Antibacterial and Morphological Studies of Electrospun Silver-Impregnated Polyacrylonitrile Nanofibre

Similar documents
Fabrication and characterization of poly (ethylene oxide) templated nickel oxide nanofibers for dye degradation

Electrospinning of PVB Solved in Methanol and Isopropanol

Supplementary Material

Synthesis and Characterization of Polymeric Composites Embeded with Silver Nanoparticles

NWRI Graduate Research Fellowship Progress Report

Preparation of Nanofibrous Metal-Organic Framework Filters for. Efficient Air Pollution Control. Supporting Information

Supplementary information for:

Change in physico-mechanical and thermal properties of polyamide / silica nanocomposite film

Electronic Supplementary Information. Enhanced Photocatalytic/photoelectrocatalytic Activities

Contents. Foreword by Darrell H. Reneker

Supporting Information for

Growth of silver nanocrystals on graphene by simultaneous reduction of graphene oxide and silver ions with a rapid and efficient one-step approach

SUPPORTING INFORMATION

Supplementary Information. Core-Shell Silver/Polymeric Nanoparticles-Based Combinatorial Therapy against Breast Cancer In-vitro

Supplementary Information:

Supplementary Information

Permeable Silica Shell through Surface-Protected Etching

Supporting Information

Supporting Information. Synthesis of Mg/ Al Layered Double Hydroxides for Adsorptive Removal of. Fluoride from Water: A Mechanistic and Kinetic Study

Scheme 1: Reaction scheme for the synthesis of p(an-co-mma) copolymer

Novel fluorescent matrix embedded carbon quantum dots enrouting stable gold and silver hydrosols

Carbon nanotube coated snowman-like particles and their electro-responsive characteristics. Ke Zhang, Ying Dan Liu and Hyoung Jin Choi

Beads-On-String-Shaped Poly(azomethine) Applicable for Solution Processing of Bilayer. Devices using a Same Solvent

Improvement of the chemical, thermal, mechanical and morphological properties of polyethylene terephthalate graphene particle composites

Supporting Information

Polydopamine as a promoter layer of MOF deposition on inert polymer surfaces to fabricate hierarchically structured porous films

The design and construction of 3D rose petal-shape MoS 2. hierarchical nanostructures with structure-sensitive. properties

Preparation of Nanocomposites Polypyrrole and Zinc Oxide Thin Film Characterization and its Application of Gas Sensor

PREPARATION AND STRUCTURE OF NANOCOMPOSITES BASED ON ZINC SULFIDE IN POLYVINYLCHLORIDE

Polyaniline-SbO 2 Composites: Preparation, Characterization and a c conductivity Study

Preparation and Characterization of Hydrogels

Influence of inorganic additives on morphology of electrospun fibres

Division of Fuel Cells, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese

The precursor (TBA) 3 [H 3 V 10 O 28 ] was synthesised according to the literature procedure. 1 (TBA = n tetrabutylammonium).

Synthesis of 2 ) Structures by Small Molecule-Assisted Nucleation for Plasmon-Enhanced Photocatalytic Activity

Controlled self-assembly of graphene oxide on a remote aluminum foil

Two-Nozzle Electrospinning Fabrication of Bicomponent and Bimodal Nanofibrous Mats with Antibacterial Properties

Supplementary Information for. Silver Nanoparticles Embedded Anti-microbial Paints Based on Vegetable Oil

Electrospun UV-responsive Supramolecular Nanofibers from Cyclodextrin-Azobenzene Inclusion Complex

Catalytic Decomposition of Formaldehyde on Nanometer Manganese Dioxide

Supporting Information

applied as UV protective films

A novel one-step synthesis of PEG passivated multicolour fluorescent carbon dots for potential biolabeling application

Supplementary Information

Dry-gel conversion synthesis of Cr-MIL-101 aided by grinding: High surface area high yield synthesis with minimum purification

Supporting Information. Graphene Oxide-Palladium Modified Ag-AgBr: A Novel Visible-Light- Responsive Photocatalyst for the Suzuki Coupling Reaction**

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

High-Performance Semiconducting Polythiophenes for Organic Thin Film. Transistors by Beng S. Ong,* Yiliang Wu, Ping Liu and Sandra Gardner

International Journal of Pure and Applied Sciences and Technology

Electrospinning Fabrication and Characterization of Poly(vinyl alcohol)/ Waterborne Polyurethane/Montmorillonite Nanocomposite Nanofibers

Supporting Information. for

Supporting Information:

Very low temperature CO oxidation over colloidally deposited gold nanoparticles on Mg(OH) 2 and MgO

Facile Synthesis and Catalytic Properties of CeO 2 with Tunable Morphologies from Thermal Transformation of Cerium Benzendicarboxylate Complexes

Electrolessly deposited electrospun metal nanowire transparent

Synthesis and characterization of hybride polyaniline / polymethacrylic acid/ Fe 3 O 4 nanocomposites

Influence of the electrospinning parameters on the morphology of composite nanofibers

Supplementary Information

Synthesis of a highly conductive and large surface area graphene oxide hydrogel and its use in a supercapacitor

Easy synthesis of hollow core, bimodal mesoporous shell carbon nanospheres and their. application in supercapacitor

Studies on PVA based nanocomposite Proton Exchange Membrane for Direct methanol fuel cell (DMFC) applications

Supporting Information for: Three-Dimensional Cuprous Oxide Microtube Lattices with High Catalytic

A project report on SYNTHESIS AND CHARACTERISATION OF COPPER NANOPARTICLE-GRAPHENE COMPOSITE. Submitted by Arun Kumar Yelshetty Roll no 410 CY 5066

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN

Synthesis of Ultra-long Hollow Chalcogenide Nanofibers

One-pot Solvent-free Synthesis of Sodium Benzoate from the Oxidation of Benzyl Alcohol over Novel Efficient AuAg/TiO 2 Catalysts

Influence of Molecular Ordering on Surface Free Energy of Polymer Nanofibres using Scanning Probe Microscopy

Continuous Synthesis of Surface-modified Zinc Oxide. Nanoparticles using Supercritical Methanol

CHAPTER 5 SURFACE TOPOGRAPHY STUDIES ON ELECTROPHORETICALLY DEPOSITED CHITOSAN ON POLYCAPROLACTONE MICRO FIBROUS SUBSTRATES

Sacrifical Template-Free Strategy

A General Synthesis of Discrete Mesoporous Carbon Microspheres through a Confined Self- Assembly Process in Inverse Opals

Supporting Information

Supporting Information

Supplementary Information

Deposition of Multilayer Fibers and Beads by Near-Field Electrospinning for Texturing and 3D Printing Applications

Supporting Information

Electronic Supporting Information (ESI)

A triazine-based covalent organic polymer for efficient CO 2 adsorption

Preparation of poly(methyl methacrylate) fibers via electrospinning in different solvent and its morphology comparison

In Situ synthesis of architecture for Strong Light-Matter Interactions

Synthesis of MoO 3 and its polyvinyl alcohol nanostructured film

Electronic Supporting Information

Efficient Co-Fe layered double hydroxide photocatalysts for water oxidation under visible light

International Journal of Pure and Applied Sciences and Technology

Optimization of electrospinning process of poly(vinyl alcohol) via response surface methodology (RSM) based on the central composite design

Supporting Information. Polyaniline-MnO 2 nanotubes hybrid nanocomposite as supercapacitor electrode material in acidic electrolyte

Supplementary Information

Supporting Information. CdS/mesoporous ZnS core/shell particles for efficient and stable photocatalytic hydrogen evolution under visible light

Adsorption of Methylene Blue on Mesoporous SBA 15 in Ethanol water Solution with Different Proportions

RESULTS AND DISCUSSION Characterization of pure CaO and Zr-TiO 2 /CaO nanocomposite

PREPARATION, CHARACTERISATION AND PHOTOCATALYTIC ACTIVITY OF TERNARY GRAPHENE-Fe 3 O 4 :TiO 2 NANOCOMPOSITES

Supporting Information

Shape Assisted Fabrication of Fluorescent Cages of Squarate based Metal-Organic Coordination Frameworks

O-Allylation of phenols with allylic acetates in aqueous medium using a magnetically separable catalytic system

Supporting information

MAGNETIC NANOPARTICLES FOR HYPERTHERMIA APPLICATIONS. Mohamed DARWISH and Ivan STIBOR

Supporting Information

Supporting Information

Supporting Information

Synthesis of Polyvinyl Chloride /MMT Nanocomposites and Evaluation of their Morphological and Thermal Properties

Transcription:

ORIENTAL JOURNAL OF CHEMISTRY An International Open Free Access, Peer Reviewed Research Journal www.orientjchem.org ISSN: 0970-020 X CODEN: OJCHEG 2016, Vol. 32, No. (1): Pg. 159-164 Antibacterial and Morphological Studies of Electrospun Silver-Impregnated Polyacrylonitrile Nanofibre T. O. Siyanbola 1 *, T. Gurunathan 2, A. F. Akinsola 3, J. A. Adekoya 1, A. A. Akinsiku 1, O. Aladesuyi 1, S. Rajiv 4, S. Mohanty 5, T. S. Natarajan 6 and S. K. Nayak 2 1 Department of Chemistry, Covenant University, P. M. B. 1023, Ota, Ogun State, Nigeria. 2 Central Institute of Plastics Engineering & Technology, Guindy, Chennai 600032, India. 3 Department of Chemistry, Ekiti State University, P.M.B. 5363, Ado-Ekiti, Nigeria. 4 Department of Chemistry, Anna University, Chennai-600025, India. 5 Physics Department, Indian Institute of Technology, Madras, Chennai-600036, India. *Corresponding author E-mail: tolu.siyanbola@covenantuniversity.edu.ng http://dx.doi.org/10.13005/ojc/320116 (Received: January 29, 2016; Accepted: February 27, 2016) Abstract Silver-impregnated polyacrylonitrile (PAN) nanofibre was prepared through electrospinning process. Infra-red spectroscopy (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Thermo gravimetric analyses (TGA/DTA) were used to characterize PAN and PAN/Ag composites. The XRD results reflects decrease in the crystallinity of PAN as it is been modified with Ag. Antibacterial activity of PAN/Ag was also investigated. Key word: Antibacterial activity, Nanofibre, Silver, Polyacrylonitrile, Electrospinning, Composite. Introduction T h e u n d e n i a bl e c o n t r i bu t i o n o f electrospinning to nanotechnology development especially in the industrial and academic sectors cannot be over emphasized. It provides cheap, uncomplicated effective technology towards synthesizing nanofibre polymers with excellent properties such as flame retardation, enhanced dimensional stability, high porousity and specific surface area 1-2. The high surface area property exhibited by nanofibre makes high degree of physical contact possible by creating sites for chemical reaction which is the basis for various modification of the nanofibre or trapping fine particle size material through physical entanglement thereby making filtration property of the material possible. Other areas of immense application includes tissue

160 Siyanbola et al., Orient. J. Chem., Vol. 32(1), 159-164 (2016) scaffold, material for dressing wounds, sensors, storage cells for hydrogen fuel cells, drug delivery systems, catalysis reaction and protective clothing etc 3-5. Typical electrospinning procedure involves the use of high voltage source that provides the required electric field on the polymer solution or melts which in turn jets out of the syringe. The dry jets nanofibre move towards an earmark opposite charge collector which capture the polymer fibre (Figure 1). The process is void of coagulation chemistries or high temperatures that can produce solid threads from solutions. The type of polymer solution and/ or spinneret modification will determine the type of nanofibre that is will be formed. Sometimes, the nanofibres can exhibit porous or core-shell morphology depending on the material undergoing spinning, nozzle to collector distance as well as its miscibility and rate of evaporation of the solvent involved 6. Megelski et al., (2002) reported bead formation morphology in electrospun polystyrene fibre but on decreasing nozzle to collector plate distance but on increase the nozzle to collector plate distance, the ribbon shaped morphology is conserved 7. It is however important to state that alteration of the distance between the feeding nozzle and the fibre collecting device gives more drying time to the electrospun fibres. Several base polymeric materials such as collagen, polylactideglycolide, poly(ethylene oxide), silk protein, cellulose derivatives and polyvinyl alcohol (PVA) have been used as precursors 8. The impregnation of inorganic nanoparticles into polymer matrix has been synthetically achieved recently 10. Nanoparticles such as metal oxide, metal, metal sulphide, metal nitrate and so on. The internalization of nano-agx into polymeric matrix offers the composite extensive industrial viabilities that combine features of organic and inorganic materials 11-12. They provide composite materials having antimicrobial, optical and electrical applications 10, catalyst and photochromic materials 13-14. Experimental Polyacrylonitrile (PAN) and silver nitrate was purchased from Sigma Aldrich, India. DMF was obtained from Sisco Research Laboratory Private Limited, India. Solution preparation PAN solution and PAN/AgNO 3 solution were both separately prepared by dissolving them in DMF and respectively stirred continuously for 8 and 24 hours on a magnetic stirrer. Preparation of dispersed Ag nanoparticle in PAN nano-fibrous film A 10 20 mm nano-fibrous film of PAN/ AgNO 3 was place in a 50 ml beaker and 20 ml triple distilled water plus 1 ml N 2 H 5 OH aqueous solution was added to it. This reduces the silver ions in PAN nanofibrous film to silver at room temperature. After 30 minutes, the film was washed with distilled water and alcohol. After which, it was dried in a vacuum oven. Electrospinning of PAN/Ag Figure 1 shows the set-up used for electrospinnig of PAN/Ag. The polymer solution of PAN/Ag was taken into a 2 ml syringe connected to a capillary tip of 0.56 mm inner diameter. The positive electrode to which high voltage power supply is connected is wrapped with aluminium foil. Optimization of electric voltage was at 15 KV. Different polymer solutions concentrations were electrospun at 0.7 µl/min flow rate and 10 cm tip to collector distance. All experiments were carried out at 25 ºC. Characterization Fourier Transform Infrared Spectroscopy (FT-IR) analysis The functional groups present in the spun fibres were identified by Bruker 66V FT-IR spectrometer in the range 4000-400 cm -1. Scanning electron microscopy (SEM) analysis Eletrospun fibre mats were sputter coated with gold and the micro to nano-fibres morphology were observed on a high resolution scanning electron microscope (HRSEM). Scion image software was used analyzing the fibre diameters, orientation pattern and surface of the individual fibre. X-Ray diffraction (XRD) The X-ray diffraction measurements of nanofibre were performed on Rigaku Miniflex II instrument. The nanofibrous membrane was

Siyanbola et al., Orient. J. Chem., Vol. 32(1), 159-164 (2016) 161 pressed inside the diffractometer sample holder and patterned data were collected in-situ. Thermal analysis The thermal stability of PAN and PAN/Ag nano-fibrous materials were ascertained by TGA/ DTA analysis. Samples weight ranging from 4-8 mg was placed in the platinum sample pans under a continuous nitrogen atmosphere with a flow of 25 ml/min in a TGA/DTA model SDT 2600 instrument. The sample and its reference were heated at the rate 20 ºC/min. The phase changes and glass transition temperature of the nanofibrous Pan and PAN/Ag were measured on Perkin-Elmer differential scanning calorimeter (DSC-2). Antibacterial activity The standard LB plate method was used to evaluate the antibacterial activity of the AgNO 3 / PAN precursor solution against gram negative Escherichia coli (E. coli).the ready-made nutrient agar was suspended in double distilled water (1000 ml) and heated to boiling for 25 min until it dissolved completely; the medium and Petri dishes were autoclaved at pressure 15 Lb/in 2. The medium was transferred into sterile Petri dishes under aseptic conditions in a laminar air flow chamber. When the medium in the plates had solidified, 0.5 ml (approx. 10 6 CFU/mL) of culture of test organism was inoculated and evenly spread over the agar surface with a sterile L-shaped rod. Embedded nanofibrous Fig. 1a: Electropinning operation (Source: Google image9) Fig.1b: Overlay FT-IR Spectra of PAN and PAN/Ag nanofibres Fig. 2: XRD patterns of PAN and PAN/Ag nanofibres

162 Siyanbola et al., Orient. J. Chem., Vol. 32(1), 159-164 (2016) samples with 2 cm 2 cm (approx.) samples were cleaned with double distilled water and placed on the medium and incubated at 37 C for 24 hours. The antibacterial activity was carried out based on the formation of an inhibition zone and loss of growth of organisms beneath and surrounding the films placed on the agar medium. Three replicates were used for each treatment 15. Results and Discussion Fourier Transform Infra-red Spectroscopy It had been reported that electropinning process of composite solutions might lead to differences in the composition of the pre-spun solution and the nanofibres deposited 12-13. In the light of this, the infra-red spectroscopy of deposited fibres was analyzed. The overlay FT-IR spectra of PAN and PAN/Ag are represented in Figure 1. PAN shows a characteristic stretching vibrational peak of nitrile group (-CN-) at 2244 cm -1. Also, stretching and bending vibrations of methylene (-CH 2 -) functional group is seen at 2917 cm -1 and 1448 cm -1 respectively. As for PAN/Ag nanofibre, the peak at 1637 cm -1 is due to the oxidation of the PAN in air (as 3a 3b Fig. 3: SEM pictures of electrospun PAN nanofibre Fig. 4: Histogram peaks for SEM images electrospun PAN nanofibers Fig. 5: TGA and DTA graph of PAN and PAN/Ag nanofibres

163 Siyanbola et al., Orient. J. Chem., Vol. 32(1), 159-164 (2016) Fig. 6: Antibacterial activity of PAN/Ag nanofibre obtained), which results in the formation of carboxyl (C=O) groups. The peaks at 1248 cm -1 and 1352 cm -1 are assigned to the aliphatic -CH- group vibrations of different modes in CH and CH 2, respectively. The positions of these peaks in PAN/Ag composites nanofibre is observed to shift slightly lower values due to the interaction between PAN molecules and Ag. X-ray diffraction analysis (XRD) The representative XRD patterns of PAN and PAN/Ag fibres are presented in figure 2. The PAN single unique diffraction peak is observed at 2q = 17 while the modified electrospun nanofibre (PAN/Ag) shows other characteristic peaks at 38, 44, 64, and 77 of 2θ. Scanning electron microscopy (SEM) Figure 3 shows the SEM image of PAN electrospun nanofibre at 12 wt% concentration and at 5 µm (3a) and 10 µm (3b) magnifications. The mean diameters of the fibres were found to be approximately 150 nm to 1nm respectively. Figure 4 shows the histogram peaks for electrospun PAN nanofibres. Thermogravimetric Analysis (TGA) and Differential Thermal Analysis (DTA) The TGA and DTA thermograms of PAN and PAN/Ag fibres are presented in Figure 5. Both thermograms show evident weight loss peaks at 305-320 ºCand 600-740 0 C in the TGA curves. The first weight loss is presumed to be caused by decarboxylation of the methylacrylate in PAN while, the second weight loss may be due to thermooxidative degradation of PAN macromolecular chains. For PAN/Ag nanocomposite, the first step degradation was observed at around 325ºC whereas, that of PAN was at 309 0 C. The PAN/Ag system is seen to be more thermally stable that PAN system. Antibacterial activity The antibacterial activity of PAN/Ag nanocomposite fibre is tested against Gram-negative Escherichia coli. The test was carried out with varying percentage of Ag + in PAN solution. As the percentage composition increases the zone of inhibition also increases (Figure 6). The formation of clear zone of inhibition around the PAN/Ag sample clearly shows that the Ag + ions were effective on the inhibition of bacterial growth. Conclusion Electrospun PAN and PAN/Ag nanofibres were characterized by FT-IR, XRD, SEM, TGA and DTA. Antibacterial activity of PAN/Ag was also evaluated. The SEM micrographs show 100 % bead free nanofibre in 12 wt% ratio of dimethylformaldehyde (DMF). The FT-IR absorption peaks and XRD pattern of PAN/Ag clearly reveal the interaction of Ag with PAN molecules. References 1. Pham, Q. P.; Sharma, U.; Mikos, A. G. Tissue Engineering. 2006, 12, 1197-1211. 2. Park, J. H.; Karim, M. R.; Kim, I. K.; Cheong, I. W.; Kim, J. W.; Bae, D. G.; Cho, J. W.; Yeum, J. H. Colloid Polm. Sci. 2010, 288, 115-121. 3. Reneker, D. H.; Chun, I. Nanotechnology. 1996, 7, 216-223. 4. Li, D.; Xia, Y. Adv. Mater. 2004, 16, 1151-1170. 5. Son, W. K.; Youk, J. H.; Lee, T. S.; Park, W. H. Polym.2004, 45, 2959-2966. 6. Bazilevsky, A. V.; Yarin, A. L.; Megaridis, C. M. Langmuir. 2007,23, 2311-2314. 7. Megelski, S.; Stephens, J. S.; Chase, D. B.; Rabolt, J. F.Macromol.2002, 22, 8456-8466. 8. Won, H. P.; Lim, J.; Dong, I. Y.; Hudson, S.

164 Siyanbola et al., Orient. J. Chem., Vol. 32(1), 159-164 (2016) Polym. 2004, 45, 7151-7157. 9. Dhandayuthapani, B.; Yoshida, Y.; Maekawa, T.; Kumar, D. S.Mat. Res. 2011, 14,317-325. 10. Chan, Y.; Liu, H.; Zhang, Z. Appl. Mechan. & Mater. 2010, 26-28, 159-162. 11. Mbhele, Z. H.; Salemane, M. G.; Van Sittert, C. Chem. Mater. 2003, 26, 5019-5024. 12. Kim, J. H.; Min, B. R.; Won, J.; Joo, S. H.; Kim, H. S.; Kang, Y. S. Macromol. 2003, 36, 6183-6188. 13. Currao, A.; Reddy, V.R.; Calzaferri, G. Chem. Phys. Chem. 2004, 5, 720-724. 14. Schurch, D.; Currao,A.; Sarkar,S.; Hodes,G.; Calzaferri, G.J. Phys. Chem. B. 2002,106, 12764-12775. 15. Siyanbola, T. O.; Sasidhar, K.; Rao, B. V. S. K.; Narayan, R.; Olaofe,O.; Akintayo,E. T.; Raju, K. V. S. N. J. Am. Oil Chem. Soc.2015, 92, 267-275. 16. Wongsasulak, S.; Kit, K. M.; McClements, D. J.; Yoovidhya, T.; Weiss, J.Polym. 2007, 48,448-457. 17. Kriegel,C.; Kit, K.M.; McClements, D.J.; Weiss, J. Polym. 2009,50, 189-200.