Lecture 5: Polarization. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Outline

Similar documents
Brewster Angle and Total Internal Reflection

Brewster Angle and Total Internal Reflection

Polarimetry in the E-ELT era. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Fundamentals of Polarized Light

Lecture 8: Polarimetry 2. Polarizers and Retarders. Polarimeters. Scattering Polarization. Zeeman Effect. Outline

Wave Propagation in Uniaxial Media. Reflection and Transmission at Interfaces

Typical anisotropies introduced by geometry (not everything is spherically symmetric) temperature gradients magnetic fields electrical fields

Lecture 4: Anisotropic Media. Dichroism. Optical Activity. Faraday Effect in Transparent Media. Stress Birefringence. Form Birefringence

Lecture 4: Polarimetry 2. Polarizers and Retarders. Polarimeters. Scattering Polarization. Zeeman Effect. Outline

Electromagnetic Waves Across Interfaces

Lecture 11: Polarized Light. Fundamentals of Polarized Light. Descriptions of Polarized Light. Scattering Polarization. Zeeman Effect.

Optics and Optical Design. Chapter 6: Polarization Optics. Lectures 11 13

Chap. 2. Polarization of Optical Waves

Lecture 6: Polarimetry 2. Polarizers and Retarders. Polarimeters. Scattering Polarization. Zeeman Effect. Hanle Effect. Outline

Introduction to Polarization

Polarized Light. Second Edition, Revised and Expanded. Dennis Goldstein Air Force Research Laboratory Eglin Air Force Base, Florida, U.S.A.

ECE 185 ELECTRO-OPTIC MODULATION OF LIGHT

Jones calculus for optical system

Optics and Optical Design. Chapter 6: Polarization Optics. Lectures 11-13

3.4 Elliptical Parameters of the Polarization Ellipse References

PMARIZED LI6HT FUNDAMENTALS AND APPLICATIONS EBWABD COLLETT. Measurement Concepts, Inc. Colts Neck, New Jersey

16. More About Polarization

Chiroptical Spectroscopy

Light for which the orientation of the electric field is constant although its magnitude and sign vary in time.

Polarizers and Retarders

Chap. 5. Jones Calculus and Its Application to Birefringent Optical Systems

Chapter 1 - The Nature of Light

Quarter wave plates and Jones calculus for optical system

Chap. 4. Electromagnetic Propagation in Anisotropic Media

POLARISATION. We have not really discussed the direction of the Electric field other that that it is perpendicular to the direction of motion.

POLARIZATION FUNDAMENTAL OPTICS POLARIZATION STATES 1. CARTESIAN REPRESENTATION 2. CIRCULAR REPRESENTATION. Polarization. marketplace.idexop.

Polarization. Polarization. Physics Waves & Oscillations 4/3/2016. Spring 2016 Semester Matthew Jones. Two problems to be considered today:

Waves & Oscillations

4: birefringence and phase matching

Lecture 8 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell

[D] indicates a Design Question

Chapter 6. Polarization Optics

Physics I Keystone Institute Technology & Management Unit-II

Calculating Thin Film Stack Properties

POLARIZATION OF LIGHT

OPTICS LAB -ECEN 5606

Phys 2310 Mon. Oct. 30, 2017 Today s Topics. Begin Modern Optics Ch. 2: The Nature of Polarized Light Reading for Next Time

Chapter 33: ELECTROMAGNETIC WAVES 559

Polarization of Light and Birefringence of Materials

Summary of Fourier Optics

Lecture 2: Thin Films. Thin Films. Calculating Thin Film Stack Properties. Jones Matrices for Thin Film Stacks. Mueller Matrices for Thin Film Stacks

PRINCIPLES OF PHYSICAL OPTICS

Optics of Liquid Crystal Displays

OPTI 501, Electromagnetic Waves (3)

Lab #13: Polarization

Polarized and unpolarised transverse waves, with applications to optical systems

Polarization of Light

Matrices in Polarization Optics. Polarized Light - Its Production and Analysis

Deviations from Malus Law

NAWAB SHAH ALAM KHAN COLLEGE OF ENGINEERING & TECHNOLOGY UNIT II-a POLARISATION

Polarimetry. Dave McConnell, CASS Radio Astronomy School, Narrabri 30 September kpc. 8.5 GHz B-vectors Perley & Carilli (1996)

Lecture 3 : Electrooptic effect, optical activity and basics of interference colors with wave plates

Calculating Thin Film Stack Properties. Polarization Properties of Thin Films

Polarized sunglasses. Polarization

FUNDAMENTALS OF POLARIZED LIGHT

4. Circular Dichroism - Spectroscopy

polarisation of Light

September 14, Monday 4. Tools for Solar Observations-II

Waves & Oscillations

Phys 531 Lecture 27 6 December 2005

Modern Optics Prof. Partha Roy Chaudhuri Department of Physics Indian Institute of Technology, Kharagpur

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

What is polarization?

: Imaging Systems Laboratory II. Laboratory 6: The Polarization of Light April 16 & 18, 2002

Physics 214 Course Overview

Polarized Light. Nikki Truss. Abstract:

Physics 313: Laboratory 8 - Polarization of Light Electric Fields

Electromagnetic fields and waves

Lecture 19 Optical MEMS (1)

linear polarization: the electric field is oriented in a single direction circular polarization: the electric field vector rotates

Polarization Mode Dispersion

Waves in Linear Optical Media

Topic 4: Waves 4.3 Wave characteristics

Chap. 1 Fundamental Concepts

Massachusetts Institute of Technology Physics 8.03SC Fall 2016 Homework 9

Optical Mineralogy. Optical Mineralogy. Use of the petrographic microscope

PH 222-2C Fall Electromagnetic Waves Lectures Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

EM Waves. From previous Lecture. This Lecture More on EM waves EM spectrum Polarization. Displacement currents Maxwell s equations EM Waves

Chapter 4: Polarization of light

Goal: The theory behind the electromagnetic radiation in remote sensing. 2.1 Maxwell Equations and Electromagnetic Waves

Chapter 33. Electromagnetic Waves

FORWARD AND INVERSE PROBLEM FOR NEMATIC LIQUID CRYSTALS

Electromagnetic Waves. Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

ELECTROMAGNETIC WAVES

Light Waves and Polarization

B.Tech. First Semester Examination Physics-1 (PHY-101F)

DEGREE OF POLARIZATION VS. POINCARÉ SPHERE COVERAGE - WHICH IS NECESSARY TO MEASURE PDL ACCURATELY?

Lecture 4: Polarisation of light, introduction

1. In Young s double slit experiment, when the illumination is white light, the higherorder fringes are in color.

Jones vector & matrices

OPSE FINAL EXAM Fall 2016 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT.

Experiment 5 Polarization and Modulation of Light

17. Jones Matrices & Mueller Matrices

Waves & Oscillations

CHAPTER 1. Polarisation

Transcription:

Lecture 5: Polarization Outline 1 Polarized Light in the Universe 2 Descriptions of Polarized Light 3 Polarizers 4 Retarders Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016, Lecture 4: Polarization 1

Polarized Light in the Universe Polarization indicates anisotropy not all directions are equal Typical anisotropies introduced by geometry (not everything is spherically symmetric) temperature gradients density gradients magnetic fields electrical fields Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016, Lecture 4: Polarization 2

13.7 billion year old temperature fluctuations from WMAP BICEP2 results and Planck Dust Polarization Map Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016, Lecture 4: Polarization 3

Scattering Polarization 1 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016, Lecture 4: Polarization 4

Scattering Polarization 2 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016, Lecture 4: Polarization 5

The Power of Polarimetry T Tauri in intensity MWC147 in intensity Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016, Lecture 4: Polarization 6

The Power of Polarimetry T Tauri in Linear Polarization Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl MWC147 in Linear Polarization ATI 2016, Lecture 4: Polarization 7

Solar Magnetic Field Maps from Longitudinal Zeeman Effect Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016, Lecture 4: Polarization 8

Summary of Polarization Origin Plane Vector Wave ansatz E = E 0 e i( k x ωt) spatially, temporally constant vector E 0 lays in plane perpendicular to propagation direction k represent E 0 in 2-D basis, unit vectors e x and e y, both perpendicular to k E 0 = E x e x + E y e y. E x, E y : arbitrary complex scalars damped plane-wave solution with given ω, k has 4 degrees of freedom (two complex scalars) additional property is called polarization many ways to represent these four quantities if E x and E y have identical phases, E oscillates in fixed plane sum of plane waves is also a solution Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016, Lecture 4: Polarization 9

Polarization Ellipse Polarization Ellipse Polarization E (t) = E 0 e i( k x ωt) E 0 = E x e iδx e x + E y e iδy e y wave vector in z-direction e x, e y : unit vectors in x, y E x, E y : (real) amplitudes δ x,y : (real) phases Polarization Description 2 complex scalars not the most useful description at given x, time evolution of E described by polarization ellipse ellipse described by axes a, b, orientation ψ Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016, Lecture 4: Polarization 10

Jones Formalism Jones Vectors E 0 = E x e x + E y e y beam in z-direction e x, e y unit vectors in x, y-direction complex scalars E x,y Jones vector e = ( Ex E y ) phase difference between E x, E y multiple of π, electric field vector oscillates in a fixed plane linear polarization phase difference ± π 2 circular polarization Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016, Lecture 4: Polarization 12

Summing and Measuring Jones Vectors E 0 = E x e x + E y e y ( ) Ex e = E y Maxwell s equations linear sum of two solutions again a solution Jones vector of sum of two waves = sum of Jones vectors of individual waves if wave vectors k the same addition of Jones vectors: coherent superposition of waves elements of Jones vectors are not observed directly observables always depend on products of elements of Jones vectors, i.e. intensity I = e e = e x e x + e y e y Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016, Lecture 4: Polarization 13

Jones matrices influence of medium on polarization described by 2 2 complex Jones matrix J ( ) e J11 J = J e = 12 e J 21 J 22 assumes that medium not affected by polarization state different media 1 to N in order of wave direction combined influence described by J = J N J N 1 J 2 J 1 order of matrices in product is crucial Jones calculus describes coherent superposition of polarized light Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016, Lecture 4: Polarization 14

Linear Polarization ( 1 horizontal: 0 ( ) 0 vertical: 1 ( ) 45 1 : 2 1 1 ) Circular Polarization ( ) 1 left: 2 1 i ( ) 1 right: 2 1 i Notes on Jones Formalism Jones formalism operates on amplitudes, not intensities coherent superposition important for coherent light (lasers, interference effects) Jones formalism describes 100% polarized light Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016, Lecture 4: Polarization 15

Stokes and Mueller Formalisms Stokes Vector formalism to describe polarization of quasi-monochromatic light directly related to measurable intensities Stokes vector fulfills these requirements I = I Q U V = E x Ex + E y Ey E x Ex E y Ey E x Ey + E y Ex i ( E x Ey E y Ex ) = E x 2 + E y 2 E x 2 E y 2 2 E x E y cos δ 2 E x E y sin δ Jones vector elements E x,y, real amplitudes E x,y, phase difference δ = δ y δ x I 2 Q 2 + U 2 + V 2 can describe unpolarized (Q = U = V = 0) light Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016, Lecture 4: Polarization 16

Stokes Vector Interpretation I I = Q U = V degree of polarization P = intensity linear 0 linear 90 linear 45 linear 135 circular left right Q 2 + U 2 + V 2 1 for fully polarized light, 0 for unpolarized light summing of Stokes vectors = incoherent adding of quasi-monochromatic light waves I Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016, Lecture 4: Polarization 18

Linear Polarization horizontal: 1 1 0 0 vertical: 1 1 0 0 45 : 1 0 1 0 Circular Polarization left: 1 0 0 1 right: 1 0 0 1 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016, Lecture 4: Polarization 19

Mueller Matrices 4 4 real Mueller matrices describe (linear) transformation between Stokes vectors when passing through or reflecting from media I = M I, M = M 11 M 12 M 13 M 14 M 21 M 22 M 23 M 24 M 31 M 32 M 33 M 34 M 41 M 42 M 43 M 44 N optical elements, combined Mueller matrix is M = M N M N 1 M 2 M 1 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016, Lecture 4: Polarization 20

Rotating Mueller Matrices optical element with Mueller matrix M Mueller matrix of the same element rotated by θ around the beam given by M(θ) = R( θ)mr(θ) with R (θ) = 1 0 0 0 0 cos 2θ sin 2θ 0 0 sin 2θ cos 2θ 0 0 0 0 1 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016, Lecture 4: Polarization 21

Vertical Linear Polarizer M pol (θ) = 1 2 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 Horizontal Linear Polarizer M pol (θ) = 1 2 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 Mueller Matrix for Ideal Linear Polarizer at Angle θ M pol (θ) = 1 2 1 cos 2θ sin 2θ 0 cos 2θ cos 2 2θ sin 2θ cos 2θ 0 sin 2θ sin 2θ cos 2θ sin 2 2θ 0 0 0 0 0 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016, Lecture 4: Polarization 22

Poincaré Sphere Relation to Stokes Vector fully polarized light: I 2 = Q 2 + U 2 + V 2 for I 2 = 1: sphere in Q, U, V coordinate system point on Poincaré sphere represents particular state of polarization graphical representation of fully polarized light Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016, Lecture 4: Polarization 23

Polarizers polarizer: optical element that produces polarized light from unpolarized input light linear, circular, or in general elliptical polarizer, depending on type of transmitted polarization linear polarizers by far the most common large variety of polarizers Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016, Lecture 4: Polarization 24

Jones Matrix for Linear Polarizers Jones matrix for linear polarizer: ( px 0 J p = 0 p y ) 0 p x 1 and 0 p y 1, real: transmission factors for x, y-components of electric field: E x = p x E x, E y = p y E y p x = 1, p y = 0: linear polarizer in +Q direction p x = 0, p y = 1: linear polarizer in Q direction p x = p y : neutral density filter Mueller Matrix for Linear Polarizers M p = 1 2 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016, Lecture 4: Polarization 25

Mueller Matrix for Ideal Linear Polarizer at Angle θ M pol (θ) = 1 2 Poincare Sphere 1 cos 2θ sin 2θ 0 cos 2θ cos 2 2θ sin 2θ cos 2θ 0 sin 2θ sin 2θ cos 2θ sin 2 2θ 0 0 0 0 0 polarizer is a point on the Poincaré sphere transmitted intensity: cos 2 (l/2), l is arch length of great circle between incoming polarization and polarizer on Poincaré sphere Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016, Lecture 4: Polarization 26

Brewster Angle Polarizer r p = tan(θ i θ t ) tan(θ i +θ t ) = 0 when θ i + θ t = π 2 corresponds to Brewster angle of incidence of tan θ B = n 2 n 1 occurs when reflected wave is perpendicular to transmitted wave reflected light is completely s-polarized transmitted light is moderately polarized Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016, Lecture 4: Polarization 27

Wire Grid Polarizers parallel conducting wires, spacing d λ act as polarizer electric field parallel to wires induces electrical currents in wires induced electrical current reflects polarization parallel to wires polarization perpendicular to wires is transmitted rule of thumb: d < λ/2 strong polarization d λ high transmission of both polarization states (weak polarization) mostly used in infrared Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016, Lecture 4: Polarization 28

Polaroid-type Polarizers developed by Edwin Land in 1938 Polaroid sheet polarizers: stretched polyvynil alcohol (PVA) sheet, laminated to sheet of cellulose acetate butyrate, treated with iodine PVA-iodine complex analogous to short, conducting wire cheap, can be manufactured in large sizes Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016, Lecture 4: Polarization 29

Crystal-Based Polarizers crystals are basis of highest-quality polarizers precise arrangement of atom/molecules and anisotropy of index of refraction separate incoming beam into two beams with precisely orthogonal linear polarization states work well over large wavelength range many different configurations calcite most often used in crystal-based polarizers because of large birefringence, low absorption in visible many other suitable materials Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016, Lecture 4: Polarization 30

Indices of Refraction of Crystal in anisotropic material: dielectric constant is a tensor Maxwell equations imply symmetric dielectric tensor ɛ 11 ɛ 12 ɛ 13 ɛ = ɛ T = ɛ 12 ɛ 22 ɛ 23 ɛ 13 ɛ 23 ɛ 33 symmetric tensor of rank 2 Cartesian coordinate system exists where tensor is diagonal 3 principal indices of refraction in coordinate system spanned by principal axes n 2 x 0 0 D = 0 ny 2 0 E 0 0 nz 2 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016, Lecture 4: Polarization 31

Uniaxial Materials isotropic materials: n x = n y = n z anisotropic materials: n x n y n z uniaxial materials: n x = n y n z ordinary index of refraction: n o = n x = n y extraordinary index of refraction: n e = n z rotation of coordinate system around z has no effect most materials used in polarimetry are (almost) uniaxial Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016, Lecture 4: Polarization 32

Plane Waves in Anisotropic Media no net charges ( D = 0): D k = 0 D E E k constant, scalar µ, vanishing current density H B H = 0 H k H = 1 D c t H D H t E = µ c H E D, E, and k all in one plane H, B perpendicular to that plane Poynting vector S = c 4π E H perpendicular to E and H S (in general) not parallel to k energy (in general) not transported in direction of wave vector k Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016, Lecture 4: Polarization 33

Crystal-Based Polarizing Beamsplitter one linear polarization goes straight through as in isotropic material (ordinary ray) perpendicular linear polarization propagates at an angle (extraordinary ray) different optical path lengths crystal aberrations Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016, Lecture 4: Polarization 34

Total Internal Reflection (TIR) Snell s law: sin θ t = n 1 n 2 sin θ i wave from high-index medium into lower index medium (e.g. glass to air): n 1 /n 2 > 1 right-hand side > 1 for sin θ i > n 2 n 1 all light is reflected in high-index medium total internal reflection transmitted wave has complex phase angle damped wave along interface Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016, Lecture 4: Polarization 35

Total Internal Reflection (TIR) in Crystals TIR also in anisotropic media n o n e one beam may be totally reflected while other is transmitted principal of most crystal polarizers example: calcite prism, normal incidence, optic axis parallel to first interface, exit face inclined by 40 extraordinary ray not refracted, two rays propagate according to indices n o,n e at second interface rays (and wave vectors) at 40 to surface 632.8 nm: n o = 1.6558, n e = 1.4852 requirement for total reflection n U ni sin θ U > 1 with n I = 1 extraordinary ray transmitted, ordinary ray undergoes TIR Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016, Lecture 4: Polarization 36 40 n o, n e c 40 o e

Wollaston Prism Foster Prism Savart Plate Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016, Lecture 4: Polarization 37

Retarders or Wave Plates retards (delays) phase of one electric field component with respect to orthogonal component anisotropic material (crystal) has index of refraction that depends on polarization Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016, Lecture 4: Polarization 38

Phase Delay between Ordinary and Extraordinary Rays ordinary and extraordinary wave propagate in same direction ordinary ray propagates with speed c n o extraordinary beam propagates at different speed c n e E o, E e perpendicular to each other plane wave with arbitrary polarization can be (coherently) decomposed into components parallel to E o and E e 2 components will travel at different speeds (coherently) superposing 2 components after distance d phase difference between 2 components ω c (n e n o )d radians phase difference change in polarization state basis for constructing linear retarders Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016, Lecture 4: Polarization 39

Retarder Properties does not change intensity or degree of polarization characterized by two (not identical, not trivial) Stokes vectors of incoming light that are not changed by retarder eigenvectors of retarder depending on polarization described by eigenvectors, retarder is linear retarder circular retarder elliptical retarder linear, circular retarders are special cases of elliptical retarders circular retarders sometimes called rotators since they rotate the orientation of linearly polarized light linear retarders by far the most common type of retarder Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016, Lecture 4: Polarization 40

Jones Matrix for Linear Retarders linear retarder with fast axis at 0 characterized by Jones matrix ( ) ( ) e iδ 0 e i δ 2 0 J r (δ) =, J 0 1 r (δ) = 0 e i δ 2 δ: phase shift between two linear polarization components (in radians) absolute phase does not matter Mueller Matrix for Linear Retarder M r = 1 0 0 0 0 1 0 0 0 0 cos δ sin δ 0 0 sin δ cos δ Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016, Lecture 4: Polarization 41

Quarter-Wave Plate on the Poincaré Sphere retarder eigenvector (fast axis) in Poincaré sphere points on sphere are rotated around retarder axis by amount of retardation Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016, Lecture 4: Polarization 42

Phase Change on Total Internal Reflection (TIR) TIR induces phase change that depends on polarization complex ratios: r s,p = r s,p e iδs,p phase change δ = δ s δ p ( ) 2 tan δ cos θ i sin 2 θ i n2 2 = n 1 sin 2 θ i relation valid between critical angle and grazing incidence at critical angle and grazing incidence δ = 0 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016, Lecture 4: Polarization 43

Variable Retarders sensitive polarimeters requires retarders whose properties (retardance, fast axis orientation) can be varied quickly (modulated) retardance changes (change of birefringence): liquid crystals Faraday, Kerr, Pockels cells piezo-elastic modulators (PEM) fast axis orientation changes (change of c-axis direction): rotating fixed retarder ferro-electric liquid crystals (FLC) Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016, Lecture 4: Polarization 44

Liquid Crystals liquid crystals: fluids with elongated molecules at high temperatures: liquid crystal is isotropic at lower temperature: molecules become ordered in orientation and sometimes also space in one or more dimensions liquid crystals can line up parallel or perpendicular to external electrical field Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016, Lecture 4: Polarization 45

Liquid Crystal Retarders dielectric constant anisotropy often large very responsive to changes in applied electric field birefringence δn can be very large (larger than typical crystal birefringence) liquid crystal layer only a few µm thick birefringence shows strong temperature dependence Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016, Lecture 4: Polarization 46