. Chen 1, J. Zhang 1, B. Zhao 1, P. Zhang 1, M. Veale 2, M. Wilson

More information

2 Relativistic shocks and magnetic fields 17

2 Relativistic shocks and magnetic fields 17 Contents I Introduction 13 1 Overview 15 2 Relativistic shocks and magnetic fields 17 3 Basic Physics 19 3.1 Shock waves.............................. 20 3.2 The theory of relativity........................

More information

First results from the plasma wakefield acceleration transverse studies at FACET

First results from the plasma wakefield acceleration transverse studies at FACET First results from the plasma wakefield acceleration transverse studies at FACET Erik Adli (University of Oslo, Norway and SLAC) For the FACET E200 collaboration : M.J. Hogan, S. Corde, R.J. England, J.

More information

Laser-driven undulator source

Laser-driven undulator source Laser-driven undulator source Matthias Fuchs, R. Weingartner, A.Maier, B. Zeitler, S. Becker, D. Habs and F. Grüner Ludwig-Maximilians-Universität München A.Popp, Zs. Major, J. Osterhoff, R. Hörlein, G.

More information

SLAC Summer School on Electron and Photon Beams. Tor Raubenheimer Lecture #2: Inverse Compton and FEL s

SLAC Summer School on Electron and Photon Beams. Tor Raubenheimer Lecture #2: Inverse Compton and FEL s SLAC Summer School on Electron and Photon Beams Tor Raubenheimer Lecture #: Inverse Compton and FEL s Outline Synchrotron radiation Bending magnets Wigglers and undulators Inverse Compton scattering Free

More information

Beam Shaping and Permanent Magnet Quadrupole Focusing with Applications to the Plasma Wakefield Accelerator

Beam Shaping and Permanent Magnet Quadrupole Focusing with Applications to the Plasma Wakefield Accelerator Beam Shaping and Permanent Magnet Quadrupole Focusing with Applications to the Plasma Wakefield Accelerator R. Joel England J. B. Rosenzweig, G. Travish, A. Doyuran, O. Williams, B. O Shea UCLA Department

More information

Monoenergetic Proton Beams from Laser Driven Shocks

Monoenergetic Proton Beams from Laser Driven Shocks Monoenergetic Proton Beams from Laser Driven Shocks Dan Haberberger, Department of Electrical Engineering, UCLA In collaboration with: Sergei Tochitsky, Chao Gong, Warren Mori, Chan Joshi, Department of

More information

STATUS OF E-157: METER-LONG PLASMA WAKEFIELD EXPERIMENT. Presented by Patrick Muggli for the E-157 SLAC/USC/LBNL/UCLA Collaboration

STATUS OF E-157: METER-LONG PLASMA WAKEFIELD EXPERIMENT. Presented by Patrick Muggli for the E-157 SLAC/USC/LBNL/UCLA Collaboration STATUS OF E-157: METER-LONG PLASMA WAKEFIELD EXPERIMENT Presented by Patrick Muggli for the E-157 SLAC/USC/LBNL/UCLA Collaboration OUTLINE Basic E-157 Acelleration, Focusing Plasma Source Diagnostics:

More information

An Astrophysical Plasma Wakefield Accelerator. Alfven Wave Induced Plasma Wakefield Acceleration

An Astrophysical Plasma Wakefield Accelerator. Alfven Wave Induced Plasma Wakefield Acceleration An Astrophysical Plasma Wakefield Accelerator Alfven Wave Induced Plasma Wakefield Acceleration Laboratory Astrophysics at SLAC Study in a Laboratory setting: Fundamental physics Astrophysical Dynamics

More information

Dependency of Gabor Lens Focusing Characteristics on Nonneutral Plasma Properties

Dependency of Gabor Lens Focusing Characteristics on Nonneutral Plasma Properties Dependency of Gabor Lens Focusing Characteristics on Nonneutral Plasma Properties Kathrin Schulte HIC for FAIR Workshop Riezlern, 14.03.2013 Outline 1. 2. 3. 4. 1. 1.1. Relevant to know about Gabor lenses...or

More information

Particle-in-Cell Simulations of Particle Acceleration. E. A. Startsev and C. J. McKinstrie. Laboratory for Laser Energetics, U.

Particle-in-Cell Simulations of Particle Acceleration. E. A. Startsev and C. J. McKinstrie. Laboratory for Laser Energetics, U. Particle-in-Cell Simulations of Particle Acceleration E. A. Startsev and C. J. McKinstrie Laboratory for Laser Energetics, U. of Rochester Previous analytical calculations suggest that a preaccelerated

More information

Medical Applications of Compact Laser-Compton Light Source

Medical Applications of Compact Laser-Compton Light Source Medical Applications of Compact Laser-Compton Light Source Y. Hwang 1, D. J. Gibson 2, R. A. Marsh 2, G. G. Anderson 2, T. Tajima 1, C. P. J. Barty 2 1 University of California, Irvine 2 Lawrence Livermore

More information

UCLA Neptune Ramped Bunch Experiment. R. Joel England UCLA Department of Physics and Astronomy Particle Beam Physics Laboratory May 19, 2004

UCLA Neptune Ramped Bunch Experiment. R. Joel England UCLA Department of Physics and Astronomy Particle Beam Physics Laboratory May 19, 2004 UCLA Neptune Ramped Bunch Experiment R. Joel England UCLA Department of Physics and Astronomy Particle Beam Physics Laboratory May 19, 2004 Outline 1. Background & Motivation 2. Neptune Dogleg Compressor

More information

II) Experimental Design

II) Experimental Design SLAC Experimental Advisory Committee --- September 12 th, 1997 II) Experimental Design Theory and simulations Great promise of significant scientific and technological achievements! How to realize this

More information

Free-electron laser SACLA and its basic. Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center

Free-electron laser SACLA and its basic. Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center Free-electron laser SACLA and its basic Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center Light and Its Wavelength, Sizes of Material Virus Mosquito Protein Bacteria Atom

More information

Recent theoretical advances. on plasma based tools. for HEDP

Recent theoretical advances. on plasma based tools. for HEDP GoLP/IPFN Instituto Superior Técnico Recent theoretical advances J. Vieira on plasma based tools Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico Lisbon, Portugal http://web.ist.utl.pt/jorge.vieira/

More information

Start-to-End Simulations

Start-to-End Simulations AKBP 9.3 Case Study for 100 µm SASE FEL Based on PITZ Accelerator for Pump-Probe Experiment at the European XFEL Start-to-End Simulations Outline Introduction Beam Optimization Beam Transport Simulation

More information

Laser-driven relativistic optics and particle acceleration in ultrathin foils

Laser-driven relativistic optics and particle acceleration in ultrathin foils Laser-driven relativistic optics and particle acceleration in ultrathin foils Prof. Paul McKenna University of Strathclyde, Glasgow, UK University of Strathclyde, Glasgow Founded in 1796 by John Anderson,

More information

The New Superconducting RF Photoinjector a High-Average Current & High-Brightness Gun

The New Superconducting RF Photoinjector a High-Average Current & High-Brightness Gun The New Superconducting RF Photoinjector a High-Average Current & High-Brightness Gun Jochen Teichert for the BESSY-DESY-FZD-MBI collaboration and the ELBE crew High-Power Workshop, UCLA, Los Angeles 14

More information

Electron Spectrometer for FLASHForward Plasma-Wakefield Accelerator

Electron Spectrometer for FLASHForward Plasma-Wakefield Accelerator Electron Spectrometer for FLASHForward Plasma-Wakefield Accelerator Artemis Kontogoula Supervisor: Vladyslav Libov September 7, 2017 National & Kapodistrian University of Athens, Greece Deutsches Elektronen-Synchrotron

More information

Modeling Nonlinear Optics Of Plasmas (Relevant To IFE)

Modeling Nonlinear Optics Of Plasmas (Relevant To IFE) Modeling Nonlinear Optics Of Plasmas (Relevant To IFE) F.S.Tsung and the UCLA Simulation Group University of California, Los Angeles (UCLA) 1 F. S. Tsung/OSIRIS Workshop 2017 Summary/Conclusion Introduction

More information

Observation of Coherent Optical Transition Radiation in the LCLS Linac

Observation of Coherent Optical Transition Radiation in the LCLS Linac Observation of Coherent Optical Transition Radiation in the LCLS Linac Henrik Loos, Ron Akre, Franz-Josef Decker, Yuantao Ding, David Dowell, Paul Emma,, Sasha Gilevich, Gregory R. Hays, Philippe Hering,

More information

Beam compression experiments using the UCLA/ATF compressor

Beam compression experiments using the UCLA/ATF compressor Beam compression experiments using the UCLA/ATF compressor J.B. ROSENZWEIG, M. DUNNING, E. HEMSING, G. ANDONIAN, A.M. COOK, A. MUROKH, S. REICHE, D. SCHILLER, M. BABZIEN #, K. KUSCHE #, V. YAKIMENKO #,

More information

Particle acceleration at relativistic shock waves and gamma-ray bursts

Particle acceleration at relativistic shock waves and gamma-ray bursts Particle acceleration at relativistic shock waves and gamma-ray bursts Martin Lemoine Institut d Astrophysique de Paris CNRS, Université Pierre & Marie Curie Outline: 1. Particle acceleration and relativistic

More information

Active plasma lenses at 10 GeV

Active plasma lenses at 10 GeV Active plasma lenses at 1 GeV Jeroen van Tilborg, Sam Barber, Anthony Gonsalves, Carl Schroeder, Sven Steinke, Kelly Swanson, Hai-En Tsai, Cameron Geddes, Joost Daniels, and Wim Leemans BELLA Center, LBNL

More information

Recent developments in the Dutch Laser Wakefield Accelerators program at the University of Twente: New external bunch injection scheme.

Recent developments in the Dutch Laser Wakefield Accelerators program at the University of Twente: New external bunch injection scheme. Recent developments in the Dutch Laser Wakefield Accelerators program at the University of Twente: New external bunch injection scheme. A.G. Khachatryan, F.A. van Goor, J.W.J. Verschuur and K.-J. Boller

More information

Working Group 8 Laser Technology for Laser-Plasma Accelerators Co-leaders Bill White & Marcus Babzien

Working Group 8 Laser Technology for Laser-Plasma Accelerators Co-leaders Bill White & Marcus Babzien Working Group 8 Laser Technology for Laser-Plasma Accelerators Co-leaders Bill White & Marcus Babzien Working Group 8: Overview Relatively small group this year: 8 oral / 3 poster presentations For 2016

More information

Transverse emittance measurements on an S-band photocathode rf electron gun * Abstract

Transverse emittance measurements on an S-band photocathode rf electron gun * Abstract SLAC PUB 8963 LCLS-01-06 October 2001 Transverse emittance measurements on an S-band photocathode rf electron gun * J.F. Schmerge, P.R. Bolton, J.E. Clendenin, F.-J. Decker, D.H. Dowell, S.M. Gierman,

More information

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21 Transverse dynamics Selected topics Erik Adli, University of Oslo, August 2016, Erik.Adli@fys.uio.no, v2.21 Dispersion So far, we have studied particles with reference momentum p = p 0. A dipole field

More information

Synchrotron Radiation a Tool for Precise Beam Energy Measurements at the ILC

Synchrotron Radiation a Tool for Precise Beam Energy Measurements at the ILC Synchrotron Radiation a Tool for Precise Beam Energy Measurements at the ILC K.Hiller, R.Makarov, H.J.Schreiber, E.Syresin and B.Zalikhanov a BPM based magnetic spectrometer example E b see LC-DET-2004-031

More information

CP472, Advanced Accelerator Concepts: Eighth Workshop, edited by W. Lawson, C. Bellamy, and D. Brosius (c) The American Institute of Physics

CP472, Advanced Accelerator Concepts: Eighth Workshop, edited by W. Lawson, C. Bellamy, and D. Brosius (c) The American Institute of Physics Acceleration of Electrons in a Self-Modulated Laser Wakefield S.-Y. Chen, M. Krishnan, A. Maksimchuk and D. Umstadter Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, MI 89 Abstract.

More information

OPTIMIZATION OF COMPENSATION CHICANES IN THE LCLS-II BEAM DELIVERY SYSTEM

OPTIMIZATION OF COMPENSATION CHICANES IN THE LCLS-II BEAM DELIVERY SYSTEM OPTIMIZATION OF COMPENSATION CHICANES IN THE LCLS-II BEAM DELIVERY SYSTEM LCLS-II TN-15-41 11/23/2015 J. Qiang, M. Venturini November 23, 2015 LCLSII-TN-15-41 1 Introduction L C L S - I I T E C H N I C

More information

Extreme Light Infrastructure - Nuclear Physics ELI - NP

Extreme Light Infrastructure - Nuclear Physics ELI - NP Extreme Light Infrastructure - Nuclear Physics ELI - NP Nicolae-Victor Zamfir National Institute for Physics and Nuclear Engineering (IFIN-HH) Bucharest-Magurele, Romania www.eli-np.ro Bucharest-Magurele

More information

Emittance and energy spread measurements of relativistic electrons from laser-driven accelerator

Emittance and energy spread measurements of relativistic electrons from laser-driven accelerator Emittance and energy spread measurements of relativistic electrons from laser-driven accelerator OUTLINE ALPHA-X Project Introduction on laser wakefield accelerator (LWFA) LWFA as a light source Electron

More information

SPARCLAB. Source For Plasma Accelerators and Radiation Compton with Laser And Beam

SPARCLAB. Source For Plasma Accelerators and Radiation Compton with Laser And Beam SPARCLAB Source For Plasma Accelerators and Radiation Compton with Laser And Beam EMITTANCE X X X X X X X X Introduction to SPARC_LAB 2 BRIGHTNESS (electrons) B n 2I nx ny A m 2 rad 2 The current can be

More information

Observation of Ultra-Wide Bandwidth SASE FEL

Observation of Ultra-Wide Bandwidth SASE FEL Observation of Ultra-Wide Bandwidth SASE FEL Gerard Andonian Particle Beam Physics Laboratory University of California Los Angeles The Physics and Applications of High Brightness Electron Beams Erice,

More information

Emittance Measurements

Emittance Measurements Emittance Measurements FACET-II SCIENCE WORKSHOP 2017 Kavli Auditorium, SLAC Brendan O Shea October 17, 2017 FACET-II CDR review, Sept. 1-2, Project overview, Yakimenko 2 FACET Spectrometer Calibration

More information

arxiv:physics/ v1 [physics.plasm-ph] 16 Jan 2007

arxiv:physics/ v1 [physics.plasm-ph] 16 Jan 2007 The Effect of Laser Focusing Conditions on Propagation and Monoenergetic Electron Production in Laser Wakefield Accelerators arxiv:physics/0701186v1 [physics.plasm-ph] 16 Jan 2007 A. G. R. Thomas 1, Z.

More information

External Injection in Plasma Accelerators. R. Pompili, S. Li, F. Massimo, L. Volta, J. Yang

External Injection in Plasma Accelerators. R. Pompili, S. Li, F. Massimo, L. Volta, J. Yang External Injection in Plasma Accelerators R. Pompili, S. Li, F. Massimo, L. Volta, J. Yang Why Plasma Accelerators? Conventional RF cavities: 50-100 MV/m due to electrical breakdown Plasma: E>100 GV/m

More information

Particle-in-cell (PIC) simulation output for the temporal evolution of magnetic fields.

Particle-in-cell (PIC) simulation output for the temporal evolution of magnetic fields. Type of file: pdf Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary Discussion. Type of file: MOV Title of file for HTML: Supplementary Movie 1 Description:

More information

An Introduction to Plasma Accelerators

An Introduction to Plasma Accelerators An Introduction to Plasma Accelerators Humboldt University Research Seminar > Role of accelerators > Working of plasma accelerators > Self-modulation > PITZ Self-modulation experiment > Application Gaurav

More information

Tuning Techniques And Operator Diagnostics for FACET at SLAC National Accelerator Laboratory. Chris Melton SLAC Accelerator Operations

Tuning Techniques And Operator Diagnostics for FACET at SLAC National Accelerator Laboratory. Chris Melton SLAC Accelerator Operations Tuning Techniques And Operator Diagnostics for FACET at SLAC National Accelerator Laboratory Chris Melton SLAC Accelerator Operations FACET Tuning And Diagnostics What is FACET? FACET Performance Challenges

More information

Accelerators Beyond LHC and ILC

Accelerators Beyond LHC and ILC Accelerators Beyond LHC and ILC Rasmus Ischebeck, Stanford Linear Accelerator Center Accelerators for TeV-Energy electrons Present Technologies Advanced Accelerator Research at SLAC Electron beam driven

More information

Modeling of Space Charge Effects and Coherent Synchrotron Radiation in Bunch Compression Systems. Martin Dohlus DESY, Hamburg

Modeling of Space Charge Effects and Coherent Synchrotron Radiation in Bunch Compression Systems. Martin Dohlus DESY, Hamburg Modeling of Space Charge Effects and Coherent Synchrotron Radiation in Bunch Compression Systems Martin Dohlus DESY, Hamburg SC and CSR effects are crucial for design & simulation of BC systems CSR and

More information

Multi-GeV electron acceleration using the Texas Petawatt laser

Multi-GeV electron acceleration using the Texas Petawatt laser Multi-GeV electron acceleration using the Texas Petawatt laser X. Wang, D. Du, S. Reed, R. Zgadzaj, P.Dong, N. Fazel, R. Korzekwa, Y.Y. Chang, W. Henderson M. Downer S.A. Yi, S. Kalmykov, E. D'Avignon

More information

Fast proton bunch generation in the interaction of ultraintense laser pulses with high-density plasmas

Fast proton bunch generation in the interaction of ultraintense laser pulses with high-density plasmas Fast proton bunch generation in the interaction of ultraintense laser pulses with high-density plasmas T.Okada, Y.Mikado and A.Abudurexiti Tokyo University of Agriculture and Technology, Tokyo -5, Japan

More information

Short Pulse, Low charge Operation of the LCLS. Josef Frisch for the LCLS Commissioning Team

Short Pulse, Low charge Operation of the LCLS. Josef Frisch for the LCLS Commissioning Team Short Pulse, Low charge Operation of the LCLS Josef Frisch for the LCLS Commissioning Team 1 Normal LCLS Parameters First Lasing in April 10, 2009 Beam to AMO experiment August 18 2009. Expect first user

More information

Collective Refraction of a Beam of Electrons at a Plasma-Gas Interface

Collective Refraction of a Beam of Electrons at a Plasma-Gas Interface Collective Refraction of a Beam of Electrons at a Plasma-Gas Interface P. Muggli, S. Lee, T. Katsouleas University of Southern California, Los Angeles, CA 90089 R. Assmann, F. J. Decker, M. J. Hogan, R.

More information

Laser ion acceleration with low density targets: a new path towards high intensity, high energy ion beams

Laser ion acceleration with low density targets: a new path towards high intensity, high energy ion beams Laser ion acceleration with low density targets: a new path towards high intensity, high energy ion beams P. Antici 1,2,3, J.Boeker 4, F. Cardelli 1,S. Chen 2,J.L. Feugeas 5, F. Filippi 1, M. Glesser 2,3,

More information

Chan Joshi UCLA With help from Weiming An, Chris Clayton, Xinlu Xu, Ken Marsh and Warren Mori

Chan Joshi UCLA With help from Weiming An, Chris Clayton, Xinlu Xu, Ken Marsh and Warren Mori E-doubling with emittance preservation and pump depletion Generation of Ultra-low Emittance Electrons Testing a new concept for a novel positron source Chan Joshi UCLA With help from Weiming An, Chris

More information

Calculation of wakefields for plasma-wakefield accelerators

Calculation of wakefields for plasma-wakefield accelerators 1 Calculation of wakefields for plasma-wakefield accelerators G. Stupakov, SLAC ICFA mini-workshop on Impedances and Beam Instabilities in Particle Accelerators 18-22 September 2017 2 Introduction to PWFA

More information

Electron acceleration regime envisioned at ELI-Beamlines in the Czech Republic and test experiments.

Electron acceleration regime envisioned at ELI-Beamlines in the Czech Republic and test experiments. Electron acceleration regime envisioned at ELI-Beamlines in the Czech Republic and test experiments. Tadzio Levato tadzio.levato@eli-beams.eu SIF 23-09-2014 Content Introduction to the project and the

More information