Boundedness for multilinear commutator of singular integral operator with weighted Lipschitz functions

Similar documents
M K -TYPE ESTIMATES FOR MULTILINEAR COMMUTATOR OF SINGULAR INTEGRAL OPERATOR WITH GENERAL KERNEL. Guo Sheng, Huang Chuangxia and Liu Lanzhe

Weighted sharp maximal function inequalities and boundedness of multilinear singular integral operator with variable Calderón-Zygmund kernel

СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Weighted BMO Estimates for Commutators of Riesz Transforms Associated with Schrödinger Operator Wenhua GAO

Fractional Integral Operator and Olsen Inequality in the Non-Homogeneous Classic Morrey Space

MORE COMMUTATOR INEQUALITIES FOR HILBERT SPACE OPERATORS

STRONG DEVIATION THEOREMS FOR THE SEQUENCE OF CONTINUOUS RANDOM VARIABLES AND THE APPROACH OF LAPLACE TRANSFORM

LANZHE LIU. Changsha University of Science and Technology Changsha , China

NORM ESTIMATES FOR BESSEL-RIESZ OPERATORS ON GENERALIZED MORREY SPACES

SHARP FUNCTION ESTIMATE FOR MULTILINEAR COMMUTATOR OF LITTLEWOOD-PALEY OPERATOR. 1. Introduction. 2. Notations and Results

Weighted boundedness for multilinear singular integral operators with non-smooth kernels on Morrey spaces

PRIMARY DECOMPOSITION, ASSOCIATED PRIME IDEALS AND GABRIEL TOPOLOGY

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall

A NOTE ON SOME OPERATORS ACTING ON CENTRAL MORREY SPACES. Martha Guzmán-Partida. 1. Introduction

DENSITY OF THE SET OF ALL INFINITELY DIFFERENTIABLE FUNCTIONS WITH COMPACT SUPPORT IN WEIGHTED SOBOLEV SPACES

Positive solutions of singular (k,n-k) conjugate boundary value problem

CBMO Estimates for Multilinear Commutator of Marcinkiewicz Operator in Herz and Morrey-Herz Spaces

Heat Equation: Maximum Principles

Applied Mathematical Sciences, Vol. 9, 2015, no. 3, HIKARI Ltd,

ON WEIGHTED ESTIMATES FOR STEIN S MAXIMAL FUNCTION. Hendra Gunawan

Generalized Likelihood Functions and Random Measures

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 16 11/04/2013. Ito integral. Properties

Analysis of Analytical and Numerical Methods of Epidemic Models

A Tail Bound For Sums Of Independent Random Variables And Application To The Pareto Distribution

10-716: Advanced Machine Learning Spring Lecture 13: March 5

Bernoulli Numbers and a New Binomial Transform Identity

Certain Properties of an Operator Involving the Generalized Hypergeometric Functions

SZEGO S THEOREM STARTING FROM JENSEN S THEOREM

OFF-DIAGONAL MULTILINEAR INTERPOLATION BETWEEN ADJOINT OPERATORS

On Order of a Function of Several Complex Variables Analytic in the Unit Polydisc

Explicit scheme. Fully implicit scheme Notes. Fully implicit scheme Notes. Fully implicit scheme Notes. Notes

Zeta-reciprocal Extended reciprocal zeta function and an alternate formulation of the Riemann hypothesis By M. Aslam Chaudhry

EECE 301 Signals & Systems Prof. Mark Fowler

ON MULTILINEAR FRACTIONAL INTEGRALS. Loukas Grafakos Yale University

Expectation of the Ratio of a Sum of Squares to the Square of the Sum : Exact and Asymptotic results

ELEC 372 LECTURE NOTES, WEEK 4 Dr. Amir G. Aghdam Concordia University

Fractional parts and their relations to the values of the Riemann zeta function

The Australian Journal of Mathematical Analysis and Applications

ON ABSOLUTE MATRIX SUMMABILITY FACTORS OF INFINITE SERIES. 1. Introduction

AN APPLICATION OF HYPERHARMONIC NUMBERS IN MATRICES

f(1), and so, if f is continuous, f(x) = f(1)x.

STA 4032 Final Exam Formula Sheet

Available online at J. Math. Comput. Sci. 4 (2014), No. 3, ISSN:

ON THE SCALE PARAMETER OF EXPONENTIAL DISTRIBUTION

The value of Banach limits on a certain sequence of all rational numbers in the interval (0,1) Bao Qi Feng

BETWEEN QUASICONVEX AND CONVEX SET-VALUED MAPPINGS. 1. Introduction. Throughout the paper we denote by X a linear space and by Y a topological linear

Generalized Fibonacci Like Sequence Associated with Fibonacci and Lucas Sequences

A tail bound for sums of independent random variables : application to the symmetric Pareto distribution

ELIMINATION OF FINITE EIGENVALUES OF STRONGLY SINGULAR SYSTEMS BY FEEDBACKS IN LINEAR SYSTEMS

AN EFFICIENT ESTIMATION METHOD FOR THE PARETO DISTRIBUTION

State space systems analysis

Multistep Runge-Kutta Methods for solving DAEs

We will look for series solutions to (1) around (at most) regular singular points, which without

Chapter 2. Periodic points of toral. automorphisms. 2.1 General introduction

Some remarks on the paper Some elementary inequalities of G. Bennett

GENERALIZED TWO DIMENSIONAL CANONICAL TRANSFORM

1.2 AXIOMATIC APPROACH TO PROBABILITY AND PROPERTIES OF PROBABILITY MEASURE 1.2 AXIOMATIC APPROACH TO PROBABILITY AND

On the Signed Domination Number of the Cartesian Product of Two Directed Cycles

Fixed Point Results Related To Soft Sets

The Maximum Number of Subset Divisors of a Given Size

The Coupon Collector Problem in Statistical Quality Control

Brief Review of Linear System Theory

Asymptotic distribution of products of sums of independent random variables

Lecture 10: Bounded Linear Operators and Orthogonality in Hilbert Spaces

REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION

SOME MONOTONICITY PROPERTIES AND INEQUALITIES FOR

A Good λ Estimate for Multilinear Commutator of Singular Integral on Spaces of Homogeneous Type

446 EIICHI NAKAI where The f p;f = 8 >< sup sup f(r) f(r) L ;f (R )= jb(a; r)j jf(x)j p dx! =p ; 0 <p<; ess sup jf(x)j; p = : x2 ( f0g; if 0<r< f(r) =

On Some Properties of Tensor Product of Operators

FUZZY RELIABILITY ANALYSIS OF COMPOUND SYSTEM BASED ON WEIBULL DISTRIBUTION

On Certain Sums Extended over Prime Factors

A NEW NOTE ON LOCAL PROPERTY OF FACTORED FOURIER SERIES

On the 2-Domination Number of Complete Grid Graphs

LIPSCHITZ ESTIMATES FOR MULTILINEAR COMMUTATOR OF LITLLEWOOD-PALEY OPERATOR. Zhang Mingjun and Liu Lanzhe

SOME FINITE SIMPLE GROUPS OF LIE TYPE C n ( q) ARE UNIQUELY DETERMINED BY THEIR ELEMENT ORDERS AND THEIR ORDER

Left Quasi- ArtinianModules

A Faster Product for π and a New Integral for ln π 2

Berry-Esseen bounds for self-normalized martingales

Integrable Functions. { f n } is called a determining sequence for f. If f is integrable with respect to, then f d does exist as a finite real number

The Differential Transform Method for Solving Volterra s Population Model

On Summability Factors for N, p n k

Sharp Maximal Function Estimates and Boundedness for Commutator Related to Generalized Fractional Integral Operator

A New Type of q-szász-mirakjan Operators

Supplementary Material

Several properties of new ellipsoids

q-apery Irrationality Proofs by q-wz Pairs

EULER-MACLAURIN SUM FORMULA AND ITS GENERALIZATIONS AND APPLICATIONS

Binomial transform of products

We are mainly going to be concerned with power series in x, such as. (x)} converges - that is, lims N n

Weighted Approximation by Videnskii and Lupas Operators

1. (a) If u (I : R J), there exists c 0 in R such that for all q 0, cu q (I : R J) [q] I [q] : R J [q]. Hence, if j J, for all q 0, j q (cu q ) =

ON SINGULAR INTEGRAL OPERATORS

The Sumudu transform and its application to fractional differential equations

ON BLEIMANN, BUTZER AND HAHN TYPE GENERALIZATION OF BALÁZS OPERATORS

BINOMIAL COEFFICIENT HARMONIC SUM IDENTITIES ASSOCIATED TO SUPERCONGRUENCES

SPECTRAL PROPERTIES OF THE OPERATOR OF RIESZ POTENTIAL TYPE

SOLUTION: The 95% confidence interval for the population mean µ is x ± t 0.025; 49

Common Coupled Fixed Point of Mappings Satisfying Rational Inequalities in Ordered Complex Valued Generalized Metric Spaces

AVERAGE MARKS SCALING

LECTURE 13 SIMULTANEOUS EQUATIONS

Transcription:

Aal of the Uiverity of raiova, Matheatic ad oputer Sciece Serie Volue 40), 203, Page 84 94 ISSN: 223-6934 Boudede for ultiliear coutator of igular itegral operator with weighted Lipchitz fuctio Guo Sheg, Huag huagxia, ad Liu Lazhe Abtract. I thi paper, the boudede for the ultiliear coutator related to the igular itegral operator with weighted Lipchitz fuctio i proved. 200 Matheatic Subject laificatio. Priary 42B20; Secodary 42B25. Key word ad phrae. Multiliear coutator; Sigular itegral operator; Weighted Lipchitz fuctio; Triebel-Lizorki pace.. Itroductio Let b be a locally itegrable fuctio o R ad T be the alderó-zygud operator. The coutator [b, T ] geerated by b ad T i defied by [b, T ]fx) = bx)t fx) T bf)x). I [6] ad [7-9], the author proved that the coutator ad ultiliear operator geerated by the igular itegral operator ad BMO fuctio are bouded o L p R ) for < p <. haillo ee [4]) proved that the coutator [b, I α ] geerated by b BMO ad the fractioal itegral operator I α i bouded fro L p R ) to L q R ), where < p < q < ad /p /q = α/. The Paluzyńki ee [6]) howed that b Lip β R )the hoogeeou Lipchitz pace) if ad oly if the coutator [b, T ] i bouded fro L p to L q, where < p < q <, 0 < β < ad /q = /p β/. Alo Paluzyńki ee [5], [0], [6]) obtai that b Lip β if ad oly if the coutator [b, I α ] i bouded fro L p to L r, where < p < r <, 0 < β < ad /r = /p β + α)/ with /p > β + α)/. O the other had, i [] ad [9], the boudede for the coutator geerated by the igular itegral operator ad the weighted BM O ad Lipchitz fuctio o L p R ) < p < ) pace are obtaied. The purpoe of thi paper i to etablih boudede for the ultiliear coutator related to the igular itegral operator with geeral kerel ee [3] ad []) ad b Lip β w)the weighted Lipchitz pace). Defiitio.. Let T : S S be a liear operator uch that T i bouded o L 2 R ) ad there exit a locally itegrable fuctio Kx, y) o R R \ {x, y) R R : x = y} uch that T f)x) = Kx, y)fy)dy R for every bouded ad copactly upported fuctio f, where K atifie: there i a equece of poitive cotat uber { k } uch that for ay k, Kx, y) Kx, z) + Ky, x) Kz, x) )dx, 2 y z < x y Received Jauary 3, 202; Revied Noveber 22, 202. 84

BOUNDEDNESS FOR MULTILINEAR OMMUTATOR 85 ad Kx, y) Kx, z) + Ky, x) Kz, x) ) q dy 2 k z y x y <2 k+ z y k 2 k z y ) /q, ) /q where < q < 2 ad /q + /q =. Suppoe b j j =,, ) are the fixed locally itegrable fuctio o R. The ultiliear coutator of the igular itegral operator i defied by T b f)x) = b j x) b j y))kx, y)fy)dy. R j= Note that the claical alderó-zygud igular itegral operator atifie Defiitio. with j = 2 jδ ee [8] ad [8]). Alo ote that whe =, T b i jut the coutator what we etioed above. It i well kow that ultiliear operator are of great iteret i haroic aalyi ad have bee widely tudied by ay author ee [2-4], [7-9]). I [8], Pérez ad Trujillo- Gozalez prove a harp etiate for the ultiliear coutator. The purpoe of thi paper ha two-fold, firt, we etablih a weighted Lipchitz etiate for the ultiliear coutator related to the geeralized igular itegral operator, ad ecod, we obtai the weighted L p -or iequality ad the weighted etiate o the Triebel-Lizorki pace for the ultiliear coutator by uig the weighted Lipchitz etiate. 2. Notatio ad Reult Throughout thi paper, we will ue to deote a abolute poitive cotat, which i idepedet of the ai paraeter ad ot ecearily the ae at each occurret. will deote a cube of R with ide parallel to the axe. For ay locally itegrable fuctio f, the harp axial fuctio of f i defied by f # x) = up x fy) f dy, where, ad i what follow, f = fx)dx. It i well-kow that ee [8] ad [20]) f # x) up if fy) c dy. x c For p < ad 0 η <, let M η,p f)x) = up x pη/ fy) p dy) /p, which i the Hardy-Littlewood axial fuctio whe p = ad η = 0. The A p weight i defied by ee [8]) { ) } p A p = w : up wx)dx wx) dx) /p ) <, < p <, A = {w > 0 : Mw)x) wx), a.e.}, ad A = p A p. We kow that, for w A, w atifie the double coditio, that i, for ay cube, w2) w).

86 G. SHENG, H. HUANGXIA, AND L. LANZHE The Ap, r) weight i defied by ee [5]), for < p, r <, { ) /r } p )/p Ap, r) = w > 0 : up wx) r dx wx) dx) p/p ) <. Give a weight fuctio w ad < p <, the weighted Lebegue pace L p w) i the pace of fuctio f uch that ) /p f Lp w) = fx) p wx)dx <. R For a weight fuctio w, β > 0 ad p >, let F p β, w) be the weighted hoogeeou Triebel-Lizorki pace ee [2]). For 0 < β <, the weighted Lipchitz pace Lip β w) i the pace of fuctio f uch that f Lipβ w) = up fy) f w) +β/ dy <. Give oe fuctio b j Lip β w), j, we deote by j the faily of all fiite ubet σ = {σ),, σj)} of {,, } of j differet eleet ad σi) < σj) whe i < j. For σ j, et σc = {,, }\σ. For b = b,, b ) ad σ = {σ),, σj)} j, et b σ = b σ),, b σj) ), b σ = j b σi) ad b σ Lipβ ω) = b σ) Lipβ w) b σi) Lipβ w). i= Now two theore are tated out a followig. Theore 2.. Let b j Lip β w) for j, 0 < β < ad w A. Suppoe the equece {k k } l, q < p < ad r = p. The T b i bouded fro L p w) to L r +r ) w ). Theore 2.2. Let b j Lip β w) for j, 0 < β < ad w A. Suppoe the equece {k k } l, q < p <. The T b i bouded fro L p, w) to F p w ). 3. Proof of Theore I order to prove the theore, the followig lea are eeded. Lea 3.. ee [7], [9]) For 0 < β <, w A, b Lip β w) ad p, we have /p b Lipβ w) up w) β w) bx) b p wx) dx) p. B Lea 3.2. ee [7], [9]) For 0 < β <, w A, b Lip β w) ad ay cube, we have up bx) b b Lipβ w)w) +β. x Lea 3.3. ee [7], [9]) For 0 < β <, w A, b Lip β w), ay cube ad x, we have b 2 k b kw x)w2 k ) β b Lipβ w). Lea 3.4. ee [2]) For 0 < β <, w A, < p < ad > 0, we have f F, p w) up fx) f dx x L p w) up if fx) 0 dx. x 0 L p w)

BOUNDEDNESS FOR MULTILINEAR OMMUTATOR 87 Lea 3.5. ee [5]) Suppoe that < p < η, /r = /p η/ ad w Ap, r). The M η, f) Lr w r ) f Lp w p ). Proof of Theore 2.. I order to prove the theore, we will prove a harp fuctio etiate for the ultiliear operator. We will prove that for ay cube ad q < <, there exit oe cotat 0 uch that T b f)x) 0 dx b Lipβ w)w x) + M, f) x) + M, T f)) x)). Fix a cube = x 0, r 0 ) ad x, we write f = f +f 2 with f = fχ 2, f 2 = fχ 2) c. We firt coider the ae =. For 0 = T b ) 2 b )f 2 )x 0 ), we write The where T b f)x) = b x) b ) 2 )T f)x) T b b ) 2 )f)x). T b f)x) 0 Ax) + Bx) + x), Ax) = b x) b ) 2 )T f)x), Bx) = T b ) 2 b )f )x), x) = T b ) 2 b )f 2 )x) T b ) 2 b )f 2 )x 0 ). For Ax), by Hölder iequality ad Lea 3.2, we have Ax) dx = b x) b ) 2 dx b x) b ) 2 T f)x) dx ) ) T f)x) dx 2 up b x) b ) 2 T f)x) dx x 2 b Lipβ w)w2) + b Lipβ w) β β ) + β w2) Mβ, T f)) x) 2 b Lipβ w)w x) + β Mβ, T f)) x). ) β T f)x) r dx ) For Bx), by the type,) of T ad Lea 3.2, we obtai Bx)dx ) T b ) b )f )x) r dx R

88 G. SHENG, H. HUANGXIA, AND L. LANZHE b ) b x) r f x) r dx R up b x) b ) x 2 fx) dx 2 ) ) b Lipβ w)w2) + β 2 2 β 2 β ) + β w2) b Lipβ w) Mβ, f)x) 2 b Lipβ w)w x) + β Mβ, f) x). 2 fx) dx ) For x), recallig that > q, takig < p <, < t < with /p + /q + /t =, by the Hölder iequality ad Lea 3. ad 3.3, we have, for x, T b b ) 2 )f 2 )x) T b b ) 2 )f 2 )x 0 ) b y) b ) 2 fy) Kx, y) Kx 0, y) dy 2) c Kx, y) Kx 0, y) q dy k= 2 k x x 0 y x 0 <2 k+ x x 0 ) /p + b y) b ) 2 p dy y x 0 <2 k+ x x 0 k= k 2 k d) q fy) dy y x 0 <2 k+ x x 0 k= k= k= k 2 k d) q k 2 k d) q k 2 k d) q b y) b ) 2 p dy y x 0 <2 k+ x x 0 ) / b y) b ) 2 p dy 2 k+ b y) b ) 2 k+ p dy 2 k+ ) /q fy) t dy y x 0 <2 k+ x x 0 ) /p b ) 2 k+ b ) 2 p dy 2 k+ ) /p fy) t dy 2 k+ ) /p ) /t fy) t dy 2 k+ ) /p fy) t dy 2 k+ ) /t ) /t ) /t k up b k= 2 k+ y) b ) 2 k+ 2 k+ p 2 k+ β q y 2 k+ / fy) dy) + 2 k+ β k b 2 k+ k= 2 k+ ) 2 k+ b ) 2 q ) / 2 k+ p 2 k+ β fy) dy 2 k+ β 2 k+

thu + + BOUNDEDNESS FOR MULTILINEAR OMMUTATOR 89 k up k= y 2 k+ b y) b ) 2 k+ 2 k+ β Mβ, f) x) k b ) 2 k+ b ) 2 2 k+ β Mβ, f) x) k= k b Lipβ w)w2 k+ ) + β 2 k+ 2 k+ β Mβ, f) x) k= k kw x)w2 k+ ) β b Lipβ w) 2 k+ β Mβ, f) x) k= b Lipβ w) k= + b Lipβ w)w x) w2 k+ ) + β ) k k 2 k+ M β, f) x) k= b Lipβ w)w x) + β Mβ, f) x), w2 k+ ) ) β k k 2 k+ M β, f) x) x)dx b Lipβ w)w x) + β Mβ, f) x). Now, we coider the ae 2. We have, for b = b,, b ), T b f)x) = = = R j= j=0 σ j R j= b j x) b j y))kx, y)fy)dy [b j x) b j ) 2 ) b j y) b j ) 2 )]Kx, y)fy)dy ) j bx) b) 2 ) σ by) b) 2 ) σ ckx, y)fy)dy R = b j x) b j ) 2 ) Kx, y)fy)dy j= R + ) b j y) b j ) 2 )Kx, y)fy)dy + = + j= σ j R j= ) j b j x) b j ) 2 ) σ b j y) b j ) 2 ) σ ckx, y)fy)dy R b j x) b j ) 2 )T f)x) + ) T b j b j ) 2 )f)x) j= j= σ j j= ) j b j x) b j ) 2 ) σ )T b j b j ) 2 ) σ cf)x), thu, recall that 0 = T j= b j b j ) 2 )f 2 )x 0 ),

90 G. SHENG, H. HUANGXIA, AND L. LANZHE where T b f)x) T b j b j ) 2 )f 2 )x 0 ) j= b j x) b j ) 2 )T f)x) + T b j b j ) 2 )f )x) j= + j= σ j j= b j x) b j ) 2 ) σ )T b j b j ) 2 ) σ cf)x) + T b j b j ) 2 )f 2 )x) T b j b j ) 2 )f 2 )x 0 ) j= = I x) + I 2 x) + I 3 x) + I 4 x). I x) = j= b j x) b j ) 2 )T f)x), j= I 2 x) = T b j b j ) 2 )f )x), j= I 3 x) = j= σ j b j x) b j ) 2 ) σ )T b j b j ) 2 ) σ cf)x), I 4 x) = T b j b j ) 2 )f 2 )x) T b j b j ) 2 )f 2 )x 0 ). j= j= For I x), by Hölder iequality with expoet r + + we get r + I x)dx b j x) b j ) 2 ) T f)x) dx j= ) ) b j x) b j ) 2 r r j j dx T f)x) dx j= ) up b j x) b j ) 2 r j x j= j= b Lipβ w)w) b Lipβ w) T f)x) dx b j Lipβ w)w) + β ) )+ ) w) b Lipβ w)w x) + + M, T f)) x) ) + M, T f)) x) M, T f)) x). ) r = ad Lea 3.2, T f)x) dx )

BOUNDEDNESS FOR MULTILINEAR OMMUTATOR 9 For I 2 x), iilar to Bx), uig the boude of T ad Lea 3.2, we get, for < t <, I 2 x)dx t T b j b j ) 2 )f )x) t dx t R R j= j= b j x) b j ) 2 )f x) r dx b j x) b j ) 2 ) fx) dx j= b j x) b j ) 2 )) j= j= b Lipβ w) b Lipβ w)w x) 2 t t fx) dx) b j Lipβ w)w2) + β 2 ) 2 + ) + w2) M, f) x) 2 + M, f) x). 2 2 fx) dx For I 3 x), by Hölder iequality ad Lea 3.2, we get I 3 x)dx b j x) b j ) 2 ) σ T b j b j ) 2 ) σ cf)x) dx 2 j= σ j j= σ j 2 2 b j x) b j ) 2 ) σ dx 2 T b j b j ) 2 ) σ cf)x) dx 2 j= σ j ) 2 up b j x) b j ) 2 ) σ 2 r x 2 b j x) b j ) 2 ) σ c T f)x) dx 2 j= σ j up b j x) b j ) 2 ) σ c x 2 ) 2 up b j x) b j ) 2 ) σ 2 r x 2 T f)x) dx 2 ) 2 b σ Lipβ w)w2) j+ jβ 2 j b j)β j)+ σ c Lipβ w)w2) 2 + j) 2 2 ) T f)x) dx ) )

92 G. SHENG, H. HUANGXIA, AND L. LANZHE b Lipβ w) b Lipβ w)w x) ) + w2) M, T f)) x) 2 + M, T f)) x). For I 4 x), iilar to the proof of x) i the ae =, for < p <, < t < with /p + /q + /t =, we have T b j y) b j ) 2 )f 2 )x) T b j b j ) 2 )f 2 )x 0 ) j= 2) c j= b j y) b j ) 2 ) fy) Kx, y) Kx 0, y)) dy j= ) /q Kx, y) Kx 0, y) q dy k= 2 k x x 0 y x 0 <2 k+ x x 0 /p b y) b ) 2 p dy fy) t dy y x 0 <2 k+ x x 0 j= y x 0 <2 k+ x x 0 /p k b k= 2 k d) j y) b j ) 2 p dy q y x 0 <2 k+ x x 0 j= ) /t fy) t dy y x 0 <2 k+ x x 0 k b k= 2 k d) j y) b j ) 2 k+ p dy q 2 k+ j= + k b 2 k d) j ) 2 k+ b j ) 2 p dy q 2 k+ k= k= k 2 k q 2 k+ up j= j= x 2 k+ 2 k+ 2 k+ p 2 k+ + /p /p fy) t dy 2 k+ fy) t dy 2 k+ b j y) b j ) 2 2 k+ k+ p 2 k+ fy) dy) / + k b Lipβ w)w2 k+ ) k= k= k kw x) w2 k+ ) 2 k+ + k= 2 k+ k 2 k q fy) dy ) /t ) /t ) /t b j ) 2 k+ b j ) 2 j= ) / 2 k+ 2 k+ M, f) x) b Lipβ w) 2 k+ M, f) x)

b Lipβ w) + b Lipβ w) BOUNDEDNESS FOR MULTILINEAR OMMUTATOR 93 k= k= b Lipβ w)w x) w2 k k+ ) + ) k 2 k+ M, f) x) w2 k k w x) k+ ) ) 2 k+ M, f) x) + M, f) x), thu, we get I 4 x)dx b Lipβ w)w x) obiig all the etiate above, we get ad T b f)x) 0 dx b Lipβ w)w x) T b f) # x) b Lipβ w)w x) + Now, chooe q < < r, by Lea 3.5, we have T b f) Lq w +q ) + + M, f) x). M, f) x) + M, T f)) x)) M, f) x) + M, T f)) x)). MT ) b f)) +q ) Lq w ) T b f)) # +q ) Lq w ) b Lipβ w) w +/ M, f) +q ) Lq w ) + w +/ M, T f)) ) L q +q ) w ) b Lipβ w) M, f) Lq w q p ) + M,T f)) Lq w q p ) ) b Lipβ w) f Lp w) + T f) Lp w)) b Lipβ w) f Lp w). Thi coplete the proof of Theore 2.. Proof of Theore 2.2. Siilar to Theore 2., for ay q < < ad cube, there exit oe cotat 0 uch that for f L p w) ad x, T b f)x) 0 dx + b Lipβ w)w x) M f) x) + M T f)) x)). Further, we have up if x c T b f)x) c dx b Lipβ w)w x) hooe q < < p ad by Lea 3.4, we obtai T b f) up if ) Fp, w x c b Lipβ w) w +/ M f) L p w ) b Lipβ w) M f) Lp w) + M T f)) Lp w)) b Lipβ w) f Lp w) + T f) Lp w)) b Lipβ w) f Lp w). + T b f)x) c dx M f) x)+m T f)) x)). L p w ) + w+ M T f)) ) L p w )

94 G. SHENG, H. HUANGXIA, AND L. LANZHE Thi coplete the proof of Theore 2.2. Referece [] S. Bloo, A coutator theore ad weighted BMO, Tra. Aer. Math. Soc. 292985), 03 22. [2] H.. Bui, haracterizatio of weighted Beov ad Triebel-Lizorki pace via teperature, J. Fuc. Aal. 55984), 39 62. [3] D.. hag, J. F. Li ad J. Xiao, Weighted cale etiate for alderó-zygud type operator, oteporary Matheatic 4462007), 6 70. [4] S. haillo, A ote o coutator, Idiaa Uiv. Math. J. 3982), 7 6. [5] W. G. he, Beov etiate for a cla of ultiliear igular itegral, Acta Math. Siica 62000), 63 626. [6] R. R. oifa, R. Rochberg ad G. Wei, Fractorizatio theore for Hardy pace i everal variable, A. of Math. 03976), 6 635. [7] J. Garcia-uerva, Weighted H p pace, Diert. Math. 62979), 56. [8] J. Garcia-uerva ad J. L. Rubio de Fracia, Weighted or iequalitie ad related topic, North- Hollad Math. 6, Aterda, 985. [9] B. Hu ad J. Gu, Neceary ad ufficiet coditio for boudede of oe coutator with weighted Lipchitz pace, J. of Math. Aal. ad Appl. 3402008), 598 605. [0] S. Jao, Mea ocillatio ad coutator of igular itegral operator, Ark. Math. 6978), 263 270. [] Y. Li, Sharp axial fuctio etiate for alderó-zygud type operator ad coutator, Acta Math. Scietia 3A)20), 206 25. [2] L. Z. Liu, Iterior etiate i Morrey pace for olutio of elliptic equatio ad weighted boudede for coutator of igular itegral operator, Acta Math. Scietia 25B)2005), 89 94. [3] L. Z. Liu, Sharp axial fuctio etiate ad boudede for coutator aociated with geeral itegral operator, FiloatForerly Zborik Radova Filozofkog Fakulteta, Serija Mateatika) 2520), 37 5. [4] L. Z. Liu ad X. S. Zhou, Weighted harp fuctio etiate ad boudede for coutator aociated with igular itegral operator with geeral kerel, New Zealad J. of Math. 42202), 7 26. [5] B. Muckehoupt ad R. L. Wheede, Weighted or iequalitie for fractioal itegral, Tra. Aer. Math. Soc. 92974), 26 274. [6] M. Paluzyki, haracterizatio of the Beov pace via the coutator operator of oifa, Rochberg ad Wei, Idiaa Uiv. Math. J. 44995), 7. [7]. Pérez, Edpoit etiate for coutator of igular itegral operator, J. Fuc. Aal. 28995), 63 85. [8]. Pérez ad G. Pradolii, Sharp weighted edpoit etiate for coutator of igular itegral operator, Michiga Math. J. 49200), 23 37. [9]. Pérez ad R. Trujillo-Gozalez, Sharp Weighted etiate for ultiliear coutator, J. Lodo Math. Soc. 652002), 672 692. [20] E. M. Stei, Haroic Aalyi: real variable ethod, orthogoality ad ocillatory itegral, Priceto Uiv. Pre, Priceto NJ, 993. Guo Sheg, Huag huagxia ad Liu Lazhe) Departet of Matheatic, hagha Uiverity of Sciece ad Techology, hagha, 40077, P. R. of hia E-ail addre: lazheliu@63.co