Improved performance of organic light-emitting diodes with MoO 3 interlayer by oblique angle deposition

Similar documents
Inverted top-emitting organic light-emitting diodes using transparent conductive NiO electrode

Low-Driving-Voltage, Long-Lifetime Organic Light-Emitting Diodes with Molybdenum-Oxide (MoO 3 )-Doped Hole Transport Layers

Research Article Improved Efficiency of Flexible Organic Light-Emitting Diodes by Insertion of Ultrathin SiO 2 Buffer Layers

Structure Property Relationships of. Organic Light-Emitting Diodes. Michael Kochanek May 19, 2006 MS&E 542 Flexible Electronics

SUPPORTING INFORMATION

Making OLEDs efficient

High contrast tandem organic light emitting devices

Improving the efficiency of organic light emitting diodes by use of a diluted light-emitting layer. Abstract

The charge generation layer incorporating two p-doped hole transport layers for improving the performance of tandem organic light emitting diodes

OLEDs with enhanced high temperature operational stability

Enhancing the Performance of Organic Thin-Film Transistor using a Buffer Layer

Highly efficient organic light-emitting devices beyond theoretical prediction under high current density

Introduction. Fang-Chung Chen Department of Photonics and Display Institute National Chiao Tung University. Organic light-emitting diodes

High-contrast tandem organic light-emitting devices employing semitransparent intermediate layers of LiF/Al/C60

Effect of Ultrathin Magnesium Layer on the Performance of Organic Light-Emitting Diodes

Color-Stable and Low-Roll-Off Fluorescent White Organic Light Emitting Diodes Based on Nondoped Ultrathin Emitters

High efficiency tandem organic light-emitting devices with Al/WO3/Au interconnecting layer

Advantages of the Blue InGaN/GaN Light-Emitting Diodes with an AlGaN/GaN/AlGaN Quantum Well Structured Electron Blocking Layer

Quantum Dots for Advanced Research and Devices

Organic LEDs part 6. Exciton Recombination Region in Organic LEDs. Handout: Bulovic, et al., Chem. Phys. Lett. 287, 455 (1998); 308, 317 (1999).

Plasmonic Hot Hole Generation by Interband Transition in Gold-Polyaniline

Supporting Information

Theoretical Study on Graphene Silicon Heterojunction Solar Cell

Organic semiconductor heterointerfaces containing bathocuproine

Research Article The Investigation on Color Purity of Blue Organic Light-Emitting Diodes (BOLED) by Hole-Blocking Layer

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

Device optimization of tris-aluminum (Alq 3 ) based bilayer organic light emitting diode structures

Efficient Inorganic Perovskite Light-Emitting Diodes with Polyethylene Glycol Passivated Ultrathin CsPbBr 3 Films

Delayed Electroluminescence in Organic Light Emitting Diodes

Novel Soft Materials: Organic Semiconductors

PERFORMANCE ENHANCEMENT OF ORGANIC LIGHT EMITTING DIODES USING ELECTRON INJECTION MATERIALS OF METAL CARBONATES

REDUCED GRAPHITE OXIDE-INDIUM TIN OXIDE COMPOSITES FOR TRANSPARENT ELECTRODE USING SOLUTION PROCESS

High Performance, Low Operating Voltage n-type Organic Field Effect Transistor Based on Inorganic-Organic Bilayer Dielectric System

Biologically Inspired Organic Light-Emitting Diodes

Supporting Information

Supporting Information

High electron mobility layers of tri improving driving voltages, power co efficiencies, and operational stabil organic light-emitting diodes

Observation of electron injection in an organic field-effect transistor with electroluminescence *

Solid State Science and Technology, Vol. 16, No 1 (2008) ISSN

Affect of the electrical characteristics depending on the hole and electron injection materials of red organic light-emitting diodes

White Organic Electroluminescence Base on a new Aluminum Complex

OLEDs and PLEDs Nele Schumacher Incoherent Lightsources - Prof. Thomas Jüstel

High Brightness and Long Lifetime OLED with Mixing Layer Technology

Electronic Supplementary Information. inverted organic solar cells, towards mass production

Enhanced photocurrent of ZnO nanorods array sensitized with graphene. quantum dots

Low-bandgap small molecules for near-infrared photovoltaic applications

ORGANIC SEMICONDUCTOR 3,4,9,10-Perylenetetracarboxylic dianhydride (PTCDA)

OLEDs. Figure 1. anode-emission interface inhibit. charge transfer. Researchers have added semiconducting organic transport layers to improve electron

SUPPLEMENTARY INFORMATION

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

Multicolor Graphene Nanoribbon/Semiconductor Nanowire. Heterojunction Light-Emitting Diodes

Efficient Hybrid White Organic Light-Emitting Diodes for. Application of Triplet Harvesting with Simple Structure

Plastic Electronics. Joaquim Puigdollers.

Bright White Organic Light-emitting Device Based on 1,2,3,4,5,6-Hexakis(9,9-diethyl-9H-fluoren-2-yl)benzene

Electronic Supplementary Information (ESI)

GRAPHENE EFFECT ON EFFICIENCY OF TiO 2 -BASED DYE SENSITIZED SOLAR CELLS (DSSC)

熊本大学学術リポジトリ. Kumamoto University Repositor

Evolution of Dark Spots in Organic Light Emitting Devices. Liew Yoon Fei

Low-temperature-processed inorganic perovskite solar cells via solvent engineering with enhanced mass transport

Exceptionally efficient organic light emitting devices using high refractive index substrates

SUPPLEMENTARY INFORMATION

Quasi-periodic nanostructures grown by oblique angle deposition

Next Generation Hole Injection/Transport Nano-Composites for High Efficiency OLED Development

Spiro-Configured Bifluorenes: Highly Efficient Emitter for UV Organic Light-Emitting Device and Host Material for Red Electrophosphorescence

Scaling during shadowing growth of isolated nanocolumns

Paper presentation. M S Bootha Raju Date: 28/11/09

Supporting Information: Poly(dimethylsiloxane) Stamp Coated with a. Low-Surface-Energy, Diffusion-Blocking,

Effect of Spiral Microwave Antenna Configuration on the Production of Nano-crystalline Film by Chemical Sputtering in ECR Plasma

Mesoporous titanium dioxide electrolyte bulk heterojunction

Optimization of organic light emitting diode structures

Organic LEDs part 8. Exciton Dynamics in Disordered Organic Thin Films. Handout on QD-LEDs: Coe et al., Nature 420, 800 (2002).

Mechanism of Polarization Fatigue in BiFeO 3 : the Role of Schottky Barrier

Supporting Information

Supplementary Figure S1. Verifying the CH 3 NH 3 PbI 3-x Cl x sensitized TiO 2 coating UV-vis spectrum of the solution obtained by dissolving the

Super Flexible, High-efficiency Perovskite Solar Cells Employing Graphene Electrodes: Toward Future Foldable Power Sources

Metal Deposition. Filament Evaporation E-beam Evaporation Sputter Deposition

SUPPLEMENTARY INFORMATION

Electronic Supplementary Information (ESI)

ABSTRACT 1. INTRODUCTION 2. EXPERIMENT

Improved electroluminescence from silicon nitride light emitting devices by localized surface plasmons

Energy-level alignment at interfaces between metals and the organic semiconductor 4,4 -N,N -dicarbazolyl-biphenyl

Analytical Measurements for Quantum Efficiency of Organic Light Emitting Diodes*

All-Inorganic CsPbI 2 Br Perovskite Solar Cells with High Efficiency. Exceeding 13%

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD

brightness transient-voltage transient [b(t)-v(t)] analysis is shown to be useful for assessing how charge trapping and accumulation eects the radiati

Enhances Photoelectrochemical Water Oxidation

Flexible Organic Photovoltaics Employ laser produced metal nanoparticles into the absorption layer 1. An Introduction

Traps in MOCVD n-gan Studied by Deep Level Transient Spectroscopy and Minority Carrier Transient Spectroscopy

Light extraction and optical loss mechanisms in organic light-emitting diodes

Supporting Information

Electrically tunable electroluminescence from SiN x -based light-emitting devices

Supplementary Information

Atmospheric pressure Plasma Enhanced CVD for large area deposition of TiO 2-x electron transport layers for PV. Heather M. Yates

Improving Efficiency and Reproducibility of Perovskite Solar Cells through Aggregation Control in Polyelectrolytes Hole Transport Layer

Optimizing Graphene Morphology on SiC(0001)

RESEARCH ON BENZENE VAPOR DETECTION USING POROUS SILICON

Anti-icing surfaces based on enhanced self-propelled jumping of condensed water microdroplets

Electronic Supplementary Information

Supporting Information

Improving the field-emission properties of carbon nanotubes by magnetically controlled nickel-electroplating treatment

Transcription:

Improved performance of organic light-emitting diodes with MoO 3 interlayer by oblique angle deposition S.W. Liu, 1 Y. Divayana, 1 X.W. Sun, 1,2,* Y. Wang, 1 K.S. Leck, 1 and H.V. Demir 1,3,4,5,6 1 School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, 639798, Singapore 2 Department of Applied Physics, College of Science, Tianjin University, Tianjin 300072, China 3 School of Physical and Mathematical Sciences, Nanyang Technological University, Nanyang Avenue, 639798, Singapore 4 Department of Electrical and Electronic Engineering, Department of Physics, Bilkent University, Bilkent, Ankara 06800, Turkey 5 Optical Society of America, 2010 Massachusetts Avenue, NW, Washington, D.C. 20036, USA 6 hvdemir@ntu.edu.sg *exwsun@ntu.edu.sg Abstract: We fabricated and demonstrated improved organic light emitting diodes (OLEDs) in a thin film architecture of indium tin oxide (ITO)/ molybdenum trioxide (MoO 3 ) (20 nm)/ N,N -Di(naphth-2-yl)-N,N - diphenyl-benzidine (NPB) (50 nm)/ tris-(8-hydroxyquinoline) (Alq 3 ) (70 nm)/ Mg:Ag (200 nm) using an oblique angle deposition technique by which MoO 3 was deposited at oblique angles (θ) with respect to the surface normal. It was found that, without sacrificing the power efficiency of the device, the device current efficiency and external quantum efficiency were significantly enhanced at an oblique deposition angle of θ = 60 for MoO 3. 2011 Optical Society of America OCIS codes: (160.4890) Organic materials; (310.1860) Deposition and fabrication; (230.3670) Light-emitting diodes. References and links 1. S. R. Forrest, The path to ubiquitous and low-cost organic electronic appliances on plastic, Nature 428(6986), 911 918 (2004). 2. C. W. Tang, and S. A. Vanslyke, Organic electroluminescent diodes, Appl. Phys. Lett. 51(12), 913 915 (1987). 3. C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices, Appl. Phys. Lett. 70(11), 1348 1350 (1997). 4. C. Ganzorig, K. J. Kwak, K. Yagi, and M. Fujihira, Fine tuning work function of indium tin oxide by surface molecular design: Enhanced hole injection in organic electroluminescent devices, Appl. Phys. Lett. 79(2), 272 274 (2001). 5. S. A. Van Slyke, C. H. Chen, and C. W. Tang, Organic electroluminescent devices with improved stability, Appl. Phys. Lett. 69(15), 2160 2162 (1996). 6. S. Tokito, K. Noda, and Y. Taga, Metal oxides as a hole-injecting layer for an organic electroluminescent device, J. Phys. D Appl. Phys. 29(11), 2750 2753 (1996). 7. I. H. Hong, M. W. Lee, Y. M. Koo, H. Jeong, T. S. Kim, and O. K. Song, Effective hole injection of organic light-emitting diodes by introducing buckminsterfullerene on the indium tin oxide anode, Appl. Phys. Lett. 87(6), 063502 (2005). 8. J. Kido, and T. Matsumoto, Bright organic electroluminescent devices having a metal-doped electron-injecting layer, Appl. Phys. Lett. 73(20), 2866 2868 (1998). 9. T. Matsushima, and C. Adachi, Enhanced hole injection and transport in molybdenum-dioxide-doped organic hole-transporting layers, J. Appl. Phys. 103(3), 034501 (2008). 10. H. You, Y. F. Dai, Z. Q. Zhang, and D. G. Ma, Improved performances of organic light-emitting diodes with metal oxide as anode buffer, J. Appl. Phys. 101(2), 026105 (2007). 11. H. Kanno, R. J. Holmes, Y. Sun, S. Kena-Cohen, and S. R. Forrest, White stacked electrophosphorescent organic light-emitting devices employing MoO3 as a charge-generation layer, Adv. Mater. (Deerfield Beach Fla.) 18(3), 339 342 (2006). (C) 2011 OSA 28 February 2011 / Vol. 19, No. 5 / OPTICS EXPRESS 4513

12. T. Matsushima, G. H. Jin, and H. Murata, Marked improvement in electroluminescence characteristics of organic light-emitting diodes using an ultrathin hole-injection layer of molybdenum oxide, J. Appl. Phys. 104(5), 054501 (2008). 13. H. M. Zhang, Y. F. Dai, D. G. Ma, and H. Zhang, High efficiency tandem organic light-emitting devices with Al/WO3/Au interconnecting layer, Appl. Phys. Lett. 91(12), 123504 (2007). 14. X.-Y. Jiang, Z.-L. Zhang, J. Cao, M. A. Khan, Khizar-ul-Haq, and W.-Q. Zhu, White OLED with high stability and low driving voltage based on a novel buffer layer MoOx, J. Phys. D Appl. Phys. 40(18), 5553 5557 (2007). 15. H. Kanno, N. C. Giebink, Y. R. Sun, and S. R. Forrest, Stacked white organic light-emitting devices based on a combination of fluorescent and phosphorescent emitters, Appl. Phys. Lett. 89(2), 023503 (2006). 16. R. Satoh, S. Naka, M. Shibata, H. Okada, H. Onnagawa, T. Miyabayashi, and T. Inoue, Top-emission organic light-emitting diodes with ink-jet printed self-aligned emission zones, Jpn. J. Appl. Phys. 45(3A), 1829 1831 (2006). 17. S. T. Lee, Y. M. Wang, X. Y. Hou, and C. W. Tang, Interfacial electronic structures in an organic light-emitting diode, Appl. Phys. Lett. 74(5), 670 672 (1999). 18. E. Tutiŝ, D. Berner, and L. Zuppiroli, Internal electric field and charge distribution in multilayer organic lightemitting diodes, J. Appl. Phys. 93(8), 4594 4602 (2003). 19. Y. Zou, Z. B. Deng, Z. Y. Lv, Z. Chen, D. H. Xu, Y. L. Chen, Y. H. Yin, H. L. Du, and Y. S. Wang, Reduction of driving voltage in organic light-emitting diodes with molybdenum trioxide in CuPc/NPB interface, J. Lumin. 130(6), 959 962 (2010). 20. T. Matsushima, Y. Kinoshita, and H. Murata, Formation of Ohmic hole injection by inserting an ultrathin layer of molybdenum trioxide between indium tin oxide and organic hole-transporting layers, Appl. Phys. Lett. 91(25), 253504 (2007). 21. M. M. Hawkeye, and M. J. Brett, Glancing angle deposition: fabrication, properties, and applications of microand nanostructured thin films, J. Vac. Sci. Technol. A 25(5), 1317 1335 (2007). 22. B. J. Chen, X. W. Sun, B. K. Tay, L. Ke, and S. J. Chua, Improvement of efficiency and stability of polymer light-emitting devices by modifying indium tin oxide anode surface with ultrathin tetrahedral amorphous carbon film, Appl. Phys. Lett. 86(6), 063506 (2005). 23. J. X. Guo, Z. Sun, B. K. Tay, and X. W. Sun, Field emission from modified nanocomposite carbon films prepared by filtered cathodic vacuum arc at high negative pulsed bias, Appl. Surf. Sci. 214(1 4), 351 358 (2003). 24. E. Ito, H. Oji, H. Ishii, K. Oichi, Y. Ouchi, and K. Seki, Interfacial electronic structure of long-chain alkane/metal systems studied by UV-photoelectron and metastable atom electron spectroscopies, Chem. Phys. Lett. 287(1 2), 137 142 (1998). 25. C. Hosokawa, H. Tokailin, H. Higashi, and T. Kusumoto, Transient-behavior of organic thin-film electroluminescence, Appl. Phys. Lett. 60(10), 1220 1222 (1992). 26. W. J. Shin, J. Y. Lee, J. C. Kim, T. H. Yoon, T. S. Kim, and O. K. Song, Bulk and interface properties of molybdenum trioxide-doped hole transporting layer in organic light-emitting diodes, Org. Electron. 9(3), 333 338 (2008). 27. H. Aziz, Z. D. Popovic, N. X. Hu, A. M. Hor, and G. Xu, Degradation mechanism of small molecule-based organic light-emitting devices, Science 283(5409), 1900 1902 (1999). 28. J. Kalinowski, L. C. Palilis, W. H. Kim, and Z. H. Kafafi, Determination of the width of the carrier recombination zone in organic light-emitting diodes, J. Appl. Phys. 94(12), 7764 7767 (2003). 1. Introduction Organic light-emitting diodes (OLEDs) are regarded as very promising for the next generation flat panel display technology thanks to their favorable properties of self-emission, low temperature fabrication, low cost, wide viewing angle, flexible form and high contrast [1]. Beginning with the demonstration of the first bilayer OLED in 1987 [2], this class of optoelectronic devices has been intensively studied and various attempts have been made to improve their performances, e.g., by electrode modification [3,4], insertion of a buffer layer between the metal electrode and the organic layer [5 7], and doping [8,9]. Recently, molybdenum trioxide (MoO 3 ) has been widely investigated as a hole injection layer (HIL) material to reduce the operating voltage and improve the device performance and lifetime [10 16]. However, it is well known that, for a typical green-emitting OLED, holes experience a smaller injection barrier compared to that of electrons [17], and the hole mobility in the hole transport layer (HTL) is an order of magnitude higher than that of the electron in the electron transport layer (ETL) [18]. Therefore, there exists an intrinsic electron-hole imbalance in these devices, and this decreases their efficiency. Although the insertion of MoO 3 buffer layer results in an enhanced hole injection and improved device stability, this simultaneously substantially deteriorates the electron-hole balance, which correspondingly reduces the current and quantum efficiencies of the resulting devices [12,19]. (C) 2011 OSA 28 February 2011 / Vol. 19, No. 5 / OPTICS EXPRESS 4514

In this letter, we developed an oblique angle deposition technique of MoO 3 to fabricate our OLEDs. Systematically varying the angle of deposition (θ) with respect to the surface normal, we found that the device current efficiency and external quantum efficiency (EQE) are significantly increased for θ = 60, without sacrificing the power efficiency. 2. Experimental details In this study, we used MoO 3 as HIL, N,N -Di(naphth-2-yl)-N,N -diphenyl-benzidine (NPB) as HTL, tris-(8-hydroxyquinoline) (Alq 3 ) as emissive and electron transport layers, and transparent indium tin oxide (ITO) and Mg:Ag as anode and cathode, respectively. The device structure consisted of ITO/ MoO 3 (20 nm deposited at various θ)/ NPB (50 nm)/ Alq 3 (70 nm)/ Mg:Ag (200 nm), where θ is the tilt angle of ITO glass substrate with respect to the sample holder, or equivalently, the angle of deposition with respect to the surface normal of the substrate [the oblique deposition angle, as shown in the inset of Fig. 1(b)]. When MoO 3 was deposited, the substrates were oriented at the targeted angle θ, given the fixed vertical material evaporation in the vacuum chamber. For a parametric study of θ, only MoO 3 layers were deposited at various oblique angles of θ, while the rest of organic and metal layers was laid down in the surface normal configuration (i.e., when the substrates were placed parallel to the sample holder and perpendicular to the evaporation direction). The deposition rate was 0.1 nm/s for MoO 3, 0.1-0.2 nm/s for NPB and Alq 3, 0.3-0.4 nm/s for the cathode, while the system vacuum was kept under 5 10 4 Pa during the whole deposition process. Here θ was set to 0 (for the surface normal configuration as a negative control device), and 30, 45, 60, and 80 for the systematic study. The device fabrication is briefly introduced as follows. The ITO glass (20Ω/ ) was first cleaned by a routine procedure that includes ultrasonication in acetone and ethanol, and subsequent rinsing in de-ionized water. After ITO glass was dried in an oven, an oxygen plasma was used to remove the excess moisture and residual contaminants from the cleaned substrate. Then the ITO substrates were transferred into the deposition chamber for thin film deposition. The deposition chamber contains 10 crucibles, holding up to 10 different sources, each of which is heated by a tantalum heater. There were three sets of shutters working together to achieve large area uniformity and abrupt interface. Right on top of each crucible one set of the shutters was placed, through which the open/close sequence controls the material deposition, while the big shutters between the crucibles and the substrates are used in combination with the small ones under each substrate, to isolate the substrate from the evaporated material. The deposition rate and thickness are monitored by a 6 MHZ gold crystal sensor and a quartz oscillator combined with a frequency meter; the crystal sensor is mounted in the center right below the substrate holders, which can be rotated at an adjustable speed. The electroluminescence (EL) spectra of the fabricated devices were measured using a PR650 Spectra Scan spectrometer, while the luminance-current density-voltage (L-J-V) characteristics were obtained simultaneously, by connecting the spectrometer to a programmable Keithley 236 source measurement unit. All measurements were carried out at room temperature under ambient conditions without encapsulation. 3. Results and discussion Figures 1(a) and 1(b) present the current density versus voltage (J-V) and luminance versus current density (L-J) characteristics for the control device (θ = 0 ) as well as the parametric set of devices with MoO 3 deposited at θ = 30, 45, 60 and 80, respectively. The inset of Fig. 1(a) shows the applied voltage for the above mentioned deposition angles at a fixed current density of 35 ma/cm 2. It can be seen that the device with MoO 3 deposited at θ = 60 yields the largest operating voltage compared to the rest, while the operating voltage for the other devices with MoO 3 deposited at θ = 30, 45 and 80 is slightly reduced at the same current density compared to the control device and gets closer to that of the control device at high current density. In Fig. 1(b), the highest luminance occurs for the device with MoO 3 deposited at θ = 60. (C) 2011 OSA 28 February 2011 / Vol. 19, No. 5 / OPTICS EXPRESS 4515

Fig. 1. (a) Current density vs. voltage and (b) luminance vs. current density for the ITO/MoO 3(θ)/NPB/Alq 3/Mg:Ag structures parameterized with respect to θ, the deposition angle of MoO 3. The inset in (a) shows the applied voltage vs. deposition angle at a current density of 35 ma/cm 2. The inset in (b) illustrates the orientation of the substrate placed at a deposition angle (θ) with respect to the surface normal during MoO 3 evaporation. It is clear that the resultant J-V curve is not caused by the thickness variation of deposited MoO 3 layer because the device at θ = 60 would otherwise have an enhanced hole injection. Since the deposited MoO 3 layer thickness in the substrate surface normal direction shall be the nominal thickness (i.e., 20 nm) multiplied by cos(θ), where θ is the angle between the substrate surface normal and vertical direction, this theoretically gives 20 nm, 17.3 nm, 14.1 nm, 10 nm and 3.5 nm for an oblique deposition angle of 0, 30, 45, 60 and 80, respectively. Matsushima et al. [12,20] reported that when the deposited MoO 3 thickness between the ITO and an organic is between 2 and 20 nm, the J-V characteristics are not much affected; we verified this finding by fabricating hole only devices consisting of ITO/ MoO 3 (X nm)/ NPB (100 nm)/ Mg:Ag (200 nm), where X was set to 3.5 nm, 10 nm, 14.1 nm, 17.3 nm and 20 nm, while MoO 3 was deposited at 0 for all samples. The J-V characteristics of these hole only devices are shown in the inset of Fig. 2(a), from which we can see that the resulting hole injection characteristics did not significantly differ when MoO 3 thickness was varied from 3.5 to 20 nm. Therefore, the possible device fabrication parameter affecting the (C) 2011 OSA 28 February 2011 / Vol. 19, No. 5 / OPTICS EXPRESS 4516

performance is the oblique flux angle, which affects the surface morphology of the fabricated devices. Next the surface morphology of MoO 3 films deposited on ITO glass substrate at different angles was investigated by atomic force microscopy (AFM). The AFM images were obtained over an area of 2 µm 2 µm for the MoO 3 films deposited at different angles of 0, 30, 45, 60 and 80. The morphology of the samples with MoO 3 deposited at angles other than 60 exhibits many sharp spikes and their roughness is larger compared with that of the MoO 3 film deposited at 60. The surface roughness data are summarized in Table 1. The surface of the MoO 3 film deposited at 60 shows the smallest roughness and is more uniform compared with others. This is probably due to the ease of ITO pits filling at the oblique angle of 60. The non-monotonic behavior of the surface roughness for different deposition angles is due to the competition between surface diffusion and ballistic shadowing [21]. According to Hawkeye et al. [21], ballistic shadowing leads to the preferential growth of the tallest columns inclined towards the source, producing a rougher surface. Surface diffusion, which is inversely proportional to the deposition rate, causes the deposited atoms/molecules to redistribute, promoting a smoother surface. Extinction occurs if the small columns fall into the shadow of the larger neighboring columns, then the small columns will no longer receive any vapor flux. At oblique angle θ, the amount of vapor flux towards one unit surface area is decreased by cos θ, i.e. the surface deposition rate is decreased with increasing θ. At a low oblique deposition angle, the ballistic shadowing effect and the surface diffusion are comparable, leading to a surface with roughness similar to that of the normal deposition. When the oblique angle is increased, the surface deposition rate is decreased significantly, thus, the surface diffusion is greatly enhanced, which overtakes the effect of ballistic shadowing, resulting in a more uniform surface with smaller roughness. However, at a large deposition angle (larger than 60 in the experiment), ballistic shadowing effect becomes strong, which eventually leads to extinction, the smaller columns which fall into the shadow of the larger neighboring columns can no longer receive any incoming MoO 3 flux, and surface diffusion is insufficient to fill out the shadows, resulting in a rougher surface. By ploting the surface roughness as a function of the deposition angle (inset of Fig. 3) and comparing the plot with the inset of Fig. 1(a), which shows the plot of the applied voltage with respect to the deposition angle, we observed that when the film surface is rougher and less uniform (Table 1), the corresponding applied voltage is smaller. Although at 45, the RMS (Root Mean Square) roughness is 2.3 ± 0.1 nm, the peak to peak roughness is very large (39.1 ± 1.5 nm), signifying a non-uniform surface. (C) 2011 OSA 28 February 2011 / Vol. 19, No. 5 / OPTICS EXPRESS 4517

Table 1. Summary of Surface Roughness of MoO 3 Films Deposited at Different Angles Deposition Angle Peak-to-Peak Roughness (nm) RMS Roughness (nm) Mean Roughness (nm) 0 36.7 ± 1.0 2.7 ± 0.5 1.7 ± 0.2 30 41.4 ± 1.5 2.8 ± 0.5 1.9 ± 0.4 45 39.1 ± 1.5 2.3 ± 0.4 1.4 ± 0.1 60 19.9 ± 1.5 1.6 ± 0.1 1.1 ± 0.1 80 32.6 ± 1.0 4.0 ± 0.3 3.2 ± 0.4 The reduced voltage for a rougher and non-uniform surface is caused by the enhanced hole injection owing to possible nanostructured interface formation resulting from the rough surface, which is similar to the case of enhanced field emission of nanostructured films [22,23]. At the deposition angle of 60, the MoO 3 surface is much more uniform, we suggest that the interfacial dipole layer (IDL) formed between MoO 3 and NPB is much stronger compared with that of the devices deposited at other angles because the ionization potential (IP) critically depends on the surface morphology [17], while the IDL formed may impede hole injection at the MoO 3 /organic interface [24]. It is well known that the hole mobility in NPB is several orders of magnitude larger than that of the electron in Alq 3 [25], and for an OLED composed of ITO/HIL/NPB/Alq 3 /Mg:Ag, the hole injection barrier (1.7 ev) is smaller than the electron injection barrier (2.0 ev) [17]. Therefore, there is an intrinsic electron-hole imbalance in such typical green emitting devices. However, the impedance of the hole injection from ITO anode to NPB due to a strong IDL formed at the MoO 3 (θ = 60 )/organic interface may alleviate the problem of electron-hole imbalance, which is good for higher device efficiencies. Figures 2(a) and 2(b) show the current efficiency and power efficiency versus current density, respectively. In Fig. 2(a), at a current density of 35 ma/cm 2, the current efficiencies for the devices with MoO 3 deposited at θ = 0 (control), 30, 45, 60 and 80 are found to be 2.28, 2.42, 2.33, 3.02 and 2.24, respectively. This indicates an increase in efficiency for the device with θ = 60 compared to that of the control device, while the other devices with θ = 30, 45 and 80 have similar levels of current efficiency compared to the control device. Furthermore, we attribute the improved performance to the better electron-hole balance in the case of θ = 60. The power efficiency for the device with MoO 3 deposited at θ = 60, from Fig. 2(b), however, is comparable to (or slightly better than) that of the control device. This is due to the fact that the power efficiency is determined by both the EQE and device operating voltage [26], and the high EQE for the case of θ = 60 [inset of Fig. 2(b)] compensates for the effect of increased operating voltage caused by the impedance of hole injection. The resultant high EQE for θ = 60 is caused by a comparatively more balanced electron and hole concentration in the device. The decreased hole injection from the anode minimizes the hole leakage to the cathode; therefore, it reduces the formation of cationic Alq 3 [27], which is one of the main culprits of the decreased fluorescence efficiency and device stability. Moreover, the reduction of hole injection, according to Kalinowaski et al. [28], is equivalent to minimizing the carrier recombination to the transit time ratio (t rec /t t ), which is inversely related to the quantum efficiency. (C) 2011 OSA 28 February 2011 / Vol. 19, No. 5 / OPTICS EXPRESS 4518

Fig. 2. (a) Current efficiency vs. current density and (b) power efficiency vs. current density for the ITO/MoO 3(θ)/NPB/Alq 3/Mg:Ag structures parameterized with respect to θ, the deposition angle of MoO 3. The inset in (a) shows the current density vs. voltage for the hole only devices with MoO 3 deposited at 0 with different film thickness of 3.5 nm, 10 nm, 14.1 nm, 17.3 nm and 20 nm. The inset in (b) shows the EQE vs. current density. To verify the effect of MoO 3 film deposited at θ = 60 on the hole injection, we constructed hole only devices with a thin-film structure of ITO /MoO 3 (20 nm deposited at θ) /NPB (100 nm) /Mg:Ag (excluding the Alq 3 ETL in the device). The large electron barrier at the Mg:Ag/NPB interface in this set of devices ensures that the electron concentration in the fabricated devices is negligible compared to that of the holes. Figure 3 depicts the J-V characteristics for the resulting hole only devices, from which we can observe clearly that the operating voltage for the device with MoO 3 deposited at θ = 60 is increased compared to that of devices with MoO 3 deposited at other angles. Therefore, the deposition angle of MoO 3, θ, which influences the final surface morphology of the fabricated devices, can serve as a control parameter to tune the hole injection. (C) 2011 OSA 28 February 2011 / Vol. 19, No. 5 / OPTICS EXPRESS 4519

Current density (ma/cm 2 ) RMS roughness (nm) 500 4.5 400 3.0 300 1.5 4. Conclusion 200 0 20 40 60 80 Deposition angle ( ) =0 (control) =30 0 100 =45 0 =60 0 =80 0 0 0 4 8 12 0.0 Voltage (V) Fig. 3. Current density vs. voltage characteristics of the hole only devices (ITO/MoO 3(θ)/NPB/Mg:Ag structures) parameterized with respect to θ, the deposition angle of MoO 3. The inset shows the RMS roughness vs. deposition angle. In summary, we systematically studied the effect of an oblique angle deposition of MoO 3 on the performance of organic light-emitting diodes with a structure of indium tin oxide (ITO)/ molybdenum trioxide (MoO 3 ) (θ)/ N,N -Di(naphth-2-yl)-N,N -diphenyl-benzidine (NPB/ tris- (8-hydroxyquinoline) (Alq 3 )/ Mg:Ag. At the optimized deposition angle of 60, we found that the decreased hole injection is caused by the stronger interfacial dipole layer between MoO 3 and NPB associated with the surface morphology. It is inferred that this behavior is caused by the stronger interfacial dipole layer which may be formed associated with the surface morphology. The effects of the reduced hole injection on the device performance are discussed. Finally, it is verified from the hole only devices (without the electron transport layer) that the device with MoO 3 deposited at θ = 60 shows decreased hole injection behavior. The device current efficiency and external quantum efficiency were found to be significantly enhanced for θ = 60 while maintaining the power efficiency of the device. Acknowledgments The authors thank Nanyang Technological University (NTU), NRF-RF-2009-09, and Science and Engineering Research Council grant from Agency for Science, Technology and Research of Singapore (No. 0921010057) for financial support of this work. (C) 2011 OSA 28 February 2011 / Vol. 19, No. 5 / OPTICS EXPRESS 4520