Modeling for the Recovery of Organic Acid by Bipolar Membrane Electrodialysis

Similar documents
Temperature Control in Autothermal Reforming Reactor

The Study of Structure Design for Dividing Wall Distillation Column

경막형용융결정화에의한파라디옥사논과디에틸렌글리콜혼합물로부터파라디옥사논의정제. Purification of p-dioxanone from p-dioxanone and Diethylene Glycol Mixture by a Layer Melt Crystallization

Missing Value Estimation and Sensor Fault Identification using Multivariate Statistical Analysis

Temperature Effect on the Retention Behavior of Sugars and Organic Acids on poly (4-vinylpyridine) Resin

Particle Removal on Silicon Wafer Surface by Ozone-HF-NH 4

Specimen Geometry Effects on Oxidation Behavior of Nuclear Graphite

Effect of Precipitation on Operation Range of the CO 2

수소가스화기에서석탄의메탄화반응특성. Characteristics of Coal Methanation in a Hydrogasifier

Seed Production from Pond Cultured Cherry Salmon, e ll, Oncorhynchus masou (Brevoort) ll ll

Influence of Loading Position and Reaction Gas on Etching Characteristics of PMMA in a Remote Plasma System

Surface Reaction Modeling for Plasma Etching of SiO 2

Chapter 17. Additional Aspects of Aqueous Equilibria. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

History and Status of the Chum Salmon Enhancement Program in Korea

Chapter 17 Additional Aspects of

Chapter 17 Additional Aspects of

School of Chemistry, University of KwaZulu-Natal, Howard College Campus, Durban. CHEM191 Tutorial 1: Buffers

Name Section Signature TA ID #

/CO/CO 2. Eui-Sub Ahn, Seong-Cheol Jang, Do-Young Choi, Sung-Hyun Kim* and Dae-Ki Choi

Purification of Fructooligosaccharides Using Simulated Moving Bed Chromatography

Applications of Aqueous Equilibrium Chapter 15. Common Ion Effect & Buffers Sections 1-3

5 Acid Base Reactions

Copyright 2018 Dan Dill 1

4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd

Discovery Guide. Beautiful, mysterious woman pursued by gunmen. Sounds like a spy story...

Chem 106 Thursday, March 10, Chapter 17 Acids and Bases

REVIEW QUESTIONS Chapter 17

n r t d n :4 T P bl D n, l d t z d th tr t. r pd l

K A K B = K W pk A + pk B = 14

Stabilization of HRP Using Hsp90 in Water-miscible Organic Solvent

A L A BA M A L A W R E V IE W

Chapter 17. Additional Aspects of Aqueous Equilibria. Lecture Presentation. James F. Kirby Quinnipiac University Hamden, CT

Ch.7 ACTIVITY & SYSTEMATIC TREATMENT OF EQ

Chapter 17 Additional Aspects of

Illinois JETS Academic Challenge Chemistry Test (District) Useful Information. PV = nrt R = L atm mol -1 K -1.

Transport characterizations of natural organic matter in ion-exchange membrane for water treatment

CA 47b Acid Base Titrations

Performance of Direct Methanol Fuel Cell (DMFC) based on New Electrode Binder (speek/nafion): Effect of Binder Content

한외여과막시스템을이용한금속가공폐수의실험실적처리및현장적용연구

5 Weak Acids, Bases and their Salts

CHEM1109 Answers to Problem Sheet Isotonic solutions have the same osmotic pressure. The osmotic pressure, Π, is given by:

Name AP CHEM / / Chapter 15 Outline Applications of Aqueous Equilibria

Dr. Diala Abu-Hassan, DDS, PhD Lecture 3 MD summer 2014

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th

Acids & Bases. Tuesday, April 23, MHR Chemistry 11, ch. 10

Chapter 14. Acids and Bases

0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n. R v n n th r

Chap 17 Additional Aspects of Aqueous Equilibria. Hsu Fu Yin

Faculty of Natural and Agricultural Sciences Chemistry Department. Semester Test 1. Analytical Chemistry CMY 283. Time: 120 min Marks: 100 Pages: 6

The ph of aqueous salt solutions

Acid/Base Definitions

Acids and Bases. Dr. Diala Abu-Hassan, DDS, PhD Lecture 2 Nursing First Semester 014. Dr. Diala Abu-Hassan 1

MAJOR FIELD TEST IN CHEMISTRY SAMPLE QUESTIONS

Carboxylic Acids 1 of 31 Boardworks Ltd 2012

Optimal Design of Generalized Process-storage Network Applicable To Polymer Processes

Chapter 15 Additional Aspects of

Chapter 17 Homework Problem Solutions

828.^ 2 F r, Br n, nd t h. n, v n lth h th n l nd h d n r d t n v l l n th f v r x t p th l ft. n ll n n n f lt ll th t p n nt r f d pp nt nt nd, th t

ph calculations MUDr. Jan Pláteník, PhD Brønsted-Lowry concept of acids and bases Acid is a proton donor Base is a proton acceptor

CHE 107 Summer 2017 Exam 3

Quick Review. - Chemical equations - Types of chemical reactions - Balancing chemical equations - Stoichiometry - Limiting reactant/reagent

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th

Chem 12 Practice Solubility Test

Slide 1. Slide 2. Slide 3. Colligative Properties. Compounds in Aqueous Solution. Rules for Net Ionic Equations. Rule

Copyright 2017 Dan Dill 1

Dr. Arrington Exam 3 (100 points), Thermodynamics and Acid Base Equilibria Thursday, March 24, 2011


Additional Aspects of Aqueous Equilibria David A. Katz Department of Chemistry Pima Community College

X212F Which of the following is a weak base in aqueous solution? A) H 2 CO 3 B) B(OH) 3 C) N 2 H 4 D) LiOH E) Ba(OH) 2

g. Looking at the equation, one can conclude that H 2 O has accepted a proton from HONH 3 HONH 3

Equilibrium Practice Test

Reactions with water do NOT go to completion, so to find ion concentrations, need to know K eq and solve an equilibrium problem!

Faculty of Natural and Agricultural Sciences Chemistry Department. Semester Test 1 MEMO. Analytical Chemistry CMY 283

AP Chemistry: Acid-Base Chemistry Practice Problems

Acids and Bases. Reviewing Vocabulary CHAPTER ASSESSMENT CHAPTER 19. Compare and contrast each of the following terms.

Chem 40S Notes: Indicators What makes an acid/base strong?

P a g e 5 1 of R e p o r t P B 4 / 0 9

Molar Mass to Moles Conversion. A mole is an amount of substance. The term can be used for any substance and 23

Chem 40S Notes: Indicators What makes an acid/base strong?

Acid Base Equilibria

The Computer Simulation and Estimation of Membrane Mass Transfer Coefficients of Hollow Fiber Membrane G-L Contactors for SO 2

Example 15.1 Identifying Brønsted Lowry Acids and Bases and Their Conjugates

Journal of Membrane Science


or supersaturatedsaturated Page 1

Comparison of distillation arrangement for the recovery process of dimethyl sulfoxide

Unless otherwise stated, all images in this file have been reproduced from:

Chapter 17. Additional Aspects of Equilibrium

CHEM 1412 Answers to Practice Problems Chapters 15, 16, & 17

ACID BASE EQUILIBRIUM

+ +r lk+ + q +p np p rn+ Qp L + +p+ + P P +P+ P P+ P P R + R K. r+ + rk q pp lp+ + + pp+ p L + +N n + + +Q+P R P PP+ + P +K+R+L+

Introduction to Acids & Bases. Packet #26

Chapter 4. Reactions in Aqueous Solution

Chapter 17. Additional Aspects of Equilibrium

CHEM 3.6 (5 credits) Demonstrate understanding of equilibrium principals in aqueous systems

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

T 1 (p) T 3 (p) 2 (p) + T

CHM 2046 Test #3 Review: Chapters , 15, & 16

Chapter 4: Types of Chemical Reactions and Solution Stoichiometry

PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D D r r. Pr d nt: n J n r f th r d t r v th tr t d rn z t n pr r f th n t d t t. n

Transcription:

Korean Chem. Eng. Res., Vol. 44, No. 5, October, 26, pp. 476-482 m n ˆ i m l i Çm z p edš 337-71 l s op ek 34 (26 3o 31p r, 26 6o 2p }ˆ) Modeling for the Recovery of Organic cid by ipolar Membrane Electrodialysis Sang-Hun Kim and yung-chul Lee Department of Chemical System Engineering, Hongik University, 34, Shinan-ri, Jochiwon, Yeongigun, Chungnam 339-71, Korea (Received 31 March 26; accepted 2 June 26) k h l l o mp o p p p 2e l rp p r Œ p pn l m. o p k r p n mp, o p, p ph p r l r m. o mp rp o p r lp k, ql Na pmp p ˆ pl. e ˆp pm p l rp p m. e l o p, p ph p ep e p m q p m. bstract This paper studied the recovery of organic acid from organic acid salt by using bipolar membrane electrodialysis. cetic acid and lactic acid was used as for organic acid. Organic acid concentration, sodium hydroxide concentration and ph values were measured at various current density. Organic acid salt was effectively converted to organic acid and sodium hydroxide. ased on the experimental results, mathematical models were developed, in which time changes in ion balance were considered. Model predictions of organic acid concentration, sodium hydroxide concentration and ph values were in good agreement with the experimental data. Key words: Organic cid, cetic cid, Lactic cid, ipolar Membrane Electrodialysis (EDM), Modeling 1. l l kl r m p eˆ o l rp p n l v p. k t o p p p p p e, pk, q, q o p mll n lv p [1. o p eqp 4Í j q. o p acetic acid(1,8, T/y), lactic acid(9, T/y), citric acid(725, T/y), gluconic acid (45, T/y) [2. lrp l p o p p, r,, rr l rl p p lv. l p llv o mp p p eˆ l l v p n p. sp o } l n p l King Paul[3, aniel[4 erglund [5p rk n p t n l m. p rr p l o solvent pn, p p eˆ rrp v To whom correspondence should be addressed. E-mail: bclee@hongik.ac.kr p. l r Œ p pn l o p p rk p. r Œ p pm p ro pn l pmp eˆp f nk tl sq r v p pm p rr, p rp. r Œ rp kl o p k rl o p l n l vp np tp p tp f o p p np., r Œ p p rr r r q~ k eˆ p r l l n rp rp. p r Œ (EDM, electrodialysis with bipolar membrane) p kpm ppm p ˆmn r Œ rl p l H pm OH pmp p p p p rp [6. p p k/ppm p n ˆp p rn o pp l v l l p [7. p r Œ p rp microfiltration(mf) sp r Œ (ED, electrodialysis) p r} rl r mp n. Roux-de almann [8 Cheryan [9 p l q p p r} r 476

l l p. p r Œ l o rl m p t tn r, okp, ph p p [1, 11. ph o p pml m p t l pl l n. l l p kpm p 2e s p p r Œ q pn l o rs e p mp p l p p p p l m p t tn p ph m p r p n q m. 2. m r Œ q shahi Chemicall rq SV-7 typep n mp q p Fig. 1. p p o p p strom p NEOSEPT P-1p n m o p o shahi Chemical p dž CIFLEX K-51S p n m. dˆp o 2ep m p o rp 5 cm 2p r~ dˆl o rp.1 m 2 m. k p Žp n m p p d p d džžp n m. p r Œ rp, m, r k p p p 1.5 Ln PVC l l e q rp ˆ m. kp.3 M Na 2 SO 4 (Daejung Chemicals & Metals Co.) nkp ph 2 sr l n mp, kl ~p r o kp 3 L/minp pr e. o e p l k ph, r, l o p p k. p o l k r p r 1~2 /m 2 e e p v m. o p k (Duksan Chemical Co.) r (Duksan Chemical Co.)p ˆ l e m. l p o m p 1M mp NaOH(Duksan Chemical Co.) l ph 6.8 sr l sl nkp m o EDMl p o l 477 nkp sr m. m l p p.3 M sr m. m p 1.5 L/min p pr ov m. q l rkp rksr (shahi MP-18-14) pn l mp, r r (Kikusui PD35-5L, -35V 5) n l m. e p s l p 1Í NaOH nk.35í HCl(Samchen Chemical Industries)nk v r m. o p r r o C(acid compartment)m C(base compartment)l p phm r r p ph meter(istek, Japan)m conductivity meter(oakton PC51) pn l pr p r l mp, k~p p p r o p ko p r l m. rkp v e l e p s m., Cl p o p 1 p e } l.2 M NaOH nkp rrl p r m, Cl p NaOHp 1 p e } l.2 M HCl nkp rrl p r m. 3. m 3-1. l l l 2 i EDMm k p r Œ p mp p p l p o l n. Fig. 2m p dˆp kpm p p l 2e lp ˆ m. Cl mp Cl m nkp. l l r t p p l l p r l Cl H pmp C l OH pmp. Cl ph p mp p, Cl Cl kpm p lm kpm p p l p OH pm l m. Cl p rr v Cl m rr v. p o p l o mp o p. 3-2. mj l phjm r Œ l vp p p l p pm v p p Fig. 1. Schematic diagram of experimental set up (I: current, C: conductivity, Q: flux, ph: ph value, T: temperature, U i : inner (stack)voltage, U o : outer(applied)voltage). Fig. 2. Principle of EDM for the conversion of organic acid salts - example of a sodium salts. Korean Chem. Eng. Res., Vol. 44, No. 5, October, 26

478 Ëp ~ m p r p l p p v kp pm v p l p l p p. p pm p pm ˆ q p pm p tn pq. r m p. p pms p pp nkp phm l p r. ph r Œ sp nrl m p t q pq p. k p k p n l rp pm. p pm r k p m m p sqp l l p m p. k p pm acetate pm H pmp. [ Hc K [ H [ c (1) cetate pm k m r~ (2)e. l V r~ p. Formular weight Hc V [ Hc c [ (2) k p (3)e p. F Hc [ Hc [ c _ k p ep (4)e. l K 1.73 1 mol/lp p 5. [ H [ c K ------------------------- [ Hc p p [Hcl r p v vel p (5)e p. [ H [ c F Hc ------------------------- c K [ k p acetate p acetate pp α 1, α 2 p (6)e. α 1 [ c ------------- F Hc K ------------------------ [ H K (3) (4) (5) (6a) Fig. 3. Fractional ionization and ph for acetic acid and lactic acid. 3-3. l m Fig. 4 p n o pp p. (4)ep p p l j (7)ep. K n H ( t)n c ( t) ------------------------------- V ( t)n Hc ( t), pm p p p p ˆ p. J H M M J OH J H CEM CEM J Na Cm Cl p pm p p p ˆ p. dn Hc dn H ( t) ( t) M --------------- -------------------- J dt dt H dn OH ( t) M CEM ------------------ J OH J H dt J H CEM (7) (8) (9-a) (9-b) Na pmp H pm l r p k p. p p l r p p ˆ p. α 2 [ Hc ---------------- F Hc [ H ------------------------ [ H K (6b) p ep phl e Fig. 3 p. Fig. 3p k r p pm pp ˆ p. pm pp K l v. l k K 1.73 1 5 mol/l p r p K 1.38 1 4 mol/lp. Fig. 3l m p k r p ph v l pm pp v. l k p ph 4.72l r~ p 1/2p pm, r p ph 3.86l r~ p 1/2p pm., r ph l ~ r p pmpp k p pmp p k p. p p o p e l ph p p p m p. o44 o5 26 1k Fig. 4. Schematic drawing of the fluxes and reactions considered for the model establishment.

EDMl p o l 479 n H ( t) n Hc ( t) n OH t (1) l rp r p l r.2ip. e l p ep p p ˆ p. C ( t) C ( t) (11-a) (11-b) l V (t) V at, V (t) V at p. a p p l pqp. 3-4. phm n H ( t) n Hc ( t) rt ---------------------------------------------- V ( t) n Na ( t) -------------- V ( t) ( ) n Na ( t) rt Cl p l p H pmp p l ph p. ph p o l v v p. e p q p p p. Fig. 5 k e l r m e l Cl p k p e p l m p e l k p rp v p lt pp e (11-a)ep q p p p., r v k p v pp rp v p lt p. p p Fig. 6l ˆ l. Fig. 7 p Cl NaOHp e p k p p ˆ po Cl p Na pmp kpm p p k p p l r~rp NaOHp k p. Fig. 8p k e l r m e l Cl p ph e p l m p e p v l ph p p p p p Na pmp kp m p Cyp p l acetate pmp H pm l k p p, p l p H pmp p l r~rp H pmp v n H ( t) n H, n c n Hc t ( ) n c, t ( t) rt e( t) h t n Na ( ) n Hc, et ( ) et ( ) ( ) (12-a) (12-b) (12-c) l e(t) e l k p p, h(t) kpm p H pmp p. (12)ep (7)el p p e(t)l r p p. et ( ) gt ( ) gt ( ) 2 ± 4n c, [ n Na ( t) rt h( t) ---------------------------------------------------------------------------------------------------- 2 l gt ( ) K V ( t) n H, n Na ( t) rt n c, h(t) e l p pp p e. (13) p. h(t) (pi q) It 2 (14) ht ( ) l pm q r m e l f 5.7 1 6, 3. 1 4p. k k p p (9)e p pm p(a)l p p. Fig. 5. Concentration of acetic acid in the acid compartment for acetic acid experiment. n c, n α (15-a) n Hc, n n c, (15-b) (13), (14), (15)ep (12)el p l n H ( t) p ph e p p ˆ pl. n ph H ( t) log ------------- ( t) V 4. m (16) p r Œ l p o p p p kk o r ep l. ep pn l Cm Cl e r l ph, o NaOHp plp, e p p k. p Fig. 6. Concentration velocity as current density. Korean Chem. Eng. Res., Vol. 44, No. 5, October, 26

48 Ëp ~ Fig. 7. Concentration of sodium ion in the base compartment for acetic acid experiment. Fig. 9. Concentration of lactic acid in the acid compartment for lactic acid experiment. Fig. 8. ph value in the acid compartment for acetic acid experiment. Fig. 1. Concentration of sodium ion in the base compartment for lactic acid experiment. ppp lt p p., r v l ph p p r v l p l p p pl ppp lt p p. l m p p }pl p e p v l php pl, p (6-a)el m p H pmp v p m pp p p. v p acetate pmp k p r l e H pmp v l ph p. Fig. 9, 1, 11p Fig. 5, 7, 8 p s l r p rneˆ e p p. k p p v pp, e p q p p p. p l ph o l p r l k r p ph m. Fig. 12 k r p ph p p Fig. 12l m p r p ph p k p o44 o5 26 1k Fig. 11. ph value in the acid compartment for lactic acid experiment.

Fig. 12. ph value in the acid compartment at 2 /m 2. Fig. 13. Concentration of acid in the acid compartment at 2 /m 2. EDMl p o l 481 p, po r p K p 1.38 1 mol/lp k p 4 K 1.73 1 mol/l ƒ pm pp ƒv p p 5. p e l ph p p m pp, (16)ep p q p p k pl. Fig. 13 14 pr r p s l Cm Cl p p m NaOHp e p k r p n p v p pp lt p. p p Cp ph p 6.8 p l k r p pm pp 1l l Na pmp p p. k r p l m p p lt p. 5. l p r Œ l p o l rp l. p edšl p kpm p n 2e l p r Œ q n l o m p o p e p m. o p k r p n mp, p e l e m el p e l m ph tep k. p n p l rep m, m ph m p r p m. r l p m k r p p l llv e p m q p p pl. l 24 p l vo l p lp pl. k C : concentration [N F : formular weight I : current density [/m 2 J : flux [kg/m 2 h K : equilibrium constant [mol/l n : mol t : time [h V : volume [L Fig. 14. Concentration of sodium ion in the base compartment at 2 /m 2. g zm : acid compartment : base compartment M : bipolar membrane CEM : cation exchange membrane H : hydrogen ion c : acetate ion Na : sodium ion Hc : acetic acid Korean Chem. Eng. Res., Vol. 44, No. 5, October, 26

482 Ëp ~ y 1. Kirk, R. E. and Othmer, D. F., in H. G. Mary(Ed), Encyclopedia of Chemical Technology, (J. Wiley & Sons, New York, 3rd edn), 21, 848-864(1983). 2. Sicard, P.-J., io-industries: La Nouvelle Donne, Infochimie Magazine, 415, 68-72(2). 3. King, J. C. and Paul,., Process for Sorption Solute Recovery, US Patent No. 4,67,155(1987). 4. aniel,. M., Recovery of Carboxylic cid from Organic Solutions that Contains an mine and an Extraction Enhancer, US Patent No. 5,78,276(1998). 5. erglund, K.., Elankovan, P. and Glassner, D.., Carboxylic cid Purification and Crystallization Process, US Patent No. 5,34,15(1991). 6. Kang, M. S., Water-splitting Phenomena and pplications in Ion-exchange Membranes, Ph.D Thesis, GIST, Gwangju(23). 7. Kemperman,. J.., Handbook on ipolar Membrane Technology, Twente Univ. Press, Enschede(2). 8. Carrere, H., laszkow, H. and Roux-de almann, H., Modelling of the Clarification of Lactic cid Fermentation roths by Cross Flow Microfiltration, J. Membr. Sci., 186(2), 219-23(21). 9. ailly, M., Roux-de almann, H., imar, P., Lutin, F. and Cheryan, M., Production Processes of Fermented Organic cids Targeted round Membrane Operations: Design of the Concentration Step by Conventional Electrodialysis, J. Membr. Sci., 191(1-2), 129-142 (21). 1. Strathmann, H., Krol, J. J., Rapp, H. J. and Eigenberger, G., Limiting Current Density and Water Dissociation in ipolar Membranes, J. Membr. Sci., 125(2), 123-142(1997). 11. Gineste, J. L., Pourcelly, G., Lorrain, Y., Perrin, F. and Gavach, C., nalysis of Factors Limiting the use of ipolar Membranes: Simplified Model to Determine Trends, J. Membr. Sci., 112(2), 199-28(1996). 12. Paula, J. M., Satish, J. P. and Shih, P. T., Competitive nion Transport in Desalting of Mixtures of Organic cids by atch Electrodialysis, J. Membr. Sci., 141(1), 75-89(1998). 13. Roux-de almann, H., ailly, M., Lutin, F. and imar, P., Modelling of the Conversion of Weak Organic cids by ipolar Membrane Electrodialysis, Desalination, 149(1-3), 399-44(22). 14. Lee, E. G., Moon, S. H., Chang, Y. K., Yoo, I. K. and Chang, H. N., Lactic cid Recovery Using two-stage Electrodialysis and Its Modelling, J. Membr. Sci., 145(1), 53-66(1998). 15. Lee,. C. and Kim, S. H., Separation of Succinic cid from Organic cid Mixture Using Electrodialysis, Korean Chem. Eng. Res., 43(2), 266-271(25). o44 o5 26 1k