Thermal Methods of Analysis Theory, General Techniques and Applications. Prof. Tarek A. Fayed

Similar documents
Thermal Methods of Analysis

Nutshells of Thermal Analysis. Heat it up! Burn it! Thermal Analysis

Chapter 31. Thermal Methods

Calorimetry: differential scanning calorimetry (DSC), isothermal titration calorimetry (ITC)

APPLICATIONS OF THERMAL ANALYSIS IN POLYMER AND COMPOSITES CHARACTERIZATION. Wei Xie TA Instruments

Comprehensive Handbook of Calorimetry and Thermal Analysis

High Pressure DSC Differential Scanning Calorimeter

Thermal methods. P A Sathe Ramnarain Ruia College, Mumbai

Universal Standard Protocols for Temperature and Material Characterization Calibration with Pharmaceuticals by Thermal Analysis

CHEM*3440. Thermal Methods. Thermogravimetry. Instrumental Components. Chemical Instrumentation. Thermal Analysis. Topic 14

UNIT 11 DIFFERENTIAL THERMAL ANALYSIS, SCANNING CALORIMETRY AND THERMOMETRIC TITRATIONS

Application Handbook. Thermal Analysis in Practice Collected Applications

Measurement techniques

Total analysis with DSC, TMA and TGA-EGA

Analyzing & Testing. Comprehensive Material Characterization. Leading Thermal Analysis

Thermal and Mechanical Properties of EPR and XLPE Cable Compounds

5.2 Thermal analysis Thermal analysis

Common Definition of Thermal Analysis

Characterization of Solid State Drugs by Calorimetry

APPLICATION NOTE. Characterization and Classification of Recycled Polyamides by Means of Identify. Dr. Ekkehard Füglein

1) INTRODUCTION 2) ROLE IN PREFORMULATION 3) CLASSIFICATION OF THERMAL ANALYSIS. 4) DIFFERENT METHODS OF THERMAL ANALYSIS.

TGA Thermal Gravimetric Analysis

Simultaneous Thermal Analyzer (DTA/TGA)

Differential Scanning Calorimetry

DSC Methods to Quantify Physical Aging and Mobility in Amorphous Systems: Assessing Molecular Mobility

DETERMINATION OF THE DECOMPOSITION PRODUCTS OF CALCIUM OXALATE USING THERMAL GRAVIMETRY AND INFRARED SPECTROMETRY

MODULATED-TEMPERATURE THERMOMECHANICAL ANALYSIS

(Refer Slide Time: 00:58)

Analytical Testing Services Commercial Price List ManTech International Corporation January 2018

Thermogravimetric Analysis Advanced Techniques for Better Materials Characterisation

DSC AND TG/DTA AS PROBLEM-SOLVING TOOLS: CHARACTERIZATION OF PHARMACEUTICAL COMPOUNDS

DSC PT 10. Applications

Analyzing & Testing. Simultaneous Thermal Analysis. Method, Technique, Applications STA 449 F3. Leading Thermal Analysis

7. Thermal Properties

Modulated DSC Paper #8 Use Of Quasi-isothermal Mode for Improved Understanding of Structure Change

States of matter Part 2

Thermal and Mechanical Properties of EPR Cable Compound. Steven Boggs ICC Educational Session 7 November 2005 Phoenix, Arizona

Thermal properties of Engineering Materials

DEVELOPMENT OF IMPROVED METHODS FOR CHARACTERISING THE CURE OF COMPOSITE MATERIALS

Thermal Analysis Premium

Mechanical Properties of Polymers. Scope. MSE 383, Unit 3-1. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept.

DSC AS PROBLEM-SOLVING TOOL: BETTER INTERPRETATION OF Tg USING CYCLIC DSC

Mechanical properties of polymers: an overview. Suryasarathi Bose Dept. of Materials Engineering, IISc, Bangalore

Pharmaceutical Characterisation. Dr. Lidia Tajber and Dr. Krzysztof Paluch School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin

_ TA221 Brochure: Thermal Analysis & Rheology Systems Product Overview. _ TA006 Product Bulletin: Mechanical Cooling Accessory for TMA 2940

Chapter 4. The Physical transformations of pure substances Fall Semester Physical Chemistry 1 (CHM2201)

Thermal Analysis measurements

Polymer engineering syllabus (BSc)

Apparent Melting: A New Approach to Detecting Drug-Excipient Incompatibility

Chemical Energetics. First Law of thermodynamics: Energy can be neither created nor destroyed but It can be converted from one form to another.

TOPEM the new advanced multi-frequency TMDSC technique

PREPARATION OF ACTIVATED CARBON FROM THE BY-PRODUCTS OF AGRICULTURAL INDUSTRY

Evolved gas analysis by simultaneous thermogravimetric differential thermal analysis-fourier transformation infrared spectroscopy (TG-DTA-FTIR)

Results of Evaluation of the LKB 2277 Calorimeter for stability testing of Pharmaceuticals

Thermal analysis unlocks the secrets of elastomers

Chemistry Heat Review. Heat: Temperature: Enthalpy: Calorimetry: Activation energy:

New Specification 2018 Recurring Exam Questions. How Science Works. C1 - Particles. Atom with the same atomic number and different mass number

Question 4. Calculate q when 0.10 g of ice is cooled from 10.ºC to -75ºC. (c ice = J/g ºC) A) -18 J B) -14 J C) -8.5 J D) + 14 J E) +18 J 5-4

Chapter 7 Solid Surface

Analyzing & Testing. Photocalorimetry Photo-DSC. Method, Technique, Applications. Photo-DSC 204 F1. Leading Thermal Analysis

Collected Applications Thermal Analysis EVOLVED GAS ANALYSIS

Properties of Matter

POLYAMIDE-6,9 WITH CARBAZOLE

Mathematics and Science in Schools in Sub-Saharan Africa

Modelling of viscoelastic properties of a curing adhesive

Material Testing Overview (THERMOPLASTICS)

Uncover the insight with Hyphenation. Gerlinde Wita October 2015

New Castle, DE USA Lindon, UT USA Elstree, United Kingdom Shanghai, China Beijing, China Taipei, Taiwan Tokyo, Japan Seoul, South Korea Bangalore,

D Y N A M I C M E C H A N I C A L A N A L Y S I S A N D I T S A D V A N T A G E S O V E R D E F L E C T I O N T E M P E R A T U R E U N D E R L O A D

An Introduction to Polymer Physics

Automated multi-vapor gravimetric sorption analyzer for advanced research applications

THEORY AND APPLICATIONS OF MODULATED TEMPERATURE PROGRAMMING TO THERMOMECHANICAL TECHNIQUES

QUANTITATIVE EVALUATION OF CURING SHRINKAGE IN POLYMERIC MATRIX COMPOSITES

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

C80. Calvet Calorimeter From ambient to 300 C. A trademark of KEP Technologies group

TA INSTRUMENTS. Vapor Sorption Analysis

Analyzing & Testing Business Unit. Tau-R Mode for Advanced DSC Analysis Applications Newsletter 1/ /09, Dr. Stefan Schmölzer

Supplementary Information

THERMOMECHANICAL ANALYSIS

N E W S L E T T E R F R O M TO S H V I N A N A LY T I C A L P V T. LT D.

Ch. 11 States of matter

How fast are chemical reactions?

Modulated-Temperature Thermomechanical Measurements

Method development in thermal analysis. Part 1:

Thermal Analysis Excellence

Unit 4: Gas Laws. Matter and Phase Changes

Solids / Crystal Structure

2. Amorphous or Crystalline Structurally, polymers in the solid state may be amorphous or crystalline. When polymers are cooled from the molten state

Katarzyna Lewandowska

Notes: Matter & Change (text Ch. 1 &10)

MCR. Applicationspecific. Accessories for Additional Parameter Setting

Fisika Polimer Ariadne L. Juwono. Sem /2007

Thermochemistry. The study of energy changes that occur during chemical reactions and changes in state.

Chemistry (14-16) SSER Ltd. Exothermic & Endothermic Reactions

Physico-chemical characterization and comparison of fluorinated commercial Ski-Waxes.

Melting and solidi cation of Pb nanoparticles embedded in an Al matrix as studied by temperature-modulated di erential scanning calorimetry

Application Handbook. Thermal Analysis in Practice Collected Applications

TAWN tests for quantitatively measuring the resolution and sensitivity of DSCs (version 2.1)

Synergy of the combined application of thermal analysis and rheology in monitoring and characterizing changing processes in materials

Polymorphism. 6 June 2012 Lecture 4 RUB

Transcription:

Thermal Methods of Analysis Theory, General Techniques and Applications Prof. Tarek A. Fayed

1- General introduction and theory: Thermal analysis (TA) is a group of physical techniques in which the chemical or physical properties of a substance, a mixture of substances or a reaction mixture are measured as a function of temperature or time, while the substances are subjected to a controlled temperature programmed heating or cooling rate. The program may involve heating or cooling at a fixed rate of temperature change, or holding the temperature constant at different time spam. The graphical results obtained are called the thermogram. These methods are usually applied to solids, liquids and gels to characterize the materials for quality control.

The advantages of TA over other analytical techniques can be summarized as follows: (1) The samples can be studied over a wide temperature range using various temperature programs. (2) Almost any physical from of sample (solid, liquid or gel) can be accommodated using a variety of sample vessels. (3) A small amount of sample (0.1 µg 10 mg) is required. (4) The atmosphere of the sample can be standardized. (5) The time required to complete an experiment ranges from several minutes to hours. 2-Thermal analysis techniques The general components of TA apparatus are; a physical property sensor, a controlled temperature programmed furnace and a recording device (x-y recorder or a microcomputer).

According to the measured property, the following table is a list of the main thermal analysis methods:

1: Thermogravimetric Analysis (TGA) Thermogravimetric analysis is the study of the changes in weight of a sample as a function of temperature. The technique is useful strictly for transformations involving the absorption or evolution of gases from a specimen. Suitable samples for TGA are solids that undergo one of the two general of reactions: Reactant(s) Product(s) + Gas (a mass loss) Gas + Reactant(s) Product(s) (a mass gain) A plot of the changes of the mass versus temperature, is called TGA thermogram. It permits studying of the thermal stabilities, rate of reactions, reaction processes, and sample composition. Measurements of changes in sample mass with the temperature are made using thermobalance. The balance should be in a suitably enclosed system so that the atmosphere can be controlled.

Thermogravimetric instrument should include several basic components to provide the flexibility necessary for the production of useful analytical data: A microbalance, A heating device, A unit for temperature measurement and control, A means for automatically recording the mass and temperature changes, A system to control the atmosphere around the sample. Thermobalance TGA technique

TG thermogram for the dehydration of CuSO4 5H2O It shows three dehydration in three steps, reflecting different types of water molecules. TGA thermogram

Differential Thermal Analysis (DTA) DTA measures temperature difference between a sample and an inert reference, T, (usually Al 2 O 3 ) while the heat flow to the reference and the sample remains the same. Heating furnace

DTA Thermogram In Exothermic changes, as crystallization, the sample temperature increases than the reference. In endothermic changes, as melting, the sample temperature decreases than the reference. Exothermic change Endothermic change

Differential Scanning Calorimetry (DSC) DSC measures differences in the amount of heat ( H) required to increase the temperature of a sample and a reference as a function of temperature. DSC can be used to study heats of reaction, kinetics, heat capacities, phase transitions, thermal stabilities, sample composition and purity and phase diagrams. Heat flux DSC Power compensation DSC

Power difference H DSC trace of poly(ethylene terephthalate-co-p-oxbenzoate DSC circuit

Common notes: Sample in TA measurements is usually contained in aluminium sample pans (crucible) which can be sealed by cold-welding for holding volatile samples For T >500 C ; quartz, alumina (Al 2 O 3 ), gold or graphite pans are used. The reference material in most DTA or DSC applications is simply an empty sample pan. Purging of gas into the TGA, DTA and DSC sample holder is possible, e.g. by N 2, O 2, etc.

Variables affecting sensitivity of TA techniques 1. The sample The chemical description of the sample together with its source, purity and pre-treatments, the particle size may alter the shape of the TA curve, especially where a surface reaction is involved. 2. The crucible The material of the sample holder or crucible should be stated. Sample holders should not interact with the sample during the course of the experiment. 3. The heating rate (dt/dt) Experiments may be carried out at slow to very high rates. The 'normal' rate is about 10 K min 1. In order to approach equilibrium conditions most closely, we should use a very small heating rate. 4. The atmosphere The atmosphere surrounding the sample and its products may greatly affect the measurements. There may be a reaction between the sample and the atmosphere. 5. The mass of the sample The physical properties, amount and the packing of the sample can affect the results obtained. Small samples are preferable and the average is about 10 mg. Powdered samples or thin films may react more readily than large crystals or lumps.

Measurement of the melting point of Ditert.-biphenyle at different heating rates. Thermal decomposition temperatures for CaCO 3 in different gas atmospheres. Effect of changing of purity of pharmaceutical products, e.g. phenacetin on DSC thermogram

Thermomechanical Analysis (TMA) Thermomechanical Analysis (TMA) is the study of the relationships between the sample s length (or volume) and its temperature under constant load. It can be used to study: mechanical response of sample vs. temperature, as; 1) expansion coefficient. 2) tension properties, shrinkage & expansion under stress. 3) dilatometry, volumetric expansion. 4) fiber properties, tensile response. 5) softening or penetration under load. 6) Yields soften points, modulus changes, phase transitions & creep properties.

TMA thermogram Instrumentation Thermal expansion coefficient ( ) is a useful engineering quantity: = (dl/dt)/lo

dynamic Mechanical Analysis (DMA ) Dynamic mechanical Analysis (DMA) is the study of the relationships between the sample s dimensions (length or volume) and its temperature under constant oscillating load, i. e. under stress or strian. Stress is the force per unit area. Strain is the change of dimension to the original one. In DMA, the sample properties as elastic modulus and tensile strength are measured. Modulus is the ratio of stress to strain.

DMA thermogram of graphite / epoxy composite Stress and strain wave

Applications TA TA often gives information impossible to be obtained by other analytical methods. Often, for complex materials, as polymer composites for development requirements and control incoming of raw material of end use quality. Generally, the important applications of thermal analysis can be summarized as following: 1) Polymer industries and product reliability, include; Heat capacity and liquid crystal transitions. Cures and purity of polymers. The glass transition. Expansion coefficient and creep studies. Dynamic properties including viscoelastic measurements, elastic, loss and shear modulus.

2) Chemical reactions Reaction kinetics and the desorption and adsorption behavior of minerals are measured. 3) Pharmaceuticals industry Characterization and specification of active and inactive ingredients. polymorphic modifications by annealing and purity are studied. Solvent detection and quantification of additives. Expansion and decomposition of the polymers used to encapsulate the drugs. 4) Ceramic / Glass / Building Materials Binder burnout and dehydration of ceramic materials. Decomposition behavior of inorganic building materials.

5) Food industry Provide rapid solutions to production and shelf-life of food stuffs. Characterization of fat and butter crystallinity. Quality control of fat and phase behaviour in frozen systems. Denaturation of vegetable and egg proteins. Gelatinization of starch. 6) Cosmetics Develop and analysis quality of cosmetics such as lipstick and nil polish. The degree of purity of the active ingredients. Curing of adhesives and powder paints. Study the penetration behavior of fluids, pastes and powders. 7) Metals and alloys Measuring of the melting, crystallization, glass transition, secondary phase transition, and specific heat. The influence of corrosion, oxidation or reduction as well as magnetic transitions and thermostability can also be determined.