UNO: Underground Nucleon Decay and Neutrino Observatory

Similar documents
Proton Decay searches -- sensitivity, BG and photo-coverage. Univ. of Tokyo, Kamioka Observatory Masato Shiozawa

Tsuyoshi Nakaya (Kyoto Univ.)

Multi-Megaton Water Cherenkov Detector for a Proton Decay Search TITAND (former name: TITANIC)

Proton Decays. -- motivation, status, and future prospect -- Univ. of Tokyo, Kamioka Observatory Masato Shiozawa

Supernova Neutrino Detectors: Current and Future. Kate Scholberg, Duke University June 24, 2005

Status and Neutrino Oscillation Physics Potential of the Hyper-Kamiokande Project in Japan

The Hyper-Kamiodande Project A New Adventure in n Physics

Recent Nucleon Decay Results from Super-Kamiokande

GADZOOKS! project at Super-Kamiokande

Super-Kamiokande (on the activities from 2000 to 2006 and future prospects)

Gadolinium Doped Water Cherenkov Detectors

Recent results from Super-Kamiokande

Introduction Core-collapse SN1987A Prospects Conclusions. Supernova neutrinos. Ane Anema. November 12, 2010

1. Neutrino Oscillations

Showering Muons in Super Kamiokande. Scott Locke University of California, Irvine August 7 th, 2017

Introduction to Super-K and Hyper-K. Roger Wendell Kyoto U. High-Energy Group Meeting

Next-Generation Water Cherenkov Detectors (1) Hyper-Kamiokande

Potential of Hyper-Kamiokande at some non-accelerator Physics and Nucleon Decay Searches

Search for Astrophysical Neutrino Point Sources at Super-Kamiokande

Hyper-Kamiokande. Kenzo NAKAMURA KEK. August 1-2, 2005 Neutrino Meeting IIT-Bombay, Mumbai, India

Super-Kamiokande ~The Status of n Oscillation ~

Searching for Supernova Relic Neutrinos. Dr. Matthew Malek University of Birmingham HEP Seminar 11 May 2011

PoS(FPCP2017)024. The Hyper-Kamiokande Project. Justyna Lagoda

Impression of NNN05. Kenzo NAKAMURA KEK. April 7-9, 2005 NNN05 Aussois, Savoie, France. K. Nakamura NNN05, Aussois, April 7-9,

The Factors That Limit Time Resolution for Photon Detection in Large Cherenkov Detectors

An Underground Laboratory for a Multi-Detector Experiment. Karsten Heeger Lawrence Berkeley National Laboratory

1 Introduction. 2 Nucleon Decay Searches

Neutrino June 29 th Neutrino Probes of Extragalactic Supernovae. Shin ichiro Ando University of Tokyo

Super-K Gd. M.Ikeda(ICRR) for Super-K collaboration Workshop for Neutrino Programs with facilities in Japan

EXPLORING PARTICLE-ANTIPARTICLE ASYMMETRY IN NEUTRINO OSCILLATION. Atsuko K. Ichikawa, Kyoto University

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

The Hyper-Kamiokande project

Neutrino Oscillation and CP violation

Daya Bay and joint reactor neutrino analysis

NEW νe Appearance Results from the. T2K Experiment. Matthew Malek Imperial College London. University of Birmingham HEP Seminar 13 June 2012

( Some of the ) Lateset results from Super-Kamiokande

Neutrino Oscillations

Analyzing Data. PHY310: Lecture 16. Road Map

Recent Results from K2K. Masashi Yokoyama (Kyoto U.) For K2K collaboration 2004 SLAC Summer Institute

Neutrinos and Supernovae

The ICARUS Project FRONTIERS IN CONTEMPORARY PHYSICS II. Vanderbilt University, March 5-10, Sergio Navas (ETH Zürich) " Atmospheric neutrinos

Astroparticle physics

KamLAND. Studying Neutrinos from Reactor

Neutrinos: Yesterday, Today and Tomorrow. Stanley Wojcicki SLAC Summer Institute 2010 August 13, 2010

Recent T2K results on CP violation in the lepton sector

Super-KamiokaNDE: Beyond Neutrino Oscillations. A. George University of Pittsburgh

A method for detecting ν τ appearance in the spectra of quasielastic CC events

Fossil Records of Star Formation: John Beacom, The Ohio State University

UNIT1: Experimental Evidences of Neutrino Oscillation Atmospheric and Solar Neutrinos

Recent results on neutrino oscillations and CP violation measurement in Neutrinos

M.Nakahata. Kamioka observatory ICRR/IPMU, Univ. of Tokyo. 2016/11/8 M. Nakahata: Neutrino experiments - 30 years at Kamioka 1

Neutrino oscillation experiments: Recent results and implications

arxiv: v1 [physics.ins-det] 14 Jan 2016

Bari Osmanov, University of Florida. OscSNS - proposal for neutrino experiment at ORNL SNS facility

Detection of supernova Neutrinos

Neutrino oscillation physics potential of Hyper-Kamiokande

Particle Physics: Neutrinos part I

Search for Neutron Antineutron Oscillations at Super Kamiokande I. Brandon Hartfiel Cal State Dominguez Hills May

Outline. (1) Physics motivations. (2) Project status

Hyper-K physics potentials and R&D

Recent Results from Alysia Marino, University of Colorado at Boulder Neutrino Flux Workshop, University of Pittsburgh, Dec 6 8,2012

Measuring the neutrino mass hierarchy with atmospheric neutrinos in IceCube(-Gen2)

XMASS: a large single-phase liquid-xenon detector

Search for Proton Decay in Super-Kamiokande

Recent Discoveries in Neutrino Physics

Astroparticle physics

Proton Decay: A Giant Orphan in Particle Physics

The future of neutrino physics (at accelerators)

Neutrino Oscillations and the Matter Effect

Neutrino AstroPhysics

LOW ENERGY SOLAR NEUTRINOS WITH BOREXINO. Lea Di Noto on behalf of the Borexino collaboration

Solar and atmospheric ν s

Proton decay and neutrino astrophysics with the future LENA detector

Neutrinos: What we ve learned and what we still want to find out. Jessica Clayton Astronomy Club November 10, 2008

Statistical Tests: Discriminants

Super- Kamiokande. Super- Kamiokande (1996- ) h=41.4m. Hyper- K (201X? - ) Kamiokande ( ) M. Yokoyama Friday 14:30

PoS(NOW2016)003. T2K oscillation results. Lorenzo Magaletti. INFN Sezione di Bari

K2K and T2K. 2006/10/19 For the 2006 External Review Panel. Masato Shiozawa Kamioka Observatory

N u P J-PARC Seminar August 20, 2015

Dear Radioactive Ladies and Gentlemen,

T2K and other long baseline experiments (bonus: reactor experiments) Justyna Łagoda

Neutrino Oscillations

Review of Solar Neutrinos. Alan Poon Institute for Nuclear and Particle Astrophysics & Nuclear Science Division Lawrence Berkeley National Laboratory

Long & Very Long Baseline Neutrino Oscillation Studies at Intense Proton Sources. Jeff Nelson College of William & Mary

Future Outlook: Experiment

Detecting ν τ appearance in the spectra of quasielastic CC events

MiniBooNE, LSND, and Future Very-Short Baseline Experiments

This is a repository copy of Astroparticle Physics in Hyper-Kamiokande.

Atmospheric muons & neutrinos in neutrino telescopes

Physics Potential of existing and future LBL ν beams

The LENA Neutrino Observatory

The Daya Bay Reactor Neutrino Oscillation Experiment

Solar Neutrinos & MSW Effect. Pouya Bakhti General Seminar Course Nov IPM

Particle Physics. Michaelmas Term 2009 Prof Mark Thomson. Handout 11 : Neutrino Oscillations. Neutrino Experiments

Neutrino mixing II. Can ν e ν µ ν τ? If this happens:

Other Physics with Geo-Neutrino Detectors

MINOS. Luke A. Corwin, for MINOS Collaboration Indiana University XIV International Workshop On Neutrino Telescopes 2011 March 15

NEUTRINOS II The Sequel

Detectors for astroparticle physics

Neutrino Physics: Lecture 1

Transcription:

UNO: Underground Nucleon Decay and Neutrino Observatory Clark McGrew NESS, Jan 2002 NESS 2002 McGrew p. 1

The UNO Concept Build on well-established techniques Explore broad range of physics Provide a general purpose observatory Balance between physics and costs NESS 2002 McGrew p. 2

A Bigger Super-Kamiokande? Large Underground water Cherenkov Detectors have a remarkable success record Exclusion of minimal SU(5) Real-time directional measurement of solar neutrinos Observation of supernova 1987A Discovery of neutrino oscillations (and hence neutrino mass) Detected first long baseline neutrinos Best limits on nucleon decay What s left to be done? Wrong Question This is just the beginning NESS 2002 McGrew p. 3

Physics Opportunities Nucleon Decay Neutrino Mixing Neutrino Mass Astrophysical Observations UNO Addresses CPU Questions 1, 5, 7, 9, 10, 11 NESS 2002 McGrew p. 4

Experimentalist s Viewpoint Proton Decay Atmospheric Neutrinos Long Baseline Neutrinos Solar Neutrinos Supernova Neutrinos Relic Supernova Neutrinos Neutrino Astronomy NESS 2002 McGrew p. 5

UNO Baseline Design NESS 2002 McGrew p. 6

UNO Baseline Design Total Mass: Fiducial: NESS 2002 McGrew p. 6

UNO Baseline Design Total Mass: Fiducial: 60 m 60 m NESS 2002 McGrew p. 6

UNO Baseline Design Total Mass: Fiducial: 60 m 180 m 60 m NESS 2002 McGrew p. 6

UNO Baseline Design Total Mass: Fiducial: Optically Separate Modules NESS 2002 McGrew p. 6

UNO Baseline Design Total Mass: Fiducial: Optically Separate Modules Inner Coverage: 60,000 20 PMTs NESS 2002 McGrew p. 6

UNO Baseline Design Total Mass: Fiducial: Optically Separate Modules % Inner Coverage: 60,000 20 PMTs NESS 2002 McGrew p. 6

UNO Baseline Design Total Mass: Fiducial: Optically Separate Modules % % % Inner Coverage: 60,000 20 PMTs NESS 2002 McGrew p. 6

UNO Baseline Design Total Mass: Fiducial: Optically Separate Modules % % % NESS 2002 McGrew p. 6 Inner Coverage: 60,000 20 PMTs Outer Coverage: 15,000 8 PMTs

Size Comparison Parameters Kam-III IMB-3 SK UNO Total mass 4.5 kton 8 kton 50 kton 650 kton Fiducial mass proton decay 1.0 kton 3.3 kton 22 kton 440 kton solar 0.7 kton 22 kton 440 kton supernova 2.1 kton 6.8 kton 32 kton 580 kton Photocathode 20% 4% 40% 1/3 40% coverage 2/3 10% Depth NESS 2002 McGrew p. 7

UNO and Proton Decay Size Matters For exposure (no background) Want multi Background spoils the limit exposures Must be low background There are no sure thing decay modes UNO is sensitive to many modes NESS 2002 McGrew p. 8

Signature The Search in Super-Kamiokande 10 2 10 Super-Kamiokande Preliminary 1289.4 days No events in signal region 1 Background: 2.2 event/ 10-1 0 200 400 600 800 1000 1200 total invariant mass (MeV/c 2 ) NESS 2002 McGrew p. 9

Is Background Understood? Invariant mass of 2 e-like rings 19 1KT preliminary (~3x10 pot) events 700 600 500 400 300 200 DATA MC Data from K2K Equivalent Exposure: Analyzed: Eventually: 100 0 0 100 200 300 400 MeV/c 2 NESS 2002 McGrew p. 10

N : MC vs Data 1000 total momentum (MeV/c) 800 600 400 1KT DATA (Preliminary, ~3x10 pot) 1000 total momentum (MeV/c) 800 600 400 1KT MC (Preliminary, ~3x10 pot) 19 19 200 200 0 0 200 400 600 800 1000 1200 total invariant mass (MeV/c 2 ) ν (~3Mtyr atm equiv.) 0 0 200 400 600 800 1000 1200 total invariant mass (MeV/c 2 ) ν (~3Mtyr atm equiv.) µ µ Same interaction MC as SK NESS 2002 McGrew p. 11

Distance from Signal Box events distance "L" in mass vs. momentum plot 10 4 10 3 10 2 (1KT preliminary, ~3x10 pot) DATA MC 19 total momentum (MeV/c) L (938,200) 10 2 total invariant mass (MeV/c ) 1 0 200 400 600 800 1000 1200 L (arbitrary) NESS 2002 McGrew p. 12

Signature 16 14 10 Years of Data 5 Mtyr exposure with tight cut eff.=17.4%, PDK=3, BG=1 12 10 8 Free protons 6 4 2 0 750 800 850 900 950 1000 1050 1100 invariant proton mass (MeV/c 2 ) NESS 2002 McGrew p. 13

Signature 16 14 20 Years of Data 10 Mtyr exposure with tight cut eff.=17.4%, PDK=6, BG=2 12 10 8 Free protons 6 4 2 0 750 800 850 900 950 1000 1050 1100 invariant proton mass (MeV/c 2 ) NESS 2002 McGrew p. 14

Signature 16 14 40 Years of Data 20 Mtyr exposure with tight cut eff.=17.4%, PDK=12, BG=3 12 10 8 Free protons 6 4 2 0 750 800 850 900 950 1000 1050 1100 invariant proton mass (MeV/c 2 ) NESS 2002 McGrew p. 15

Sensitivity 10 37 p eπ 0 sensitivity (90 % CL) 10 36 Partial Lifetime (years) 10 35 10 34 Super Kamiokande eff = 44% SK BG = 2.2 ev/mtyr 6 SK eff = 17% BG = 0.15 ev/mtyr 10 40 in 5 no bkgd small bkgd 10 33 current status 79ktyr, 5.0 x 10 33 yrs 10 32 10 1 10 0 10 1 10 2 10 3 Exposure (Mton year) NESS 2002 McGrew p. 16

Sensitivity 10 37 p νk + sensitivity (90% CL) 10 36 Partial Lifetime (years) 10 35 10 34 10 33 current limit 79.3ktyr 1.6 x 10 33 yrs combined sensitivity π + π 0 prompt γ µ spectrum Limiting Bkgd: 1 event/ SK: 6 event/ in 5 10 32 10 2 10 3 10 4 10 5 10 6 Exposure (kton year) This decay mode determines the PMT coverage requirement NESS 2002 McGrew p. 17

Nucleon Decay Sensitivity Super-Kamiokande UNO Mode Current 15 run 5 run 15 run Background estimation is important. The K2K experiment is currently collecting a equivalent exposure. NESS 2002 McGrew p. 18

UNO and Atmospheric Neutrinos Neutrino Oscillation Studies without a Neutrino Accelerator UNO is big Truly Colossal Atmospheric Neutrino Rate UNO: SK: Rate with Fully contain evt (165 evt events per year event (8.2 evt Water is a good Hadron Calorimeter ) ) NESS 2002 McGrew p. 19

Direct Observation of Ratio of oscillated to expected vs Log(L/E) Chi2 / ndf = 3.831 / 18 Observed/Expected 1 0.8 0.6 0.4 0.2 sstt = 1.015 ± 1.003e-07 dms = 0.003654 ± 2.73e-07 decay rate = -2.709e-05 ± 6.893e-08 Log10(Resolution) = 0.1007 ± 0.1433 0 0 0.5 1 1.5 2 2.5 3 3.5 4 Log(L/E) (km/gev) A Laboratory for: Select good resolution events Only muon events ( ) Fully Contained Determine spectrum with down-going up- Measure going A clear test of neutrino oscillation Non-standard disappearance e.g. decay with NESS 2002 McGrew p. 20

UNO and Supernova Neutrinos A Supernova at 10 kpc Detector Method Mass Events UNO water Cherenkov 400 Super-Kamiokande water Cherenkov 22.5 OMNIS neutron capture several SNO water Cherenkov 1 KamLAND scintillation 1 Borexino scintillation 1 LVD scintillation 0.5 Estimate Supernova per century in our galaxy (Beacom et al. PRD63,073011) Supernova in Andromeda 10 events in UNO 140,000 9,000 2,000 1,000 500 500 200 NESS 2002 McGrew p. 21

Temperature of a Supernova T = 8 T = 6.3 3% of the events. Produces mono-energetic between 5 10. Low Energy Threshold! NESS 2002 McGrew p. 22

Blackhole Formation Roughly half of Supernova may end in black hole formation. dn/dt [s 1 ] 2000 1800 1600 1400 1200 1000 800 600 400 All Mid High m νe = 1.8 ev 200 Low 0 0.01 0 0.01 0.02 0.03 0.04 t t BH [s] Formation is predicted during neutrino generation phase. Sensitive to collapse for tens of seconds. Direct evidence of blackhole formation. Can be used to measure neutrino kinematic mass. NESS 2002 McGrew p. 23

UNO and Relic Supernova Supernova Relic Search Event Rates Event Rate/year/22.5 kton/4 MeV 14 12 10 8 6 4 Statistically limited Theory just below prediction Depth important spallation 2 0 20 30 40 50 60 70 80 Energy (MeV) Possible the next observed astrophysical source NESS 2002 McGrew p. 24

Status Last year wrote and distributed a Whitepaper discussing the physics potential. Due to Super-Kamiokande accident, place proposal on hold Now understood so we will proceed Next collaboration meeting at BNL Oct 9, 10 Plans: Submit R&D proposal in 2003 Follow with LOI in 2004 NESS 2002 McGrew p. 25

Summary UNO is a General Purpose Detector Excellent Physics Opportunities Sensitive to a wide variety of proton decay modes to Atmospheric Neutrinos: several%, several% Sensitive to Supernova in Andromeda Will test supernova relic models. Builds on 20 Years of Continuous Water Cherenkov Detector Operation NESS 2002 McGrew p. 26