IKW50N60TA q. Low Loss DuoPack : IGBT in TRENCHSTOP TM and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

Similar documents
TrenchStop Series. Low Loss DuoPack : IGBT in TrenchStop and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

TRENCHSTOP Series. Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

TRENCHSTOP Series. Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

TRENCHSTOP Series. Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

Low Loss DuoPack : IGBT in TrenchStop and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

IKW40N120T2 TrenchStop 2 nd Generation Series

Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode

TRENCHSTOP Series. Low Loss IGBT: IGBT in TRENCHSTOP and Fieldstop technology. Maximum Ratings Parameter Symbol Value Unit.

Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode

SKP15N60 SKW15N60. Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode

SKP06N60 SKA06N60. Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode

TrenchStop Series. P t o t 270 W

TrenchStop Series I C

Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode

IGD06N60T q. IGBT in TRENCHSTOP and Fieldstop technology. TRENCHSTOP Series. IFAG IPC TD VLS 1 Rev. 2.2,

PG-TO I C. A Pulsed collector current, t p limited by T jmax I Cpuls 62 Turn off safe operating area V CE 600V, T j 150 C - 62

IGW25T120. TrenchStop Series

IGW15T120. TrenchStop Series

SGP20N60 SGW20N60. Fast IGBT in NPT-technology

SKP10N60 SKB10N60, SKW10N60

Soft Switching Series

60 30 Pulsed collector current, t p limited by T jmax I Cpuls 90 Turn off safe operating area V CE 900V, T j 175 C - 90 Diode forward current

Soft Switching Series I C I F I FSM

TRENCHSTOP Series. Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

SGB02N120. Fast IGBT in NPT-technology. Power Semiconductors 1 Rev. 2_3 Jan 07

I C. A Pulsed collector current, t p limited by T jmax I Cpuls 40 Turn off safe operating area V CE 600V, T j 150 C - 40.

I C. A Pulsed collector current, t p limited by T jmax I Cpuls 62 Turn off safe operating area V CE 600V, T j 150 C - 62.

IGP03N120H2 IGW03N120H2

SGP30N60HS SGW30N60HS

I C P tot 138 W

I C. A Pulsed collector current, t p limited by T jmax I Cpuls 3.5 Turn off safe operating area V CE 1200V, T j 150 C - 3.

SGP30N60, SGB30N60, SGW30N60

SGP20N60, SGB20N60, SGW20N60

IDP30E120. Fast Switching Diode. Product Summary V RRM 1200 V I F 30 A V F 1.65 V T jmax 150 C

BSS123. Rev K/W. R thja

TRENCHSTOP TM RC-Series for hard switching applications. IGBT chip with monolithically integrated diode in packages offering space saving advantage

SPP08P06P H. SIPMOS Power-Transistor V DS -60 V I D T C = 25 C T C = 100 C. I D puls E AS I D = -8.8 A, V DD = -25 V, R GS = 25 W

Data Sheet BUY25CS54A-01

CoolMOS TM Power Transistor

IDP45E60. Fast Switching Diode. Product Summary V RRM 600 V I F 45 A V F 1.5 V T jmax 175 C. Features 600V Emitter Controlled technology

SIPMOS Small-Signal-Transistor

SIPMOS Small-Signal-Transistor

CoolMOS TM Power Transistor

OptiMOS -5 Power-Transistor

Silicon Carbide Schottky Diode IDH05G120C5. 5 th Generation thinq! 1200 V SiC Schottky Diode. Rev

SPP20N60S5. Cool MOS Power Transistor V DS 600 V

SIPMOS Small-Signal-Transistor

This chip is used for: power module BSM 75GD120DN2. Emitter pad size 8 x ( 2.99 x 1.97 ) Thickness 200 µm. Wafer size 150 mm

CoolMOS TM Power Transistor

CoolMOS Power Transistor

2 nd Generation thinq! TM SiC Schottky Diode

Product Summary V RRM 600 V I F 23 A V F 1.5 V T jmax 175 C 600V diode technology

PG-TO220FP P G-TO262 PG-TO220. Maximum Ratings Parameter Symbol Value Unit

OptiMOS 2 Small-Signal-Transistor

not recommended for new designs

OptiMOS -P Small-Signal-Transistor

14.5 Pulsed drain current. 200 Gate source voltage V GS ± 20 V ESD-Sensitivity HBM as per MIL-STD 883 Class 1 Power dissipation

This chip is used for: power modules. Applications: drives G. Mechanical Parameters Raster size 9.47 x 12.08

OptiMOS -T2 Power-Transistor Product Summary

OptiMOS P2 Small-Signal-Transistor

SIPMOS Power-Transistor

CoolMOS TM Power Transistor

OptiMOS -5 Power-Transistor

OptiMOS 3 Power-MOSFET

CoolMOS Power Transistor

OptiMOS TM -T2 Power-Transistor

CoolMOS Power Transistor

Product Summary Drain source voltage. Maximum Ratings,at T j = 25 C, unless otherwise specified Parameter Symbol Value Unit Continuous drain current

BSS670S2L. OptiMOS Buck converter series. Avalanche rated 1) Qualified according to AEC Q101 Halogen-free according to IEC

CoolMOS TM Power Transistor

Product Summary Drain source voltage V DS -60 V Drain-source on-state resistance R DS(on) 8 W Continuous drain current I D A

OptiMOS -5 Power-Transistor

OptiMOS TM -T2 Power-Transistor

2 nd Generation thinq! TM SiC Schottky Diode

SIPMOS Small-Signal-Transistor

SIPMOS Small-Signal-Transistor

OptiMOS -T Power-Transistor

CoolMOS Power Transistor

SPN01N60C3. Cool MOS Power Transistor V T jmax 650 V

Product Summary Drain source voltage. Lead free Yes I D. I D puls -320 E AS. P tot 340 W

SIPMOS Power-Transistor

OptiMOS -P2 Power-Transistor

OptiMOS 2 Power-Transistor

OptiMOS Power-Transistor

OptiMOS -T2 Power-Transistor

OptiMOS -5 Power-Transistor

CoolMOS TM Power Transistor

BSS 223PW. ESD Class; JESD22-A114-HBM Class 0. Product Summary V DS -20 V R DS(on) 1.2 Ω I D A. Qualified according to AEC Q101

OptiMOS (TM) 3 Power-Transistor

OptiMOS -T Power-Transistor Product Summary

OptiMOS Small-Signal-Transistor

OptiMOS 2 Small-Signal-Transistor

CoolMOS TM Power Transistor

OptiMOS Small-Signal-Transistor

OptiMOS -P2 Power-Transistor

OptiMOS -T2 Power-Transistor Product Summary

OptiMOS 2 Power-Transistor

CoolMOS Power Transistor

Rev Maximum Ratings, at T j = 25 C, unless otherwise specified Parameter Symbol Value Unit Continuous drain current I D.

OptiMOS TM Power-Transistor

Transcription:

Low Loss DuoPack : IGBT in TRENCHSTOP TM and Fieldstop technology with soft, fast recovery antiparallel Emitter Controlled HE diode C G E Features: Automotive AEC Q101 ualified Designed for DC/AC converters for Automotive Application Very low V CE(sat) 1.5 V (typ.) Maximum Junction Temperature 175 C Short circuit withstand time 5 µs TRENCHSTOP TM and Fieldstop technology for 600 V applications offers : very tight parameter distribution high ruggedness, temperature stable behavior very high switching speed Positive temperature coefficient in V CE(sat) Low EMI Low Gate Charge Green Package Very soft, fast recovery antiparallel Emitter Controlled HE diode PGTO2473 Applications: Main inverter Air Con compressor PTC heater Motor drives Type V CE I C V CE(sat),Tj=25 C T j,max Marking Package 600V 50A 1.5V 175 C K50T60A PGTO2473 IFAG IPC TD VLS 1 Rev. 2.3 17.09.2014

Maximum Ratings Parameter Symbol Value Unit Collectoremitter voltage, T j 25 C V CE 600 V DC collector current, limited by T jmax Pulsed collector current, t p limited by T jmax 2) T C = 25 C I C 80 1) T C = 110 C 50 I C p u l s 150 Turn off safe operating area, V CE 600V, T j 175 C, t p 1µs 2) 150 Diode forward current, limited by T jmax Diode pulsed current, t p limited by T jmax 2) T C = 25 C I F 80 T C = 100 C 50 I F p u l s 150 Gateemitter voltage V GE 20 V Short circuit withstand time 3) V GE = 15V, V CC 400V, T j 150 C t SC 5 s Power dissipation T C = 25 C P t o t 333 W Operating junction temperature T j 40...+175 C Storage temperature T s t g 55...+150 Soldering temperature (wavesoldering only allowed at leads, T s o l d 260 1.6mm (0.063 in.) from case for 10s) 4) A 1) Value limited by bond wire 2) Defined by design. Not subject to production test. 3) Allowed number of short circuits: <1000; time between short circuits: >1s. 4) Package not recommended for surface mount application. IFAG IPC TD VLS 2 Rev. 2.3 17.09.2014

Thermal Resistance Parameter Symbol Conditions Max. Value Unit Characteristic IGBT thermal resistance, junction case Diode thermal resistance, junction case Thermal resistance, junction ambient R t h J C 0.45 K/W R t h J C D 0.8 R t h J A 40 Electrical Characteristic, at T j = 25 C, unless otherwise specified Parameter Symbol Conditions Static Characteristic Value min. Typ. max. Collectoremitter breakdown voltage V ( B R ) C E S V GE =0V, I C =0.2mA 600 V Collectoremitter saturation voltage V C E ( s a t ) V GE = 15V, I C =50A T j =25 C T j =175 C Diode forward voltage V F V GE =0V, I F =50A T j =25 C T j =175 C Gateemitter threshold voltage V G E ( t h ) I C =0.8mA,V CE =V GE 4.1 4.9 5.7 Zero gate voltage collector current I C E S V CE =600V, V GE =0V T j =25 C T j =175 C 1.5 1.9 1.65 1.6 2 2.05 40 3500 Gateemitter leakage current I G E S V CE =0V,V GE =20V 100 na Transconductance g fs V CE =20V, I C =50A 31 S Integrated gate resistor R G i n t Ω Unit µa Dynamic Characteristic Input capacitance C ies V CE =25V, 3140 pf Output capacitance C oes V GE =0V, 200 Reverse transfer capacitance C res f=1mhz 93 Gate charge Q G a t e V CC =480V, I C =50A V GE =15V Internal emitter inductance measured 5mm (0.197 in.) from case Short circuit collector current Allowed number of short circuits: <1000; time between short circuits: >1s. 310 nc L E 13 nh I C ( S C ) V GE =15V,t SC 5 s V C C = 400V, T j 150 C 458.3 A IFAG IPC TD VLS 3 Rev. 2.3 17.09.2014

Switching Characteristic, Inductive Load, at T j =25 C Parameter Symbol Conditions IGBT Characteristic Value min. Typ. max. Turnon delay time t d ( o n ) T j=25 C, 26 ns Rise time t r V CC=400V,I C=50A, V GE=0/15V, 29 Turnoff delay time t d ( o f f ) R G= 7, L =103nH 299 C =39pF Fall time t f 29 L, C from Fig. E Turnon energy E on Energy losses include 1.2 mj Turnoff energy E tail and diode reverse o f f 1.4 recovery. Total switching energy E ts 2.6 AntiParallel Diode Characteristic Diode reverse recovery time t rr T j =25 C, 143 ns Diode reverse recovery charge Q rr V R =400V, I F =50A, 1.8 µc Diode peak reverse recovery current I r r m di F /dt=1280a/ s 27.7 A Diode peak rate of fall of reverse recovery current during t b Unit di rr /dt 671 A/ s Switching Characteristic, Inductive Load, at T j =175 C Parameter Symbol Conditions IGBT Characteristic Value min. Typ. max. Turnon delay time t d ( o n ) T j=175 C, 27 ns Rise time t r V CC=400V,I C=50A, V GE=0/15V, 33 Turnoff delay time t d ( o f f ) R G= 7, L =103nH 341 C =39pF Fall time t f 55 L, C from Fig. E Turnon energy E on Energy losses include 1.8 mj Turnoff energy E tail and diode reverse o f f 1.85 recovery. Total switching energy E ts 3.65 AntiParallel Diode Characteristic Diode reverse recovery time t rr T j =175 C 205 ns Diode reverse recovery charge Q rr V R =400V, I F =50A, 4.3 µc Diode peak reverse recovery current I r r m di F /dt=1280a/ s 40.7 A Diode peak rate of fall of reverse recovery current during t b Unit di rr /dt 449 A/ s IFAG IPC TD VLS 4 Rev. 2.3 17.09.2014

140A 100A t p =2µs IC, COLLECTOR CURRENT 120A 100A 80A 60A 40A 20A T C =80 C T C =110 C I c I c IC, COLLECTOR CURRENT 10A 1A DC 10µs 50µs 1ms 10ms 0A 100Hz 1kHz 10kHz 100kHz 1V 10V 100V 1000V f, SWITCHING FREQUENCY V CE, COLLECTOREMITTER VOLTAGE Figure 1. Collector current as a function of switching freuency (T j 175 C, D = 0.5, V CE = 400V, V GE = 0/15V, R G = 7 ) Figure 2. Safe operating area (D = 0, T C = 25 C, T j 175 C; V GE =0/15V) 300W 80A Ptot, POWER DISSIPATION 250W 200W 150W 100W IC, COLLECTOR CURRENT 60A 40A 20A 50W 0W 25 C 50 C 75 C 100 C 125 C 150 C 0A 25 C 75 C 125 C T C, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (T j 175 C) T C, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (V GE 15V, T j 175 C) IFAG IPC TD VLS 5 Rev. 2.3 17.09.2014

120A 120A IC, COLLECTOR CURRENT 100A 80A 60A 40A V GE =20V 15V 13V 11V 9V 7V IC, COLLECTOR CURRENT 100A 80A 60A 40A V GE =20V 15V 13V 11V 9V 7V 20A 20A 0A 0V 1V 2V 3V V CE, COLLECTOREMITTER VOLTAGE Figure 5. Typical output characteristic (T j = 25 C) 0A 0V 1V 2V 3V 4V V CE, COLLECTOREMITTER VOLTAGE Figure 6. Typical output characteristic (T j = 175 C) IC, COLLECTOR CURRENT 80A 60A 40A 20A T J =175 C 25 C 0A 0V 2V 4V 6V 8V VCE(sat), COLLECTOREMITTER SATURATION VOLTAGE 2.5V 2.0V 1.5V 1.0V 0.5V I C =100A I C =50A I C =25A 0.0V 0 C 50 C 100 C 150 C V GE, GATEEMITTER VOLTAGE Figure 7. Typical transfer characteristic (V CE =10V) T J, JUNCTION TEMPERATURE Figure 8. Typical collectoremitter saturation voltage as a function of junction temperature (V GE = 15V) IFAG IPC TD VLS 6 Rev. 2.3 17.09.2014

t d(off) t d(off) t, SWITCHING TIMES 100ns t d(on) t f t r t, SWITCHING TIMES 100ns t f t r 10ns t d(on) 0A 20A 40A 60A 80A I C, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, T J =175 C, V CE = 400V, V GE = 0/15V, R G = 7Ω, 10ns R G, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, T J = 175 C, V CE = 400V, V GE = 0/15V, I C = 50A, 7V t, SWITCHING TIMES 100ns 10ns 25 C 50 C 75 C 100 C 125 C 150 C t d(off) t f t r t d(on) VGE(th), GATEEMITTER THRESHOLD VOLTAGE 6V 5V 4V 3V 2V 1V min. typ. max. 0V 50 C 0 C 50 C 100 C 150 C T J, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, V CE = 400V, V GE = 0/15V, I C = 50A, R G =7Ω, T J, JUNCTION TEMPERATURE Figure 12. Gateemitter threshold voltage as a function of junction temperature (I C = 0.8mA) IFAG IPC TD VLS 7 Rev. 2.3 17.09.2014

E, SWITCHING ENERGY LOSSES 8.0mJ 6.0mJ 4.0mJ 2.0mJ *) E on and E ts include losses due to diode recovery E ts * E on * E off E, SWITCHING ENERGY LOSSES 6.0mJ 5.0mJ 4.0mJ 3.0mJ 2.0mJ 1.0mJ *) E on and E ts include losses due to diode recovery E off E on * E ts * 0.0mJ 0A 20A 40A 60A 80A I C, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, T J = 175 C, V CE = 400V, V GE = 0/15V, R G = 7Ω, 0.0mJ R G, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, T J = 175 C, V CE = 400V, V GE = 0/15V, I C = 50A, E, SWITCHING ENERGY LOSSES 3.0mJ 2.0mJ 1.0mJ E off E on * *) E on and E ts include losses due to diode recovery E ts * E, SWITCHING ENERGY LOSSES 6 mj 5 mj 4 mj 3 mj 2 mj 1 mj *) E on and E ts include losses due to diode recovery E ts* E on* E off* 0.0mJ 25 C 50 C 75 C 100 C 125 C 150 C T J, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, V CE = 400V, V GE = 0/15V, I C = 50A, R G = 7Ω, 0 mj V CE, COLLECTOREMITTER VOLTAGE Figure 16. Typical switching energy losses as a function of collector emitter voltage (inductive load, T J = 175 C, V GE = 0/15V, I C = 50A, R G = 7Ω, IFAG IPC TD VLS 8 Rev. 2.3 17.09.2014

CC ies iss VGE, GATEEMITTER VOLTAGE 15V 10V 5V 120V 480V c, CAPACITANCE 1nF 100pF C oes C oss C res rss 0V 0nC 100nC 200nC 300nC Q GE, GATE CHARGE Figure 17. Typical gate charge (I C =50 A) 0V 10V 20V 30V 40V V CE, COLLECTOREMITTER VOLTAGE Figure 18. Typical capacitance as a function of collectoremitter voltage (V GE =0V, f = 1 MHz) IC(sc), SHORT CIRCUIT COLLECTOR CURRENT 800A 700A 600A 500A 400A 300A 200A 100A 0A 12V 14V 16V 18V tsc, SHORT CIRCUIT WITHSTAND TIME 12µs 10µs 8µs 6µs 4µs 2µs 0µs 10V 11V 12V 13V 14V V GE, GATEEMITTER VOLTAGE Figure 19. Typical short circuit collector current as a function of gateemitter voltage (V CE 400V, T j 150 C) V GE, GATEEMITTER VOLTAGE Figure 20. Short circuit withstand time as a function of gateemitter voltage (V CE =400V, start at T J =25 C, T Jmax <150 C) IFAG IPC TD VLS 9 Rev. 2.3 17.09.2014

10 0 K/W D=0.5 D=0.5 ZthJC, TRANSIENT THERMAL IMPEDANCE 10 1 K/W 10 2 K/W 0.2 0.1 0.05 0.02 0.01 single pulse R, ( K / W ), ( s ) 0.18355 7.425*10 2 0.12996 8.34*10 3 0.09205 7.235*10 4 0.03736 1.035*10 4 0.00703 4.45*10 5 R 1 R 2 C 1= 1/R 1 C 2= 2/R 2 ZthJC, TRANSIENT THERMAL IMPEDANCE 10 1 K/W 10 2 K/W 0.2 0.1 0.05 0.02 0.01 single pulse R, ( K / W ), ( s ) 0.2441 7.037*10 2 6 0.2007 7.312*10 3 0.1673 6.431*10 4 0.1879 4.79*10 5 R 1 R 2 C 1= 1/R 1 C 2= 2/R 2 1µs 10µs 100µs 1ms 10ms 100ms t P, PULSE WIDTH Figure 21. IGBT transient thermal impedance (D = t p / T) 1µs 10µs 100µs 1ms 10ms 100ms t P, PULSE WIDTH Figure 22. Diode transient thermal impedance as a function of pulse width (D=t P /T) 350 ns 5 µc T j =175 C trr, REVERSE RECOVERY TIME 300 ns 250 ns 200 ns 150 ns 100 ns 50 ns T j =25 C T j =175 C Qrr, REVERSE RECOVERY CHARGE 4 µc 3 µc 2 µc 1 µc T j =25 C 0 ns 900 A/µs 1100 A/µs 1300 A/µs di F /dt, DIODE CURRENT SLOPE Figure 23. Typical reverse recovery time as a function of diode current slope (V R =400V, I F =50A, 0 µc 900 A/µs 1100 A/µs 1300 A/µs di F /dt, DIODE CURRENT SLOPE Figure 24. Typical reverse recovery charge as a function of diode current slope (V R = 400V, I F = 50A, IFAG IPC TD VLS 10 Rev. 2.3 17.09.2014

OF REVERSE RECOVERY CURRENT TRENCHSTOP TM Series 50 A 900 A/µs Irr, REVERSE RECOVERY CURRENT 40 A 30 A 20 A 10 A T j =175 C T j =25 C dirr/dt, DIODE PEAK RATE OF FALL 800 A/µs 700 A/µs 600 A/µs 500 A/µs 400 A/µs 300 A/µs 200 A/µs T j =25 C T j =175 C 0 A 900 A/µs 1100 A/µs 1300 A/µs di F /dt, DIODE CURRENT SLOPE Figure 25. Typical reverse recovery current as a function of diode current slope (V R = 400V, I F = 50A, 100 A/µs 900 A/µs 1100 A/µs 1300 A/µs di F /dt, DIODE CURRENT SLOPE Figure 26. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope (V R =400V, I F =50A, 120A 2.0V I F =100A IF, FORWARD CURRENT 100A 80A 60A 40A T J =25 C 175 C VF, FORWARD VOLTAGE 1.5V 1.0V 0.5V 50A 25A 20A 0A 0V 1V 2V 0.0V 0 C 50 C 100 C 150 C V F, FORWARD VOLTAGE Figure 27. Typical diode forward current as a function of forward voltage T J, JUNCTION TEMPERATURE Figure 28. Typical diode forward voltage as a function of junction temperature IFAG IPC TD VLS 11 Rev. 2.3 17.09.2014

PGTO2473 IFAG IPC TD VLS 12 Rev. 2.3 17.09.2014

i,v di F /dt t =t + t r r S F Q =Q + Q r r S F t r r I F t S t F Q S Q F 10% I r r m t I r r m di 90% I r r m r r /dt V R Figure C. Definition of diodes switching characteristics T (t) j 1 r1 2 r 2 r n n p(t) r r 1 2 n r T C Figure A. Definition of switching times Figure D. Thermal euivalent circuit Figure B. Definition of switching losses IFAG IPC TD VLS 13 Rev. 2.3 17.09.2014

Revision History Revision: 20140917, Rev. 2.3 Previous Revision Revision Date Subjects (major changes since last revision) 2.1 20100526 Release of final datasheet 2.2 20130827 Update minor changes 2.2a 20140128 Package Drawing according to Rev. 2.1 2.3 Update minor changes, figures 16, 23, 24, 25 and 26 Published by Infineon Technologies AG 81726 München, Germany 2014 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ( Beschaffenheitsgarantie ). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of noninfringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical reuirements components may contain dangerous substances. For information on the types in uestion please contact your nearest Infineon Technologies Office. The Infineon Technologies component described in this Data Sheet may be used in lifesupport devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that lifesupport, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. IFAG IPC TD VLS 14 Rev. 2.3 17.09.2014