Ultrafast spectroscopy of a single metal nanoparticle. Fabrice Vallée FemtoNanoOptics group

Similar documents
Cooling dynamics of glass-embedded metal nanoparticles

Nanocomposite photonic crystal devices

Supplementary Information for. Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings

Scattering-type near-field microscopy for nanoscale optical imaging

Development Of Spatial Modulation Spectroscopy Of Single Nano-Objects In Liquid Environments For Biosensing Applications

7. Localized surface plasmons (Particle plasmons)

Doctor of Philosophy

Survey on Laser Spectroscopic Techniques for Condensed Matter

Graphene for THz technology

Nano fabrication and optical characterization of nanostructures

Localized surface plasmons (Particle plasmons)

Cooling dynamics and thermal interface resistance of glass-embedded metal nanoparticles

Optical properties of morphology-controlled gold nanoparticles

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors

Ultrafast surface carrier dynamics in topological insulators: Bi 2 Te 3. Marino Marsi

SUPPLEMENTARY INFORMATION

Single Emitter Detection with Fluorescence and Extinction Spectroscopy

Supporting Information

Supplementary Figures

Plan of the lectures

ECE280: Nano-Plasmonics and Its Applications. Week8

Optical and Photonic Glasses. Lecture 39. Non-Linear Optical Glasses III Metal Doped Nano-Glasses. Professor Rui Almeida

Last Lecture. Overview and Introduction. 1. Basic optics and spectroscopy. 2. Lasers. 3. Ultrafast lasers and nonlinear optics

Graphene Based Saturable Absorber Modelockers at 2µm

Femtosecond laser microfabrication in. Prof. Dr. Cleber R. Mendonca

Nanophysics: Main trends

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering

HYPER-RAYLEIGH SCATTERING AND SURFACE-ENHANCED RAMAN SCATTERING STUDIES OF PLATINUM NANOPARTICLE SUSPENSIONS

Advanced Vitreous State The Physical Properties of Glass

Cooling dynamics and thermal interface resistance of glass-embedded metal nanoparticles

Aluminum for nonlinear plasmonics: Methods Section

Understanding Nanoplasmonics. Greg Sun University of Massachusetts Boston

Energy transport in metal nanoparticle plasmon waveguides

Nanoscale Energy Conversion and Information Processing Devices - NanoNice - Photoacoustic response in mesoscopic systems

Ultrafast study of Dirac fermions in out of equilibrium Topological Insulators

Plasmonics. The long wavelength of light ( μm) creates a problem for extending optoelectronics into the nanometer regime.

Lecture 10: Surface Plasmon Excitation. 5 nm

LIGHT CONTROLLED PHOTON TUNNELING. University of Maryland, College Park, MD Phone: , Fax: ,

Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating

Optical Spectroscopy of Advanced Materials

2008,, Jan 7 All-Paid US-Japan Winter School on New Functionalities in Glass. Controlling Light with Nonlinear Optical Glasses and Plasmonic Glasses

OPTICAL PROPERTIES AND SPECTROSCOPY OF NANOAAATERIALS. Jin Zhong Zhang. World Scientific TECHNISCHE INFORMATIONSBIBLIOTHEK

Origin of Optical Enhancement by Metal Nanoparticles. Greg Sun University of Massachusetts Boston

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath

Spring 2009 EE 710: Nanoscience and Engineering

Nanoacoustics II Lecture #2 More on generation and pick-up of phonons

SUPPLEMENTARY INFORMATION

Q. Shen 1,2) and T. Toyoda 1,2)

Studies of the Spin Dynamics of Charge Carriers in Semiconductors and their Interfaces. S. K. Singh, T. V. Shahbazyan, I. E. Perakis and N. H.

University of Louisville - Department of Chemistry, Louisville, KY; 2. University of Louisville Conn Center for renewable energy, Louisville, KY; 3

Impact of Magnetic Impurities on Transient Propagation of Coherent Acoustic Phonons in II-VI Ternary Semiconductors

Supplementary Materials

Ultrafast carrier dynamics in InGaN MQW laser diode

Microfabricação em materiais poliméricos usando laser de femtossegundos

Supplementary Figure 1 Reflection and transmission measurement. Supplementary Figure 2 Wavelength dependence of χ

Supplementary Figure 1

Ultrafast Lateral Photo-Dember Effect in Graphene. Induced by Nonequilibrium Hot Carrier Dynamics

Plasmonic sensing of heat transport and phase change near solid-liquid interfaces

Lecture #2 Nanoultrasonic imaging

Nano Optics Based on Coupled Metal Nanoparticles

Lecture 10 Light-Matter Interaction Part 4 Surface Polaritons 2. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.

Optical Spectroscopy of Single-Walled Carbon Nanotubes

Carrier dynamics of rubrene single-crystals revealed by transient broadband terahertz

χ (3) Microscopic Techniques

Enhanced Nonlinear Optical Response from Nano-Scale Composite Materials

Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials

Ultrafast solid-state quantum optics

Ultrafast resonant optical scattering from single gold nanorods: Large nonlinearities and plasmon saturation

Plasmonic Photovoltaics Harry A. Atwater California Institute of Technology

Ultrafast nanoscience with ELI ALPS

Nanoscale optical circuits: controlling light using localized surface plasmon resonances

Atomistic simulation and comparison with timeresolved

The Dielectric Function of a Metal ( Jellium )

nano-ftir: Material Characterization with Nanoscale Spatial Resolution

Photothermal Spectroscopy Lecture 2 - Applications

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures

Multiple Exciton Generation in Quantum Dots. James Rogers Materials 265 Professor Ram Seshadri

The generation of terahertz frequency radiation by optical rectification

Winter College on Optics and Energy February Optical nonlinearities in organic materials

Industrial Applications of Ultrafast Lasers: From Photomask Repair to Device Physics

Administrative details:

Title: Ultrafast photocurrent measurement of the escape time of electrons and holes from

of Gold Nanoparticles

Light Interaction with Small Structures

Multidimensional femtosecond coherence spectroscopy for study of the carrier dynamics in photonics materials

Nanomaterials and their Optical Applications

Time resolved ultrafast ARPES for the study of topological insulators: The case of Bi 2 Te 3

This document contains the following supporting information: 1. Wide field scanning electron microscope image

Continuous Production of Nanoparticles using Laser Radiation

SUPPORTING INFORMATION. Plasmon Spectroscopy and Chemical Structure of Small Bimetallic Cu (1-x) Ag x clusters.

Probing Thin Film Thermophysical Properties using the Femtosecond Transient ThermoReflectance Technique

Supplementary Information

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots

Richard Miles and Arthur Dogariu. Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA

Supporting Information: Ultrafast Excited State Transport and Decay Dynamics in Cesium Lead Mixed-Halide Perovskites

Plasmonic properties and sizing of core-shell Cu-Cu 2 O nanoparticles fabricated by femtosecond laser ablation in liquids ABSTRACT

Observation of coupled plasmon-polariton modes of plasmon waveguides for electromagnetic energy transport below the diffraction limit

S.1: Fabrication & characterization of twisted bilayer graphene 6.8

Nonlinear optics spectroscopy in glasses doped with nanoparticles

Fluorescent silver nanoparticles via exploding wire technique

Transcription:

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE Ultrafast spectroscopy of a single metal nanoparticle Fabrice Vallée FemtoNanoOptics group LASIM, CNRS - Université Lyon 1, France

Metal Nanoparticles: from IV...to XXI century Metallic particles in glasses: jewelry, ornament Ag Au Ancient cup (Central Europe) Lycurgus Cup: a Roman Nanotechnology Roman Era (4th Century A.D). It appears green in scattered light...and red in transmitted light.

Optical response of metal nanoparticles Metal nanosphere (ε = ε 1 + iε 2 ) in a matrix (ε m ): Mie theory for sphere R << λ (dipolar): σ abs 18πVε = λ 3/ 2 m ( λ) 2 2 [ ε ( λ) + 2ε ] + ε ( λ) 1 ε 2 m 2 E O ε(ω) E int R + + + + ε m resonance for ε 1 (λ) + 2ε m Surface Plasmon Resonance Ensemble of identical nanoparticles: α = N part σ abs Ag particles in glass Resonance depends on: - environment - shape + light polarization (ellipsoids, rods,...) manipulation of light at subwavelength plasmonics

Optical response of metal nanoparticles Metal dielectric function ε( ω) = ε bound electrons (interband) b ( ω) ω 2 p ( i τ) ω ω + free electrons (intraband) interband transitions E F CB intraband transitions d - bands SPR Frequency: ε ib 1 ΩR ) + 2εm ΩR ωp ε1 + 2 ( ε m 5 4 Ag - D = 13 nm - p = 2x1-4 Surface Plasmon Resonance 1 Au - colloids - D = 1 nm 3 Interband Transitions Threshold Ω R αl 2 1 Ω ib Ω R 2 25 3 35 4 45 5 Wavelength (nm) 4 5 6 7 Wavelength (nm)

Ultrafast spectroscopy of metal nanoparticles

Femtosecond investigation: pump-probe hν Matrix τ p-m e e τ th τ e-ph Lattice τ p-m Matrix Electron excitation (hν) + Femtosecond probing (nonlinear optical response) Coherent response Nonequilibrium electron kinetics Intrinsic electron scattering processes - Internal thermalization ( T e ) electron-electron : τ th ~ 3 fs - External thermalization (T e T L ) electron-lattice : τ e-ph ~ 1 ps Confined vibrational modes Extrinsic processes: nanoparticle - environment coupling Nonlinear optical response

Pump Femtosecond excitation and probing Probe I S T x I S ΔT/T Sample Femtosecond excitation: intraband absorption f T e = T f() f(t) T e > T hω P +hω P Femtosecond probing: E F t < t = t > Athermal electron distribution Thermalization + Cooling Transmission change ΔT/T dielectric function change Δε(t D ) Probe wavelength different electron interactions C.K.Sun, et al., Phys. Rev. B 5, 15337 (1994) T.Tokizaki, et al., Appl. Phys. Lett. 65, 941 (1994) ; J.Y.Bigot, et al., Phys. Rev. Lett. 75, 472 (1995) C.Voisin et al., J. Phys. Chem B 15, 2264 (21). E F E F

Experimental setup: femtosecond pump-probe Verdi Argon Laser Laser Ti:sapphire laser 78 8 - - 13 9nmnm 11W W - 25fs fs BBO ω 2ω 3ω Reference Chopper ((f) ω) Variable Delay prism pair fω Pump: red pulse (25 fs) (or 2ω) Probe: red pulse (ω ; 25 fs) Sample blue (2ω ; 3 fs) or UV (3ω ; 55 fs) Perturbation : ΔT e ~ 1 K - 2 K Sensitivity : depends on mean power on detector maximum: ΔT/T ~ 1-7 (f = 1 khz) Signal Computer Signal Lock-in Amplifier + - Reference

Electron energy losses: electron-phonon coupling Ag - D = 3 nm in Al 2 O 3 1. 1 B.C..8 ΔT/T.1 E F ΔT/T.6.4.1 1 2 Probe Delay (ps) Blue probe UV probe bandes d d-bands.2 1 2 3 Probe Delay (ps) pump: IR (93nm) probe: Blue (465nm) or UV (31 nm) UV probe : Risetime: electron thermalization electron-electron interactions Decay: energy transfer to the lattice electron-lattice coupling Blue probe: Energy in the electron gas electron-lattice coupling Size effect?

Electron interactions: Size dependences.9.8 Ag film 3 Ag film τ e-ph (ps).7.6.5 Ag nanoparticles polymer BaO-P 2 O 5 Al 2 O 3 MgF 2 deposited.4 5 1 15 2 25 3 Nanoparticle diameter (nm) τ th (fs) 2 Ag nanoparticles BaO-P 2 O 5 matrix Al 2 O 3 matrix Deposited on glass 1 5 1 15 2 25 3 Nanoparticle diameter (nm) Electron lattice interaction: τ e-ph (A. Arbouet, PRL 9, 17741 (23)) Tin and Gallium: τ e-ph D (M. Nisoli et al., PRL 78, 3575 (1997)) Electron electron scattering: τ th (C. Voisin, et al., PRL 85, 22 (2)) Screening reduction close to the surface Many studies on large ensembles (1 4 to 1 6 particles) Single nanoparticle Size and shape fluctuations

Femtosecond spectroscopy of a single nanoparticle 1) Optical detection and characterization: linear absorption spectroscopy 2) femtosecond pump - probe: nonlinear response Pump P t Probe I S T x I S ΔT/T Sample Sample

Optical detection and spectroscopy of a single metal nanoparticle

Optical study of a single metal nanoparticle Non luminescent object: Detection of light scattering or absorption Near field: local environment perturbation T. Klar et al. Phys. Rev. Lett. 8, 4249 (1998) Far field: focused beam 3-5 nm diluted sample ( < 1 particle / µm 2 ) - Scattering ( V 2 ; size 2 nm): Dark field microscopy C. Sönnichsen et al., Appl. Phys. Lett. 77, 2949 (2) K. Lindfords et al. Phys. Rev. Lett. 93, 3741 (24) - Absorption ( V ; small particle): Focused laser beam: 3-5 nm Gold nanosphere D = 2 nm - 5 nm: absorption of 1-3 -1-5 of the incident light Photothermal technique D. Boyer et al., Science 297, 116 (22) Spatial modulation technique (quantitative) A. Arbouet et al., Phys. Rev. Lett. 93, 12741 (24)

Optical detection of a single metal nanoparticle (A. Arbouet et al., Phys. Rev. Lett. 24) Absorption by a single nanoparticle: - Focused laser beam: 3-5 nm - Gold nanosphere D = 2 nm - 5 nm: absorption of 1-3 -1-5 of the incident light Spatial Modulation Technique: Modulation of the nanoparticule position f Modulation of transmitted light f or 2f microscope objective 1x sample f f, 2f lock-in amplifier Light piezo f Transmitted power P XY scanner

Gold nanoparticles - <D> = 1 nm Transmitted power: t i ext (I: intensity profile at the focal spot) ( ) P = P σ I x, y δ y Modulation of the particle position at f : y P P σ t i ext I( x, y ) σ ext I y y δ y σ sin(2 πft) 2 y + δ y sin(2πft) ext 2 y I 2 y δ 2 y sin 2 (2πft) y I(x,y ) Sample image: X/Y scan - λ = 532 nm Diluted sample (< 1 particle/μm 2 ): 1 nm gold nanoparticle spin-coated on a substrate y ΔP/P ΔP/P X (µm) X (µm) f Y (µm) 2f Y (µm)

Absorption spectroscopy of a single nanoparticle Ti- sapphire femtosecond oscillator 1 mw - 78 nm - 2fs grating Non-linear photonic crystal fiber Supercontinuum λ > 45 nm SMS microscope Optical absorption signature

Single nanoparticles: optical characterization λ = 532 nm; modulation along Y at f = 1 khz ΔT/T 4 19.5 nm Tunable source 3 Spectroscopy σ abs (nm 2 ) 2 X (µm) Y (µm) 1 18 nm 45 5 55 6 Wavelength (nm) Counts 15 1 5 Nanoscope <D> = 16.6 nm Counts 12 8 4 <η > =.9 Nanoscope Absolute value of the absorption cross-section + polarization dependence Counts 12 13 14 TEM15 16 <D> 17 18= 16.2 19 2 nm21 6 Diameter (nm) 5 4 3 2 1 12 13 14 15 16 17 18 19 2 21 Diameter (nm) Counts.5.6.7.8.9 1. 6 TEM Aspect ratio c/a <η > =.9 4 2.5.6.7.8.9 1. Aspect ratio c/a Optical identification of a nanoobject: size and shape and orientation O.L.Muskens et al., Appl. Phys. Lett. 88, 6319 (26)

Femtosecond optical nonlinearity of a single nanoparticle femtosecond pump - probe study : Pump Probe I S T x I S ΔT/T Sample

Femtosecond spectroscopy of a single nanoparticle t D CF tunable Ti:Al 2 3 fs oscillator Chameleon BBO Ch x y f PC DVM Lock-in PD CF

Femtosecond spectroscopy of a single Ag nanosphere Optical characterisation of a single nanoparticle (linear absorption spectrum) Microscope Objective 1x & femtosecond pump - probe study : Transmitted Power ΔT T 1nanoparticle Δσ = σ ext ext pump σ S ext probe IR excitation / SPR probing (425 nm) σ ext (x 1-15 m 2 ) 1 5 Ag - D = 3 nm D = 21 nm ΔT/T (x 1-4 ) 1.2.8.4 ΔT/T max (x 1-4 ) 1..5. 2 4 P P (µw) 35 4 45 5 55 Longueur d'onde (nm). 1 2 3 Probe delay (ps)

Electron-phonon energy exchange in single Ag nanospheres Mechanism ΔT/T electron excess energy Decay: electron-lattice energy exchange τ e-ph 1.5 τ e-ph (ps) 1.2.9 τ e ph Strong excitation regime excitation dependent decay: τ e (T e ) Weak excitation regime ΔT decay with τ e-ph = c T / G.6..2.4 Pump power (mw) Thermal distributions: Two temperature model T e ; T L ; G = e-lattice coupling constant C e (T e ) = c T e ; C L : heat capacities C C e L dte ( Te ) = G( Te T dt dtl = G( Te TL ) dt L )

Electron-phonon coupling in single Ag nanospheres 1.5 max Known nanoparticle known excitation T e -T τ e-ph (ps) 1.2.9.6..2.4 Pump power (mw) Comparison wih two temperature model: pump power T e max Same electron-phonon coupling as in ensemble measurements (in glass) comparison with the two-temperature model τ e-ph / τ e-ph No environment dependence (large excitation).1 1 No e-ph coupling dependence (T max -T e ) / T on excitation regime O.Muskens, N. Del Fatti and F. Vallee, Nano Letters 26 2. 1.5 1. ΔT e max : 11-43 K (3nm) ΔT e max : 22-38 K (21nm)

Acoustic vibration of a single nano-object: pair of nanoprisms Vibrational acoustic modes: Frequency: size and shape dependent Damping: environment / size and shape distribution Single nanoparticle

Gold nanoprisms: detection TEM image M. El-Sayed Georgia Inst. Tech., Atlanta Nanosphere lithography: Organized nanoprisms: size 12 nm thickness 3 nm (W. Huang et al., Nano Lett. 4, 1741 (24)) Optical image (at 41 nm) AFM image Optical observation of prism pairs 5 x 5 µm 2

Gold nanoprism pair: acoustic vibrations J. Burgin et al., J. Phys. Chem. C 112, 11231 (28) - Breathing mode: single T 3 = 12 ps ; ensemble: T 3 = 14 ps. Prism pair Ensemble ΔT/T (x1-3 ) -.2 5 1 15 Probe delay (ps) ΔT/T (a.u.) -5 5 1 15 Probe delay ( ps ) -Twomodes: pair: T 1 = 64 ps, T 2 = 49 ps ; ensemble: T 1 = 67 ps, T 2 = 4 ps - Pair: period fluctuations + slower relaxation (reduced inhomogeneous damping) First isotropic modes of a triangle:

Gold nanoprisms: acoustic vibrations Gold nanoprisms: acoustic vibrations.2 6 ΔT/T (x1-3 ).1. 5 1 15 Probe delay (ps) Main mode periods: T 1 and T 2 T 2 (ps) 55 5 45 τ 1 (ps) 6 4 2 6 65 7 75 T 1 (ps) 6 65 7 75 T 1 (ps) Period fluctuations: Correlated fluctuations shape/size effect Damping: Energy tranfer to the substrate - 1 ps τ 1 6 ps <τ 1 > 26 ps - ensemble measurement: τ 1 7 ps (inhomogeneous damping) - No τ 1 - T 1 correlation fluctuation of the prism-substrate contact

Optical investigation and electron microscopy of a single nanoparticle

Single nanoparticle spectroscopy: Correlation with electron microscopy - Au particles on Si 3 N 4 substrate Optical TEM Silica sphere markers Pair of interacting Au nanospheres: 9 1 nm σ ext (λ) (1 4 nm 2 ) 5 4 3 2 1 1 μm 9 D = 12 nm 4 5 6 7 8 Agreement with Mie theory 6 Light polarization 9 Wavelength (nm) 4 5 6 7 8 9 σ ext (λ) (1 4 nm 2 ) σ ext (λ) (1 4 nm 2 ) 2 15 1 5 4 2 Light polarization Wavelength (nm)

Conclusion Single nanoparticle optical absorption detection spatial modulation technique: direct absorption measurement absorption cross section down to 5 nm (gold) - 3nm (silver) far-field technique dilute sample (< 1 particle per μm 2 ) spectroscopy: optical identification of a single nanoobject Femtosecond time-resolved spectroscopy electron-phonon coupling in a single metal nano-object acoustic vibration: acoustic properties at a nanoscale nonlinear optics with a single nanoobject combination with electron microscopy Extension to hybrid nanoparticles: semiconductor-metal

Acknowledgements Université Bordeaux 1 D. Christofilos A. Arbouet O. Muskens J. Burgin P. Langot Université Lyon 1 FemtoNanoOptics Group V. Juvé (Ph.D) H. Baida (Ph.D) P. Maioli A. Crut N. Del Fatti Université Lyon 1 - France J.R. Huntzinger P. Billaud E. Cottancin M. Pellarin J. Lermé M. Broyer G. Bachelier A. Brioude Universidad Vigo - Spain L. Liz-Marzan Université Paris VI - France M.P. Pileni Georgia Institute of Technology - USA M. El-Sayed