Constraining the redshift evolution of the Cosmic Microwave Background black-body temperature with PLANCK data

Similar documents
RedMaPPEr selected clusters from DES science verification data and their SPT SZE signature

The ultimate measurement of the CMB temperature anisotropy field UNVEILING THE CMB SKY

X name "The talk" Infrared

Cosmology with Planck clusters. Nabila Aghanim IAS, Orsay (France)

tsz cluster counts and power spectrum combined with CMB

Correlations between the Cosmic Microwave Background and Infrared Galaxies

arxiv:astro-ph/ v1 27 Feb 2000

Cosmic Microwave Background

Planck 2015 parameter constraints

Cosmic Microwave Background

Dr Carolyn Devereux - Daphne Jackson Fellow Dr Jim Geach Prof. Martin Hardcastle. Centre for Astrophysics Research University of Hertfordshire, UK

Power spectrum exercise

arxiv: v1 [astro-ph.co] 10 Apr 2013

arxiv:astro-ph/ v1 2 Sep 2004

Title Sunyaev Zel dovich Signal & Cross Correlations

Dark Energy. Cluster counts, weak lensing & Supernovae Ia all in one survey. Survey (DES)

Weak gravitational lensing of CMB

Hunting for Dark Matter in Anisotropies of Gamma-ray Sky: Theory and First Observational Results from Fermi-LAT

Constraining Source Redshift Distributions with Angular Cross Correlations

New Probe of Dark Energy: coherent motions from redshift distortions Yong-Seon Song (Korea Institute for Advanced Study)

New techniques to measure the velocity field in Universe.

Galaxies 626. Lecture 3: From the CMBR to the first star

First scientific results from QUIJOTE. constraints on radio foregrounds

Analysis of differential observations of the cosmological radio background: studying the SZE-21cm

THE PLANCK MISSION The most accurate measurement of the oldest electromagnetic radiation in the Universe

Scientific results from QUIJOTE. constraints on CMB radio foregrounds

Growth of structure in an expanding universe The Jeans length Dark matter Large scale structure simulations. Large scale structure

The cosmic background radiation II: The WMAP results. Alexander Schmah

Relieving tensions related to the lensing of CMB temperature power spectra (astro-ph )

The Cosmic Microwave Background

Understanding the Properties of Dark Energy in the Universe p.1/37

Planck 2014 The Microwave Sky in Temperature and Polarisation Ferrara, 1 5 December The Planck mission

Microwave Background Polarization: Theoretical Perspectives

Anisotropy in the CMB

Cosmological Studies with SZE-determined Peculiar Velocities. Sarah Church Stanford University

Primordial gravitational waves detected? Atsushi Taruya

Cosmology II: The thermal history of the Universe

Mapping Hot Gas in the Universe using the Sunyaev-Zeldovich Effect

The Sunyaev-Zel dovich Effect as a cosmic thermometer. Methods, results, future prospects

A New Limit on CMB Circular Polarization from SPIDER Johanna Nagy for the SPIDER collaboration arxiv: Published in ApJ

Polarization from Rayleigh scattering

Constraints on primordial abundances and neutron life-time from CMB

arxiv:astro-ph/ v1 5 Aug 2006

Cosmology. Introduction Geometry and expansion history (Cosmic Background Radiation) Growth Secondary anisotropies Large Scale Structure

Chapter 1 Introduction. Particle Astrophysics & Cosmology SS

Rayleigh scattering:

DES Galaxy Clusters x Planck SZ Map. ASTR 448 Kuang Wei Nov 27

Cosmology with Galaxy Clusters. V. The Cluster Mass Function

PLANCK SZ CLUSTERS. M. Douspis 1, 2

Lecture 03. The Cosmic Microwave Background

Data analysis of massive data sets a Planck example

Physics of CMB Polarization and Its Measurement

OVERVIEW OF NEW CMB RESULTS

COSMIC MICROWAVE BACKGROUND ANISOTROPIES

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy

arxiv: v1 [astro-ph.co] 9 Dec 2013

The Spectrum of the CMB Anisotropy from the Combined COBE 1 FIRAS and DMR Observations

Study the large-scale structure of the universenovember using galaxy 10, 2016 clusters 1 / 16

Improved Astronomical Inferences via Nonparametric Density Estimation

Detection of hot gas in multi-wavelength datasets. Loïc Verdier DDAYS 2015

Cosmic Microwave Background Introduction

Absolute Neutrino Mass from Cosmology. Manoj Kaplinghat UC Davis

Polarized Foregrounds and the CMB Al Kogut/GSFC

Cross-Correlation of Cosmic Shear and Extragalactic Gamma-ray Background

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy

STUDY OF THE LARGE-SCALE STRUCTURE OF THE UNIVERSE USING GALAXY CLUSTERS

Science with large imaging surveys

arxiv:astro-ph/ v1 22 Feb 1999

The international scenario Balloons, LiteBIRD, PIXIE, Millimetron

arxiv: v2 [astro-ph.ga] 8 Apr 2018

CMB studies with Planck

Observational Cosmology

Cosmology. Jörn Wilms Department of Physics University of Warwick.

The origin of the cold spot in the Corona Borealis supercluster

Dark Matter and Cosmic Structure Formation

Forthcoming CMB experiments and expectations for dark energy. Carlo Baccigalupi

arxiv: v3 [astro-ph.co] 9 May 2014

Cosmology with the SZE

The CMB sky observed at 43 and 95 GHz with QUIET

Constraining the topology of the Universe using CMB maps

Introduction. How did the universe evolve to what it is today?

Rupert Croft. QuickTime and a decompressor are needed to see this picture.

Really, really, what universe do we live in?

The Sunyaev-Zeldovich Effect with ALMA Band 1

WMAP 9-Year Results and Cosmological Implications: The Final Results

Simulating Cosmic Microwave Background Fluctuations

Updating Standard Big-Bang Nucleosynthesis after Planck

arxiv: v3 [astro-ph.co] 5 May 2016

BARYON ACOUSTIC OSCILLATIONS. Cosmological Parameters and You

S-PASS and Giant Magnetised outflows from the Centre of the Milky Way

SERCH FOR LARGE-SCALE

Primordial and Doppler modulations with Planck Antony Lewis On behalf of the Planck collaboration

The microwave sky as seen by Planck

Recent BAO observations and plans for the future. David Parkinson University of Sussex, UK

Is cosmic microwave background relic radiation of Big Bang or thermal radiation of cosmic dust?

The AfterMap Wayne Hu EFI, February 2003

arxiv:astro-ph/ v1 9 Aug 2006

The impact of relativistic effects on cosmological parameter estimation

Cosmological Constraints from the XMM Cluster Survey (XCS) Martin Sahlén, for the XMM Cluster Survey Collaboration The Oskar Klein Centre for

Physical Cosmology 4/4/2016. Docente: Alessandro Melchiorri

Transcription:

Constraining the redshift evolution of the Cosmic Microwave Background black-body temperature with PLANCK data Ivan de Martino IberiCOS 2015, March, 31st 2015 in collaboration with F. Atrio-Barandela, H. Ebeling, R. Génova-Santos, A. Kashlinsky, D. Kocevski, C.J.A.P. Martins arxiv.org/abs/1502.06707 Constraining the redshift evolution of the Cosmic Microwave Background black-body temperature with PLANCK data 1 / 17

Outline 1 T CMB redshift evolution 2 Data and Methodology 3 Results 4 Conclusions Constraining the redshift evolution of the Cosmic Microwave Background black-body temperature with PLANCK data 2 / 17

T CMB redshift evolution Adiabatic evolution T CMB (z) = T 0 (1 + z) No adiabatic evolution T CMB (z) = T 0 (1 + z) 1 α [Lima, J. et al. (2000). MNRAS, 312:747-752.] Observations spectroscopic measurements of quasar spectra α = 0.009 ± 0.019 at z 0.9 [Muller, S., Beelen, A., Black, J.H., et al. 2013, A&A, 551, 109]; multi-frequency measurements of the TSZ effect α = 0.017 ± 0.029 [Saro et al. (2014) MNRAS 440, 2610-2615]; α = 0.009 ± 0.017 [Hurier G. et al. (2014). A&A, 561:A143.]. Constraining the redshift evolution of the Cosmic Microwave Background black-body temperature with PLANCK data 3 / 17

T CMB redshift evolution Adiabatic evolution T CMB (z) = T 0 (1 + z) No adiabatic evolution T CMB (z) = T 0 (1 + z) 1 α [Lima, J. et al. (2000). MNRAS, 312:747-752.] Observations spectroscopic measurements of quasar spectra α = 0.009 ± 0.019 at z 0.9 [Muller, S., Beelen, A., Black, J.H., et al. 2013, A&A, 551, 109]; multi-frequency measurements of the TSZ effect α = 0.017 ± 0.029 [Saro et al. (2014) MNRAS 440, 2610-2615]; α = 0.009 ± 0.017 [Hurier G. et al. (2014). A&A, 561:A143.]. Constraining the redshift evolution of the Cosmic Microwave Background black-body temperature with PLANCK data 3 / 17

T CMB redshift evolution:t (z) = T 0 (1 + z) 1 α Temperature anisotropies due to SZ effects are given by T T = g(ν)y c(θ), and their frequency dependence by x = hν(z) k B T (z) g(ν) = xcoth(x) 4. Adiabatic evolution ν(z) = ν 0 (1 + z), T (z) = T 0 (1 + z). Then, x does not depend on redshift. No adiabatic evolution ν(z) = ν 0 (1 + z), T (z) = T 0 (1 + z) 1 α. Then, x = x 0 (1 + z) α. Constraining the redshift evolution of the Cosmic Microwave Background black-body temperature with PLANCK data 4 / 17

Statistical estimators Cleaning Methodology: a previous work... Redshift evolution of the temperature of the Cosmic Microwave Background radiation I. de Martino, F. Atrio-Barandela, A. da Silva, H. Ebeling, A. Kashlinsky, D. Kocevski, Carlos J.A.P. Martins, 2012, ApJ, 757, 144 This study was carried out before the Planck Collaboration released their nominal maps in 2013; we used ancillary data such as masks, noise inhomogeneities from WMAP data release. The cosmological parameters correspond to WMAP 5 year data. Constraining the redshift evolution of the Cosmic Microwave Background black-body temperature with PLANCK data 5 / 17

Statistical estimators Cleaning Methodology:T (z) = T 0 (1 + z) 1 α Ratio Method: ratio at different frequencies R = g(ν1)[yc (θ) b1(θ)] g(ν 2)[y c (θ) b 2(θ)] Fit Method: Fitting of the spectral dependence T T = g(ν)[y c(θ) b(θ)], R(ν 1, ν 2, α) = g(ν 1,α) g(ν 2,α) g(ν, α) Constraining the redshift evolution of the Cosmic Microwave Background black-body temperature with PLANCK data 6 / 17

TCMB redshift evolution Data and Methodology Results Conclusions Statistical estimators Cleaning Cleaning procedure: P(ν, x) = P(ν, x) w (ν)p(857ghz, x) 857 GHz Coma Cluster (A1656): l = 57.8 ; b = 88.0 ; z = 0.02310 100 GHz 143 GHz 217 GHz 353 GHz Ivan de Martino, Universidad de Salamanca Constraining the redshift evolution of the Cosmic Microwave Background black-body temperature with PLANCK data 545 GHz IberiCOS 2015, March, 31st 2015 7 / 17

TCMB redshift evolution Data and Methodology Results Conclusions Statistical estimators Cleaning Cleaning procedure: P(ν, x) = P(ν, x) w (ν)p(857ghz, x) 857 GHz Coma Cluster (A1656): l = 57.8 ; b = 88.0 ; z = 0.02310 100 GHz 143 GHz 217 GHz 353 GHz Ivan de Martino, Universidad de Salamanca Constraining the redshift evolution of the Cosmic Microwave Background black-body temperature with PLANCK data 545 GHz IberiCOS 2015, March, 31st 2015 8 / 17

TCMB redshift evolution Data and Methodology Results Conclusions Statistical estimators Cleaning Cleaning procedure: P(ν, x) = P(ν, x) w (ν)p(857ghz, x) PSZ G355.07+46.20: l = 355.07 ; b = 46.20 ; z = 0.2153 100 GHz 143 GHz 217 GHz 353 GHz Ivan de Martino, Universidad de Salamanca Constraining the redshift evolution of the Cosmic Microwave Background black-body temperature with PLANCK data 545 GHz IberiCOS 2015, March, 31st 2015 9 / 17

Ratio Fit Results Error bars were computed by evaluating the mean temperature fluctuation on 1,000 random positions in foreground cleaned maps on a disc with the same angular extent than the cluster. We considered α = [ 1, 1], subdivided in 2001 equally spaced steps. We divided our sample in six redshift bins of width 0.05, and we averaged the SZ temperature anisotropies over all the clusters in the bin. Within each redshift bin we computed α in different subsamples, with clusters selected in X-ray luminosity (L X 2.5 10 44 erg/s) and mass (M 500 2 10 14 M ) in order to test the relative contribution of the different cluster subsamples to the final error budget. Constraining the redshift evolution of the Cosmic Microwave Background black-body temperature with PLANCK data 10 / 17

Ratio Fit Ratio Method: R(ν 1, ν 2, α) = g(ν 1)[y c (θ) b 1 (θ)] g(ν 2 )[y c (θ) b 2 (θ)] = g(ν 1,α) g(ν 2,α) The analysis does not take in to account the correlation between different channels. Subset N cl α LX σ αlx N cl α M500 σ αm500 N cl α θ500 σ αθ500 All 201 0.018 0.06 397 0.018 0.060 481 0.017 0.056 A 0.0 < z < 0.05 3 0.13 1.01 20 0.05 0.74 32 0.03 0.67 B 0.05 < z < 0.10 25 0.435 0.771 121 0.15 0.41 186 0.06 0.43 C 0.10 < z < 0.15 36 0.945 1.27 107 0.32 0.34 114 0.264 0.291 D 0.15 < z < 0.20 71 0.56 0.51 83 0.065 0.169 83 0.065 0.169 E 0.20 < z < 0.25 46 0.007 0.096 46 0.007 0.096 46 0.007 0.096 F 0.25 < z < 0.30 20 0.008 0.080 20 0.008 0.080 20 0.008 0.080 Constraining the redshift evolution of the Cosmic Microwave Background black-body temperature with PLANCK data 11 / 17

Ratio Fit Ratio Method: R(ν 1, ν 2, α) = g(ν 1)[y c (θ) b 1 (θ)] g(ν 2 )[y c (θ) b 2 (θ)] = g(ν 1,α) g(ν 2,α) The analysis does not take in to account the correlation between different channels. Subset N cl α LX σ αlx N cl α M500 σ αm500 N cl α θ500 σ αθ500 All 201 0.018 0.06 397 0.018 0.060 481 0.017 0.056 A 0.0 < z < 0.05 3 0.13 1.01 20 0.05 0.74 32 0.03 0.67 B 0.05 < z < 0.10 25 0.435 0.771 121 0.15 0.41 186 0.06 0.43 C 0.10 < z < 0.15 36 0.945 1.27 107 0.32 0.34 114 0.264 0.291 D 0.15 < z < 0.20 71 0.56 0.51 83 0.065 0.169 83 0.065 0.169 E 0.20 < z < 0.25 46 0.007 0.096 46 0.007 0.096 46 0.007 0.096 F 0.25 < z < 0.30 20 0.008 0.080 20 0.008 0.080 20 0.008 0.080 At least two times worse than SPT result α = 0.017 ± 0.029 [Saro et al. (2014) MNRAS 440, 2610-2615] Constraining the redshift evolution of the Cosmic Microwave Background black-body temperature with PLANCK data 12 / 17

Ratio Fit Fit Method: T T = g(ν, α)[y c(θ) b ν (θ)] = g(ν, α)[y c (θ) b(θ)] Subset N cl α LX σ αlx N cl α M500 σ αm500 N cl α θ500 σ αθ500 All 201 0.013 0.014 397 0.006 0.013 481 0.007 0.013 A 0.0 < z < 0.05 3 0.27 0.23 20 0.21 0.17 32 0.155 0.158 B 0.05 < z < 0.10 25 0.001 0.183 121 0.029 0.093 186 0.084 0.098 C 0.10 < z < 0.15 36 0.076 0.202 107 0.014 0.085 114 0.033 0.074 D 0.15 < z < 0.20 71 0.034 0.148 83 0.05 0.039 83 0.05 0.039 E 0.20 < z < 0.25 46 0.006 0.022 46 0.006 0.022 46 0.006 0.022 F 0.25 < z < 0.30 20 0.027 0.019 20 0.027 0.019 20 0.027 0.019 Constraining the redshift evolution of the Cosmic Microwave Background black-body temperature with PLANCK data 13 / 17

Ratio Fit Fit Method: T T = g(ν, α)[y c(θ) b ν (θ)] = g(ν, α)[y c (θ) b(θ)] Subset N cl α LX σ αlx N cl α M500 σ αm500 N cl α θ500 σ αθ500 All 201 0.013 0.014 397 0.006 0.013 481 0.007 0.013 A 0.0 < z < 0.05 3 0.27 0.23 20 0.21 0.17 32 0.155 0.158 B 0.05 < z < 0.10 25 0.001 0.183 121 0.029 0.093 186 0.084 0.098 C 0.10 < z < 0.15 36 0.076 0.202 107 0.014 0.085 114 0.033 0.074 D 0.15 < z < 0.20 71 0.034 0.148 83 0.05 0.039 83 0.05 0.039 E 0.20 < z < 0.25 46 0.006 0.022 46 0.006 0.022 46 0.006 0.022 F 0.25 < z < 0.30 20 0.027 0.019 20 0.027 0.019 20 0.027 0.019 A factor 1.3 of improvement α = 0.009 ± 0.017 [Hurier G. et al. (2014). A&A, 561:A143.] Constraining the redshift evolution of the Cosmic Microwave Background black-body temperature with PLANCK data 14 / 17

Conclusions We have constrained the evolution history of the CMB blackbody temperature using Planck data. 1. Taking ratios is simpler than fitting the spectral dependence. It allow us to constrain α = 0.017 ± 0.056, but it is at least two times worse than SPT result. 2. Fitting of the spectral dependence of the TSZ effect requires to know the cluster profile. It allow us to constrain α = 0.007 ± 0.013. This represent the best constraint in literature from SZ effect. 3. Using CMB template could potentially bias the final results = we are looking for other techniques that do not require any CMB template in the cleaning process. Constraining the redshift evolution of the Cosmic Microwave Background black-body temperature with PLANCK data 15 / 17

Constraining the redshift evolution of the Cosmic Microwave Background black-body temperature with PLANCK data 16 / 17

CMB Template and possible bias The CMB template was constructed assuming the adiabatic evolution of the Universe map using the g(ν, α = 0). CMB or TSZ residuals? The figure shows that the average temperature anisotropy at the cluster locations has 1µK residual compared with the same measurement at random positions in the sky averaged over 100 realizations Solution... Taking into account this effect, our final constraint would be α = 0.007 ± 0.013 ( 0.02). Constraining the redshift evolution of the Cosmic Microwave Background black-body temperature with PLANCK data 17 / 17