Lecture 3 : ultracold Fermi Gases

Similar documents
F. Chevy Seattle May 2011

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

Reference for most of this talk:

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Recent advances on ultracold fermions

Ultracold Fermi Gases with unbalanced spin populations

Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC FERMI GASES

Many-Body Physics with Quantum Gases

Cold fermions, Feshbach resonance, and molecular condensates (II)

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT

Superfluidity in interacting Fermi gases

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES

High-Temperature Superfluidity

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

From laser cooling to BEC First experiments of superfluid hydrodynamics

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover

A study of the BEC-BCS crossover region with Lithium 6

FRÉDÉRIC CHEVY 6ème Demi-Journée des Théoriciens

Pomiędzy nadprzewodnictwem a kondensacją Bosego-Einsteina. Piotr Magierski (Wydział Fizyki Politechniki Warszawskiej)

Experiments with an Ultracold Three-Component Fermi Gas

Two-dimensional atomic Fermi gases. Michael Köhl Universität Bonn

Dynamic Density and Spin Responses in the BCS-BEC Crossover: Toward a Theory beyond RPA

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

Fermi Condensates ULTRACOLD QUANTUM GASES

Ultra-cold gases. Alessio Recati. CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO

Equation of state of the unitary Fermi gas

Superfluidity and Superconductivity Macroscopic Quantum Phenomena

Fermi gases in an optical lattice. Michael Köhl

Lecture 4. Feshbach resonances Ultracold molecules

Fundamentals and New Frontiers of Bose Einstein Condensation

Quantum Quantum Optics Optics VII, VII, Zakopane Zakopane, 11 June 09, 11

Pairing properties, pseudogap phase and dynamics of vortices in a unitary Fermi gas

Strongly Interacting Fermi Gases: Universal Thermodynamics, Spin Transport, and Dimensional Crossover

Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics

Superfluidity and superconductivity. IHP, Paris, May 7 and 9, 2007

Path Integral (Auxiliary Field) Monte Carlo approach to ultracold atomic gases. Piotr Magierski Warsaw University of Technology

Revolution in Physics. What is the second quantum revolution? Think different from Particle-Wave Duality

Simulation of neutron-rich dilute nuclear matter using ultracold Fermi gases

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles

BCS-BEC BEC Crossover at Finite Temperature in Cold Gases and Condensed Matter KITP

Confining ultracold atoms on a ring in reduced dimensions

Condensate fraction for a polarized three-dimensional Fermi gas

Publications. Articles:

Strongly Correlated Physics With Ultra-Cold Atoms

Nuclear structure III: Nuclear and neutron matter. National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016

BEC-BCS crossover, phase transitions and phase separation in polarized resonantly-paired superfluids

Ultracold molecules - a new frontier for quantum & chemical physics

SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES

When superfluids are a drag

Superfluidity of a 2D Bose gas (arxiv: v1)

BEC Vortex Matter. Aaron Sup October 6, Advisor: Dr. Charles Hanna, Department of Physics, Boise State University

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration

Bose-Einstein Condensate: A New state of matter

Low-dimensional Bose gases Part 1: BEC and interactions

Strongly paired fermions

BEC and superfluidity in ultracold Fermi gases

Bose-condensed and BCS fermion superfluid states T ~ nano to microkelvin (coldest in the universe)

Mixtures of ultracold gases: Fermi sea and Bose-Einstein condensate of Lithium isotopes

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases

Path-integrals and the BEC/BCS crossover in dilute atomic gases

Is an Ultra-Cold Strongly Interacting Fermi Gas a Perfect Fluid?

Design and realization of exotic quantum phases in atomic gases

Ana Maria Rey. Okinawa School in Physics 2016: Coherent Quantum Dynamics. Okinawa, Japan, Oct 4-5, 2016

NanoKelvin Quantum Engineering

A rigorous solution to unitary Bose Gases

Introduction to cold atoms and Bose-Einstein condensation (II)

Lecture 2: Weak Interactions and BEC

Strongly correlated Cooper pair insulators and superfluids

Low dimensional quantum gases, rotation and vortices

BCS everywhere else: from Atoms and Nuclei to the Cosmos. Gordon Baym University of Illinois

Vortices and other topological defects in ultracold atomic gases

Lecture 1. 2D quantum gases: the static case. Low dimension quantum physics. Physics in Flatland. The 2D Bose gas:

hal , version 1-9 Jan 2007

1 Fluctuations of the number of particles in a Bose-Einstein condensate

Cold atoms. 1: Bose-Einstein Condensation. Emil Lundh. April 13, Department of Physics Umeå University

Direct observation of quantum phonon fluctuations in ultracold 1D Bose gases

Quantum Theory of Matter

1. Cold Collision Basics

K two systems. fermionic species mixture of two spin states. K 6 Li mass imbalance! cold atoms: superfluidity in Fermi gases

Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, (2013) HRI, Allahabad,Cold Atom Workshop, February, 2014

The BCS-BEC Crossover and the Unitary Fermi Gas

BCS Pairing Dynamics. ShengQuan Zhou. Dec.10, 2006, Physics Department, University of Illinois

Contents Ultracold Fermi Gases: Properties and Techniques Index

5. Gross-Pitaevskii theory

Second sound and the superfluid fraction in a resonantly interacting Fermi gas

Cooling and Trapping Neutral Atoms

Superfluidity and Superconductivity

BEC AND MATTER WAVES an overview Allan Griffin, University of Toronto

The Superfluid Phase s of Helium 3

Dimensional BCS-BEC crossover

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases. 27 August - 7 September, 2007

Nanoelectronics 14. [( ) k B T ] 1. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture.

PHYSICS DEPARTMENT OF THE ÉCOLE NORMALE SUPÉRIEURE LABORATOIRE KASTLER BROSSEL

Condensation of pairs of fermionic lithium atoms

Broad and Narrow Fano-Feshbach Resonances: Condensate Fraction in the BCS-BEC Crossover

Thermalisation and vortex formation in a mechanically perturbed condensate. Vortex Lattice Formation. This Talk. R.J. Ballagh and Tod Wright

Transcription:

Lecture 3 : ultracold Fermi Gases The ideal Fermi gas: a reminder Interacting Fermions BCS theory in a nutshell The BCS-BEC crossover and quantum simulation

Many-Body Physics with Cold Gases Diluteness: atom-atom interactions described by 2-body (and 3 body) physics. At low energy: a single parameter, the scattering length a Control of the sign and magnitude of interaction Control of trapping parameters: access to time dependent phenomena, out of equilibrium situations, 1D, 2D, 3D n(k) n(k) 1 1 Simplicity of detection Comparison with quantum Many-Body theories: Gross-Pitaevskii, Bose and Fermi Hubbard models, search for exotic phases, dipolar gases disorder effects, Anderson localization, Sherson et al., MPQ 2010 Link with condensed matter (high Tc superconductors), astrophysics (neutron stars), Nuclear physics, high energy physics (quark-gluon plasma), 1 k/k k/k F 1 F Quantum simulation with cold atoms «a la Feynman»

The ideal Fermi gas: a reminder Zero temperature Fermi sea: E(p) E kf k 2m 2 2 F F kt B F (6 n) ~ (particle distance) 2 1/3 1 E F p Fermi pressure: 1 2m 2 2 15 3/2 E 5/2 F Approximation valid as long as T<<T F

Electrons vs cold atoms Electrons in metal Ultra cold atoms Density 10 30 /m 3 10 20 /m 3 Mass 10-30 kg 10-26 kg Fermi temperature 10 4 K 1µK T/T F <10-5 ~ 10-2 Lifetime Infinite ~10s Size 1cm 10 µm Particle number 10 24 10 5

Pauli Exclusion Principle and evaporative cooling of ultra-cold Fermi gases Collision between two atoms. Effective potential in the l-wave: ( 1) 2mr 2 eff () () 2 V r V r l >0 Interatomic potential (long range~-1/r 6 ) l=0 centrifugal potential At low temperature, atoms cannot cross the centrifugal barrier: only s-wave collisions. Symmetrization for identical particles: even l-wave collisions forbidden for polarized fermions.

Suppression of elastic collisions in a spin polarized Fermi gas Spin mixture (s-wave) Spin polarized (p-wave) B. DeMarco, J. L. Bohn, J.P. Burke, Jr., M. Holland, and D.S. Jin, Phys. Rev. Lett. 82, 4208 (1999). Use spin mixtures or several atomic species (eg 6 Li- 7 Li, K-Rb, different spin states )

Quantum gases in in harmonic traps Bose-Einstein statistics (1924) Fermi-Dirac statistics (1926) Bose-Einstein condensate Fermi sea E F Bose enhancement h T = (0.83 N) 1/3 C k B Dilute gases: 1995, JILA, MIT Pauli Exclusion h T << T = (6N) F k B 1/3 Dilute gases: 1999, JILA

Absorption imaging in situ: cloud size

Bose-Einstein condensate and Fermi sea Lithium 7 2001 ENS Lithium 6 10 4 Li 7 atoms, in thermal equilibrium with 10 4 Li 6 atoms in a Fermi sea. Quantum degeneracy: T= 0.28 K = 0.2(1) T C = 0.2 T F Now: T=0.03 T F

The non-interacting Fermi gas Gaussian Fit Fermi-Dirac T/T F <0.05 Atom number~10 5

Quantum simulation of strongly interacting Fermions

Quantum fluids Bose Einstein condensates Superconductivity and helium 3 4 He High Tc and 3He Dilute gas BEC

BEC of of strongly bound fermions Connecting the two regimes? Theory since 80 : Leggett, Randéria, Nozières,Schmidt-Rink, Holland, Kokkelmans, Levin, Ohashi, Griffin, Strinati, Falco, Stoof, Bruun, Pethick, Combescot, Giorgini.

intermediate regime Near Feshbach resonance, interactions in cold Fermi gas can be enhanced T c ~T F /5

Fermions with two spin states with attractive interaction BEC of molecules T c T F e / 2k BCS fermionic superfluid F a Bound state Interaction strength No bound state Dilute gases: Feshbach resonance

Bardeen, Cooper, Schrieffer, 1957 100 years of supraconductivity. Cooper Pairing Naive interpretation: Take a homogeneous T=0 Fermi gas, k F, E F Add two fermions, 1 et 2, which display attractive interaction < 0 V( r r ) V ( r r ) 1 2 1 2 avec V < 0 Then these particles will always form at state with an energy lower than E F, a bound state. k, k Pairs at Fermi surface: These pairs form a superfluid phase k kf 2 k a F T 0.3 T e ka1 BCS F F a

Many-body hamiltonian: h 0 Hˆ d r ˆ ( r) h ˆ ( r) d rd r' ˆ ( r) ˆ ( r') V( rr') ˆ ( r') ˆ ( r) 3 3 3 0 d r ˆ () r h ˆ () r g d rˆ () r ˆ () r ˆ () r ˆ () r 2 2m Mean-field Theory (BCS) at T=0 In momentum space: Bardeen, Cooper, Schrieffer, 1957 3 3 0 b ˆ () r k e i. L 3 aˆ kr k, ˆ g H aˆ aˆ aˆ aˆ aˆ aˆ k b k k k 3 kq k' q k' k L kk, ', q k k 2m 2 2

Mean-field Theory (2) Search for a solution in the form: N Ncka a vac k k k c Fourier components of spatial function ( r r ) k c k Assumption: zero momentum for BCS pairs: aˆ aˆ ~ order parameter for a gas of bosonic k k k molecules with zero center of mass momentum. i j N /2 BCS order parameter ˆ * ˆ ˆ ˆ ˆ ˆ ˆ k k k k k k k k k k H cte a a a a a a... g L g b b aˆ aˆ 3 k 3 k k k L k

Excitation Gap equations Gap In the ground state, no excitation of the Bogoliubov modes E k E k 2 2 k D x k k k 2m 2 2 BCS wavefunction: i BCS ( k k ) k k k u v e a a vac 2 2 uk vk 1

Tuning interactions in in Fermi gases Lithium 6 scattering length [nm] 200 100 0-100 -200 a>0 a<0 BEC-BCS Crossover Bound state 2 E B ma 0,0 0,5 1,0 1,5 2,0 Magnetic field [kg] condensate of molecules 2 No bound state BCS phase

The Equation of State of a Fermi Gas with Tunable Interactions Cold atoms, Spin ½ Dilute gas : 10 14 at/cm 3, T=100nK BEC-BCS crossover Spin imbalance, exotic phases Neutron star, Spin ½ a = -18.6 fm, n~2 10 36 cm -3 T c =10 10 K, T=T F /100 k F a ~ -4,-10, k F r e <<1

Experimental sequence - Loading of 6 Li in the optical trap - Tune magnetic field to Feshbach resonance - Evaporation of 6 Li - Image of 6 Li in-situ

Suppression of of vibrational relaxation for fermions W(r) a a E B r R e C 6 / r 6 R e Binding energy: E B = h 2 /ma 2 Momentum of each atom: h/a Pauli exclusion principle Inhibition by factor (a/r e ) 2 >>1 G~ 1/a s with s = 2.55 for dimer-dimer coll. 3.33 for dimer-atom coll. D. Petrov, C. Salomon, G. Shlyapnikov, 04

Unitary Fermi Gas : a Optical Density (a.u) Pixels

Rotating classical gas Direct proof of superfluidity: classical vs. quantum rotation velocity field of a rigid body Rotating a quantum macroscopic object macroscopic wave function: In a place where, irrotational velocity field: The only possibility to generate a non-trivial rotating motion is to nucleate quantized vortices (points in 2D or lines in 3D) with quantized circulation around vortex core. Feynman, Onsager to keep single-valued Vortices now all have the same sign, imposed by the external rotation

MIT 2005: Vortex lattices in the BEC-BCS Crossover Energy [MHz] 1 Direct proof of superfluidity 0-1 650 BEC side 834.15 BCS side M. Zwierlein A.. Schirotzek C. Stan C. Schunk P. Zarth W. Ketterle Science 05 Magnetic Field [G]

Direct proof of superfluidity Critical SF temperature = 0.19 T F MIT 2006

Superflow in fermionic superfluids Landau criterion: dissipation for V>w k /k Theory: Combescot, Kagan and Stringari. Experiment: MIT, 2008.

strongly interacting Fermions thermodynamic properties

n(k) n(k) 1 1 Thermodynamics PV Nk B Is a useful but incomplete equation of state! Complete information is given by thermodynamic potentials: Grand potential PV Pressure Volume E T TS Temperature Entropy N Chemical potential Atom number Internal energy We have measured the grand potential of a tunable Fermi gas S. Nascimbène et al., Nature, 463, 1057, (2010), arxiv 0911.0747 N. Navon et al., Science 328, 729 (2010) S. Nascimbène et al., 1 NJP (2010) k/k k/k F S. Nascimbène et al., 1arXiv 1012.4664: normal F phase, to appear PRL 2011 M. Horikoshi et al., Science, 327, 442 (2010)

The ENS Fermi Gas Team S. Nascimbène, N. Navon, F. Chevy, K. Gunther, B. Rem, A. Grier, I Ferrier-barbut, U. Eismann, K. Magalhães, K. Jiang A. Ridinger, T. Salez, S. Chaudhuri, D. Wilkowski, F. Chevy, F. Werner, Y. Castin, M. Antezza, D. Fernandes Theory collaborators: D. Petrov, G. Shlyapnikov, D. Papoular, J. Dalibard, R. Combescot, C. Mora C. Lobo, S. Stringari, I. Carusotto, L. Dao, O. Parcollet, C. Kollath, J.S. Bernier, L. De Leo, M. Köhl, A. Georges

Gibbs Duhem relation: Density: Useful thermodynamic quantities Entropy density: P S / V T Free energy in canonical ensemble: Isothermal Compressibility: 1/ T 2 F Specific heat: CV T 2 T VdP SdT Nd P n NV, F( T,, V) P V 2 F V 2 V T, N Legendre transform between grand canonical and canonical variables

Thermodynamics of a Fermi gas The Equation of State of a uniform Fermi gas can be written as: (, T; a) E TS N P(, T; a) V Pressure contains all the thermodynamic information Variables : scattering length temperature a T chemical potential µ We build the dimensionless parameters : Canonical analogs Interaction parameter Fugacity (inverse)

Measuring the EoS of the Homogeneous Gas Local density approximation: gas locally homogeneous at

Measuring the EoS of the Homogeneous Gas Extraction of the pressure from in situ images Ho, T.L. & Zhou, Q., Nature Physics, 09 S. K Yip, 07 doubly-integrated density profiles equation of state measured for all values of

LDA: Derivation 1 1 ( x, yz, ) m ( x y) m z 2 2 Cylindrical symmetry Gibbs-Duhem: 0 2 2 2 2 2 r z dp SdT nd nd Integrating over x and y between 0 and + 1 2 z r 2 0 2 2 r mr P( ) m n( x, y, z)2rdr m P( z, T) n( x, y, z) dxdy n( z) 2 2 0 at constant temperature Directly relates the pressure at abscissa z to the doubly integrated absorption signal at z

Unitary Fermi Gas a Doubly integrated Density Pressure of the locally homogeneous gas Position / Chemical potential z S. Nascimbène et al., Nature, 463, 1057, (2010)

Next lecture: measurement of the Equation of State P(, T )