Spectral Continuity: (p, r) - Α P And (p, k) - Q

Similar documents
Available online through

SOME REMARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOMIAL ASYMPTOTE

= y and Normed Linear Spaces

Difference Sets of Null Density Subsets of

Complete Classification of BKM Lie Superalgebras Possessing Strictly Imaginary Property

On EPr Bimatrices II. ON EP BIMATRICES A1 A Hence x. is said to be EP if it satisfies the condition ABx

On Certain Classes of Analytic and Univalent Functions Based on Al-Oboudi Operator

ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE

University of Pavia, Pavia, Italy. North Andover MA 01845, USA

On a class of analytic functions defined by Ruscheweyh derivative

Chapter Linear Regression

PROGRESSION AND SERIES

such that for 1 From the definition of the k-fibonacci numbers, the firsts of them are presented in Table 1. Table 1: First k-fibonacci numbers F 1

Generalisation on the Zeros of a Family of Complex Polynomials

Professor Wei Zhu. 1. Sampling from the Normal Population

The formulae in this booklet have been arranged according to the unit in which they are first

RECAPITULATION & CONDITIONAL PROBABILITY. Number of favourable events n E Total number of elementary events n S

XII. Addition of many identical spins

ANOTHER INTEGER NUMBER ALGORITHM TO SOLVE LINEAR EQUATIONS (USING CONGRUENCY)

Studying the Problems of Multiple Integrals with Maple Chii-Huei Yu

The z-transform. LTI System description. Prof. Siripong Potisuk

Metric Spaces: Basic Properties and Examples

COMPLEX NUMBERS AND DE MOIVRE S THEOREM

Iterative Algorithm for a Split Equilibrium Problem and Fixed Problem for Finite Asymptotically Nonexpansive Mappings in Hilbert Space

We show that every analytic function can be expanded into a power series, called the Taylor series of the function.

5 - Determinants. r r. r r. r r. r s r = + det det det

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1)

A convex hull characterization

The formulae in this booklet have been arranged according to the unit in which they are first

FIXED POINT AND HYERS-ULAM-RASSIAS STABILITY OF A QUADRATIC FUNCTIONAL EQUATION IN BANACH SPACES

PROBLEMS AND PROPERTIES OF A NEW DIFFERENTIAL OPERATOR (Masalah dan Sifat-sifat suatu Pengoperasi Pembeza Baharu)

2.Decision Theory of Dependence

are positive, and the pair A, B is controllable. The uncertainty in is introduced to model control failures.

On The Circulant K Fibonacci Matrices

GCE AS/A Level MATHEMATICS GCE AS/A Level FURTHER MATHEMATICS

( m is the length of columns of A ) spanned by the columns of A : . Select those columns of B that contain a pivot; say those are Bi

RANDOM SYSTEMS WITH COMPLETE CONNECTIONS AND THE GAUSS PROBLEM FOR THE REGULAR CONTINUED FRACTIONS

Range Symmetric Matrices in Minkowski Space

Inequalities for Dual Orlicz Mixed Quermassintegrals.

The Linear Probability Density Function of Continuous Random Variables in the Real Number Field and Its Existence Proof

Chapter I Vector Analysis

Math 4318 : Real Analysis II Mid-Term Exam 1 14 February 2013

FULLY RIGHT PURE GROUP RINGS (Gelanggang Kumpulan Tulen Kanan Penuh)

For this purpose, we need the following result:

φ (x,y,z) in the direction of a is given by

Fairing of Parametric Quintic Splines

Union, Intersection, Product and Direct Product of Prime Ideals

Permutations that Decompose in Cycles of Length 2 and are Given by Monomials

Transmuted Generalized Lindley Distribution

Equidistribution in Sharing Games

Distribution of Geometrically Weighted Sum of Bernoulli Random Variables

GCE AS and A Level MATHEMATICS FORMULA BOOKLET. From September Issued WJEC CBAC Ltd.

The Geometric Proof of the Hecke Conjecture

SUBSEQUENCE CHARACTERIZAT ION OF UNIFORM STATISTICAL CONVERGENCE OF DOUBLE SEQUENCE

FIBONACCI-LIKE SEQUENCE ASSOCIATED WITH K-PELL, K-PELL-LUCAS AND MODIFIED K-PELL SEQUENCES

χ be any function of X and Y then

Integration by Parts for D K

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ]

Non-axial symmetric loading on axial symmetric. Final Report of AFEM

SEPTIC B-SPLINE COLLOCATION METHOD FOR SIXTH ORDER BOUNDARY VALUE PROBLEMS

Advanced Higher Maths: Formulae

On a Problem of Littlewood

Lattice planes. Lattice planes are usually specified by giving their Miller indices in parentheses: (h,k,l)

On Natural Partial Orders of IC-Abundant Semigroups

On Almost Increasing Sequences For Generalized Absolute Summability

Elastic-Plastic Transition of Transversely. Isotropic Thin Rotating Disc

Conditional Convergence of Infinite Products

Chapter 7. Kleene s Theorem. 7.1 Kleene s Theorem. The following theorem is the most important and fundamental result in the theory of FA s:

Harmonic Curvatures in Lorentzian Space

ME 501A Seminar in Engineering Analysis Page 1

Some Integral Mean Estimates for Polynomials

Strategies for the AP Calculus Exam

SOLVING SYSTEMS OF EQUATIONS, DIRECT METHODS

MATHEMATICS II PUC VECTOR ALGEBRA QUESTIONS & ANSWER

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications

Using Difference Equations to Generalize Results for Periodic Nested Radicals

MTH 146 Class 7 Notes

Linear Algebra Concepts

MATRIX AND VECTOR NORMS

SOME GEOMETRIC ASPECTS OF VARIATIONAL PROBLEMS IN FIBRED MANIFOLDS

Exponential Generating Functions - J. T. Butler

Minimum Hyper-Wiener Index of Molecular Graph and Some Results on Szeged Related Index

Objectives. Learning Outcome. 7.1 Centre of Gravity (C.G.) 7. Statics. Determine the C.G of a lamina (Experimental method)

Advanced Higher Maths: Formulae

A Brief Introduction to Olympiad Inequalities

Lecture 6: October 16, 2017

Sequences and summations

RELATIVE KINEMATICS. q 2 R 12. u 1 O 2 S 2 S 1. r 1 O 1. Figure 1

About Some Inequalities for Isotonic Linear Functionals and Applications

Chapter 2 Intro to Math Techniques for Quantum Mechanics

UNIT V: Z-TRANSFORMS AND DIFFERENCE EQUATIONS. Dr. V. Valliammal Department of Applied Mathematics Sri Venkateswara College of Engineering

Certain Expansion Formulae Involving a Basic Analogue of Fox s H-Function

Complementary Dual Subfield Linear Codes Over Finite Fields

Certain sufficient conditions on N, p n, q n k summability of orthogonal series

On Some Covering Properties of B-open sets

The Mathematical Appendix

Linear Algebra Concepts

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 9, Number 3/2008, pp

Review of the Riemann Integral

Transcription:

IOSR Joul of Mthemtcs (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X Volume 11, Issue 1 Ve 1 (J - Feb 215), PP 13-18 wwwosjoulsog Spectl Cotuty: (p, ) - Α P Ad (p, k) - Q D Sethl Kum 1 d P Mhesw Nk 2 1 Post Gdute d Resch Deptmet of Mthemtcs, Govemt Ats College (Autoomous), Combtoe - 641 18, mlndu, Id 2 Deptmet of Mthemtcs, S Rmksh Egeeg College, Vttmlplym, Combtoe - 641 22, mlndu, Id Abstct: A opeto B s sd to be bsolute - (p, ) - poml opeto f p p fo ll H d fo postve l umbe p > d >, whee = U s the pol decomposto of I ths ppe, we pove tht cotuty of the set theoetc fuctos spectum, Weyl spectum, Bowde spectum d essetl sujectvty spectum o the clsses cosstg of (p, k) - qushypooml opetos d bsolute - (p, ) - poml opetos Keywods: bsolute - (p, ) - poml opeto, Weyl's theoem, Sgle vlued eteso popety, Cotuty of spectum, Fedholm, B Fedholm I Itoducto d Pelmes Let H be fte dmesol comple Hlbet spce d B deote the lgeb of ll bouded l opetos ctg o H Evey opeto c be decomposed to = U wth ptl somety U, whee = I ths ppe, = U deotes the pol decomposto stsfyg the keel codto N(U) = N( ) Ymzk d Ygd [23] toduced bsolute - (p, ) - poml opeto It s futhe geelzto of the clsses of both bsolute - k - poml opetos d p - poml opetos s pllel cocept of clss A(p, ) A opeto B s sd to be bsolute - (p, ) - poml opeto, deoted by (p, ) - Α P, f p p fo evey ut vecto o equvletly p p fo ll H d fo postve l umbes p > d > It s lso poved tht = U s bsolute - (p, ) - poml opeto fo p > d > f d oly f U 2 p U - (p + ) p 2 + p p + I fo ll l Evdetly, (k, 1) - Α P opeto s bsolute - k - poml; (p, p) - Α P opeto s p - poml; (1, 1) - Α P opeto s poml [23] A opeto B some < p 1 d tege k 1 f k ( 2 p - 2 p ) k Evdetly, s sd to be (p, k) - qushypooml opeto, deoted by (p, k) - Q, fo (1, k) - Q opeto s k - qushypooml; (1, 1) - Q opeto s qushypooml; (p, 1) - Q opeto s k - qushypooml o qus - p - hypooml ([8], [1]), (p, ) - Q opeto s p - hypooml f < p < 1 d hypooml f p = 1 If B, we wte N() d R() fo ull spce d ge of, espectvely Let ( ) = dm N() = dm ( -1 ()), ( ) = dm N( ) = dm (H / ), ( ) deote the spectum d ( ) deote the ppomte pot spectum he ( ) s compct subset of the set C of comple umbes he fucto vewed s fucto fom B to the set of ll compct subsets of C, wth ts husdoff metc, s kow to be uppe sem - cotuous fucto [14, Poblem 13], but t fls to be cotuous [14, Poblem 12] DOI: 1979/5728-11111318 wwwosjoulsog 13 Pge

Spectl cotuty: (p, ) - Α P d (p, k) - Q Also we kow tht s cotuous o the set of oml opetos B eteded to hypooml opetos [14, Poblem 15] he cotuty of o the set of qushypooml opetos ( B) hs bee poved by Eeveko d Djodjevc [1], the cotuty of o the set of p - hypooml hs bee poved by Duggl d Djodjevc [9], d the cotuty of o the set of G 1 - opetos hs bee poved by Luecke [17] A opeto B s clled Fedholm f t hs closed ge, fte dmesol ull spce d ts ge hs fte co - dmeso he de of Fedholm opeto s gve by () = ( ) - ( ) he scet of, sc (), s the lst o - egtve tege such tht - () = - ( + 1) () d the descet of, dsc (), s the lst o - egtve tege such tht = ( + 1) We sy tht s of fte scet (esp, fte descet) f sc ( - I) < (esp, dsc ( - I) < ) fo ll comple umbes A opeto s sd to be left sem - Fedholm (esp, ght sem - Fedholm), (esp, ) f H s closed d the defcecy de ( ) = dm ( -1 ()) s fte (esp, the defcecy de ( ) = dm (H \ H) s fte); s sem - Fedholm f t s ethe left sem - Fedholm o ght sem - Fedholm, d s Fedholm f t s both left d ght sem - Fedholm he sem - Fedholm de of, d (), s the umbe d () = ( ) - ( ) A opeto s clled Weyl f t s Fedholm of de zeo d Bowde f t s Fedholm of fte scet d descet Let C deote the set of comple umbes he Weyl spectum ( w ) d the Bowde spectum ( b ) of e the sets ( w ) = { C : - s ot Weyl} d ( b ) = { C : - s ot Bowde} Let ( ) deote the set of Resz pots of (e, the set of C such tht - s Fedholm of fte scet d descet [7]) d let ) d so ( ) deotes the set of ege vlues of of fte geometc multplcty d solted pots of the spectum he opeto B s sd to stsfy Bowde's theoem f ( ) \ w( ) = ( ) d s sd to stsfy Weyl's theoem f ( ) \ w( ) = ) I [15], Weyl's theoem fo mples Bowde's theoem fo, d Bowde's theoem fo s equvlet to Bowde's theoem fo Bek [5] hs clled opetot B(X ) s B - Fedholm f thee ests tul umbe fo whch the duced opeto : (X) (X) s Fedholm We sy tht the B - Fedholm opeto hs stble de f d ( - ) d ( - ) fo evey, the B - Fedholm ego of () - ( ) he essetl spectum e( ) of B s the set B = { C : - s ot Fedholm} Let cc ( ) deote the set of ll ccumulto pots of ( ), the e() w( ) b( ) e( ) cc ( ) Let ( ) be the set of C such tht s solted pot of ( ) d < ( ) <, whee ( ) deotes the ppomte pot spectum of the opeto he ( ) ( ) ( ) We sy tht - Weyl's theoem holds fo f ( w () w = ( ) \ ( ), whee ) deotes the essetl ppomte pot spectum of (e, () w = ( K) : K K( H) wth K deotg the dl of compct opetos o H) Let = { B : ( ) < d s closed} d = { B : ( ) < } deote the semgoup of uppe sem Fedholm d lowe sem Fedholm opetos B d let = { : d () } he ) s the complemet C of ll those fo whch ( - ) w ( [19] he cocept of - Weyl's theoem ws toduced by Rkocvc [2] he cocept sttes tht - Weyl's theoem fo Weyl's theoem fo, but the covese s geelly flse Let ( b ) deote the Bowde essetl ppomte pot spectum of () b = { ( K) : K K d K K } = { C : - o sc ( - ) = } DOI: 1979/5728-11111318 wwwosjoulsog 14 Pge

Spectl cotuty: (p, ) - Α P d (p, k) - Q the ( w ) ( b ) We sy tht stsfes - Bowde's theoem f ( b ) = ( w ) [19] A opeto B hs the sgle vlued eteso popety t C, f fo evey ope dsc D ceteed t the oly lytc fucto f : D H whch stsfes ( - ) f( ) = fo ll D s the fucto f vlly, evey opeto hs SVEP t pots of the esolvet ( ) = C / ( ) ; lso hs SVEP t so ( ) We sy tht hs SVEP f t hs SVEP t evey C I ths ppe, we pove tht f { } s sequece of opetos the clss (p, k) - Q o (p, ) - Α P whch coveges the opeto om topology to opeto the sme clss, the the fuctos spectum, Weyl spectum, Bowde spectum d essetl sujectvty spectum e cotuous t Note tht f opeto hs fte scet, the t hs SVEP d ( ) ( ) fo ll [1, heoem 38 d 34] Fo subset S of the set of comple umbes, let S { : S} cojugte II M Results Lemm 21 () If (p, k) - Q, the sc ( - ) k fo ll () If (p, ) - Α P, the hs SVEP Poof: () Refe [13, Pge 146] o [22] () Refe [21, heoem 28] whee deotes the comple umbe d deotes the Lemm 22 If (p, k) - Q (p, ) - Α P d so ( ), the s pole of the esolvet of Poof: Refe [22, heoem 6] d [21, Poposto 21] Lemm 23 If (p, k) - Q (p, ) - Α P, the stsfes - Weyl's theoem Poof: If (p, k) - Q, the hs SVEP, whch mples tht ( ) = ( ) by [1, Coolly 245] he stsfes Weyl's theoem e, ( ) \ w( ) = ( ) = ) by [13, Coolly 37] Sce ) DOI: 1979/5728-11111318 wwwosjoulsog 15 Pge = ( ) = ( ), ( ) = ( ) = ( ) d w( ) = ( w ) = ( ) by [3, heoem 36()], ( ) \ ( ) = ( ) Hece f (p, k) - Q, the stsfes - Weyl's theoem If (p, ) - Α P, the by [21, heoem 218], stsfes - Weyl's theoem Coolly 24 If (p, k) - Q (p, ) - Α P d ( ) \ ( ) so ( ) Lemm 25 If (p, k) - Q (p, ) - Α P, the sc ( - ) < fo ll Poof: Sce - s lowe sem - Fedholm, t hs SVEP We kow tht fom [1, heoem 316] tht SVEP mples fte scet Hece the poof Lemm 26 [6, Poposto 31] If s cotuous t B, the s cotuous t Lemm 27 [12, heoem 22] If opeto B hs SVEP t pots w ( ), the s cotuous t w s cotuous t b s cotuous t Lemm 27 If { } s sequece (p, k) - Q o (p, ) - Α P whch coveges om to, the s pot of cotuty of Poof: We hve to pove tht the fucto s both uppe sem - cotuous d lowe sem - cotuous t But by [11, heoem 21], we hve tht the fucto s uppe sem - cotuous t So we hve to

pove tht s lowe sem - cotuous t e, tht Spectl cotuty: (p, ) - Α P d (p, k) - Q ( ) lm f ( ) Assume the cotdcto s ot lowe sem - cotuous t he thee ests >, tege, ( ) ( ) = fo ll Sce (H fo ll, the followg mplctos holds: - eghbouhood ( ) of such tht ll mples - ) d( - ), ( - ) < d ( - ) H s closed d( - ), ( - ) < d( - ) =, ( - ) < ( - ) < (Sce (p, k) - Q (p, ) - Α P d( - ) by Lemm 21 d Lemm 25 ) ( ) d ( ) fo fo ll he cotuty of the de mples tht d ( - ) = lm d ( - ) =, d hece tht( - ) s Fedholm wth d ( - ) = But the - s Fedholm wth d ( - ) = - s lowe sem - cotuous t Hece the poof, whch s cotdcto heefoe heoem 29 If { } s sequece (p, k) - Q o (p, ) - Α P whch coveges om to, the s cotuous t Poof: Sce hs SVEP by Lemm 21, ( ) ( ) Evdetly, t s eough f we pove tht ( ) lm f ( ) fo evey sequece { } of opetos (p, k) - Q o (p, ) - Α P such tht coveges om to Let ( ) he ethe ( ) o If ( ), the poof follows, sce ( ) lm f ( ) lm f ( ) ( ) \ ( ) If ( ) \ ( ), the so ( ) by Coolly 24 Cosequetly, lm f ( ) e, lm f ( ) fo ll by [16, heoem IV 316], d thee ests sequece ( ), such tht by pplyg Lemm 26, we obt the esult coveges to Evdetly lm f ( ) Hece lm f, ( ) Now Coolly 21 If { } s sequece (p, k) - Q o (p, ) - Α P whch coveges om to, the, w d b e cotuous t Poof: Combg heoem 29 wth Lemm 27 d Lemm 28, we obt the esults Let ( ) = { : - s ot sujectve} deote the sujectvty spectum of d let s = { : -, d ( - ) } he the essetl sujectvty spectum of s the set ( ) { : - } = Coolly 211 If { } s sequece (p, k) - Q o (p, ) - Α P whch coveges om to, the es () s cotuous t Poof: Sce hs SVEP by Lemm 21, ( ) = ( ) es by [1, heoem 365 ()] he by pplyg Lemm 28, we obt the esult Let K B deote the dl of compct opetos, B / K the Clk lgeb d let : B B / K deote the quotet mp he B / K beg C - lgeb, thee ests Hlbet spce H 1 d es DOI: 1979/5728-11111318 wwwosjoulsog 16 Pge

Spectl cotuty: (p, ) - Α P d (p, k) - Q sometc - somophsm : B / K B(H 1 ) such tht the essetl spectum ( e ) = ( ( )) B s the spectum of ( ) ( B(H 1 )) I geel, ( e ) s ot cotuous fucto of Coolly 212 If of s sequece (p, k) - Q o (p, ) - Α P whch coveges om to ( ), the ( e ) s cotuous t Poof: If B s essetlly (p, k) - Q o (p, ) - Α P, e, f (p, k) - Q o (p, ) - Α P, d the sequece { } coveges om to, the ( ) ( B(H 1 )) s pot of cotuty of by heoem 29 Hece e s cotuous t, sce ( e ) = ( ( )) () Let H( ()) deote the set of fuctos f tht e o - costt d lytc o eghbouhood of Lemm 213 Let B(X ) be vetble (p, ) - Α P d let f H( ()) he ( f ( )) f ( ( )), d f the B - Fedholm opeto hs stble de, the ( f ( )) f ( ( )) Poof: Let B(X ) be vetble (p, ) - Α P, let f H( ()), d let g() be vetble fucto such tht f ( ) ( 1)( ) g( ) If f ( ( )), the f ( ) ( 1)( ) g( ) d ( ), = 1, 2,, Cosequetly, - s B - Fedholm opeto of zeo de fo ll = 1, 2,,, whch, by [5, heoem 32], mples tht f () s B - Fedholm opeto of zeo de Hece, ( f ( )) Suppose ow tht hs stble de, d tht ( f ( )) he, f ( ) ( 1)( ) g( ) s B - Fedholm opeto of zeo de Hece, by [4, Coolly 33], the opeto g() d -, = 1, 2,,, e B - Fedholm d = d (f() - ) = d ) + + d ) + d g() ( 1 ( ( Sce g() s vetble opeto, d (g()) = ; lso d ) hs the sme sg fo ll = 1, 2,, hus d ( ) =, whch mples tht ( ) f ( ( )) Lemm 214 Let B(X ) C such tht - s B - Fedholm fo ll = 1, 2,,, d hece be vetble (p, ) - Α P hs SVEP, the d ( - ) fo evey Poof: Sce hs SVEP by [21, heoem 28] he M hs SVEP fo evey vt subspces M X of Fom [4, heoem 27], we kow tht f - s B - Fedholm opeto, the thee est - vt closed subspces M d N of X such tht X = M N, ( - ) M s Fedholm opeto wth SVEP d (- ) N s Nlpotet opeto Sce d ( - ) M } by [18, Poposto 22], t follows tht d ( - ) Refeeces [1] Ae P, Fedholm d Locl Spectl heoy wth Applctos to Multples, Kluwe Acd Pub, 24 [2] Ae P d Moslve O, Opetos whch do ot hve the sgle vlued eteso popety, J Mth Al Appl, 25 (2), 435 -- 438 [3] Apostol C, Flkow L A, Heeo D A, Voculescu D, Appomto of Hlbet spce opetos, Vol II, Resch Notes Mthemtcs, 12, Ptm, Bosto (1984) [4] Bek M, O clss of qus - Fedholm opetos, Ite Equt opeto heoy, 34 (1999), 244 -- 249 [5] Bek M, Ide of B - Fedholm opetos d geelzto of the Weyl theoem, Poc Ame Mth Soc, 13 (22), 1717 -- 1723 [6] Buldo L, Nocotuty of the djot of opeto, Poc Ame Mth Soc, 128 (2), 479 -- 486 DOI: 1979/5728-11111318 wwwosjoulsog 17 Pge

Spectl cotuty: (p, ) - Α P d (p, k) - Q [7] Cdus S R, Pfffebege W E, Betm Y, Clk lgebs d lgebs of opetos o Bch spces, Mcel Dekke, New Yok, 1974 [8] Cmpbell S I, Gupt B C, O k - qushypooml opetos, Mth Jpoc, 23 (1978), 185 -- 189 [9] Djodjevc S V, O the cotuty of the essetl ppomte pot spectum, Fct Mth Ns, 1 (1995), 69 -- 73 [1] Djodjevc S V, Cotuty of the essetl spectum the clss of qushypooml opetos, Vesk Mth, 5 (1998), 71 -- 74 [11] Djodjevc S V, Duggl B P, Weyl's theoem d cotuty of spect the clss of p - hypooml opetos, Stud Mth, 143 (2), 23 -- 32 [12] Djodjevc S V, H Y M, Bowde's theoem d spectl cotuty, Glsgow Mth J, 42 (2) 479 -- 486 [13] Duggl B P, Resz pojectos fo clss of Hlbet spce opetos, L Alg Appl, 47 (25), 14 -- 148 [14] Hlmos P R, A Hlbet spce poblem book, Gdute ets Mthemtcs, Spge - Velg, New Yok, 1982 [15] Hte R E, Lee W Y, Aothe ote o Weyl's theoem, s Ame Mth Soc 349 (1997), 2115 -- 2124 [16] Kto, Petubto theoy fo L opetos, Spge - velg, Bel, 1966 [17] Luecke G R, A ote o spectl cotuty d spectl popetes of essetlly G 1 opetos, Pc J Mth, 69 (1977), 141 -- 149 [18] Oudgh, Weyl's theoem d Bowde's theoem fo opetos stsfyg the SVEP, Stud Mthemtc, 163 (24), 85 -- 11 [19] Rkocevc V, O the essetl ppomte pot spectum II, Mt Vesk, 36(1) (1984), 89 -- 97 [2] Rkocevc V, Opetos obeyg - Weyl's theoem, Rev Roume Mth Pues Appl, 34 (1989), 915 -- 919 [21] Sethlkum D, Mhesw Nk P, Absolute - (p, ) - poml opetos, Itetol J of Mth Sc & Egg Appls (IJMSEA), Vol 5, No III (My, 211), 311 -- 322 [22] hsh K, Uchym A, Cho M, Isolted pots of spectum of (p, k) - qushypooml opetos, L Alg Appl, 382 (24), 221 -- 229 [23] Ymzk d M Ygd, A futhe geelzto of poml opetos, Scete Mthemtce, Vol 3, No: 1 (2), 23 -- 31 DOI: 1979/5728-11111318 wwwosjoulsog 18 Pge