Workshop WMB. Noise Modeling

Similar documents
Transistor Noise Lecture 10 High Speed Devices

Lecture 14: Electrical Noise

Two-Port Noise Analysis

6.776 High Speed Communication Circuits Lecture 10 Noise Modeling in Amplifiers

Analysis and Design of Analog Integrated Circuits Lecture 14. Noise Spectral Analysis for Circuit Elements

Transistor Noise Lecture 14, High Speed Devices

Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET )

Outline. Thermal noise, noise power and noise temperature. Noise in RLC single-ports. Noise in diodes and photodiodes

EKV MOS Transistor Modelling & RF Application

Self-heat Modeling of Multi-finger n-mosfets for RF-CMOS Applications

Investigation of the Thermal Noise of MOS Transistors under Analog and RF Operating Conditions

CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS

Thermal noise in field-effect devices

MOSFET Model with Simple Extraction Procedures, Suitable for Sensitive Analog Simulations

VLSI Design and Simulation

RFIC2017 MO2B-2. A Simplified CMOS FET Model using Surface Potential Equations For Inter-modulation Simulations of Passive-Mixer-Like Circuits

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

1. The MOS Transistor. Electrical Conduction in Solids

Lecture 23 Frequency Response of Amplifiers (I) Common Source Amplifier. December 1, 2005

MOS Transistor I-V Characteristics and Parasitics

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

Characteristics of Active Devices

EE105 Fall 2015 Microelectronic Devices and Circuits Frequency Response. Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH)

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

EECS240 Spring Today s Lecture. Lecture 2: CMOS Technology and Passive Devices. Lingkai Kong EECS. EE240 CMOS Technology

The Devices: MOS Transistors

Step 1. Finding V M. Goal: Þnd V M = input voltage for the output = V M both transistors are saturated at V IN = V M since

Sadayuki Yoshitomi. Semiconductor Company 2007/01/25

CMOS Cross Section. EECS240 Spring Dimensions. Today s Lecture. Why Talk About Passives? EE240 Process

Physical Noise Sources

Introduction to CMOS RF Integrated Circuits Design

MOSFET: Introduction

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

6.012 Electronic Devices and Circuits Spring 2005

MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor

ELEN 610 Data Converters

pickup from external sources unwanted feedback RF interference from system or elsewhere, power supply fluctuations ground currents

Low Noise Amplifiers. Prepared by: Heng Zhang. ECEN 665 (ESS) : RF Communication Circuits and Systems

Design of Narrow Band Filters Part 1

Lecture 210 Physical Aspects of ICs (12/15/01) Page 210-1

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

Lecture 11: MOSFET Modeling

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

Microelectronic Devices and Circuits Lecture 13 - Linear Equivalent Circuits - Outline Announcements Exam Two -

SMALL-SIGNAL MODELING OF RF CMOS

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution

Topics to be Covered. capacitance inductance transmission lines

ECE 546 Lecture 11 MOS Amplifiers

Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET)

EE5311- Digital IC Design

Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University

The Physical Structure (NMOS)

POWER SUPPLY INDUCED JITTER MODELING OF AN ON- CHIP LC OSCILLATOR. Shahriar Rokhsaz, Jinghui Lu, Brian Brunn

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

MOSFET Capacitance Model

Student Number: CARLETON UNIVERSITY SELECTED FINAL EXAMINATION QUESTIONS

The Devices. Devices

Fundamentals of Noise

Introduction and Background

Advantages of Using CMOS

EE 330 Lecture 16. MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow

Advanced Current Mirrors and Opamps

Lecture 23 - Frequency Resp onse of Amplifiers (I) Common-Source Amplifier. May 6, 2003

Lecture 4: CMOS Transistor Theory

Chapter 4 Field-Effect Transistors

Lecture 04 Review of MOSFET

Lecture 37: Frequency response. Context

CMOS Devices. PN junctions and diodes NMOS and PMOS transistors Resistors Capacitors Inductors Bipolar transistors

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

Microwave Network Analysis

MOS Transistor Theory

The Devices. Jan M. Rabaey

Studio 3 Review MOSFET as current source Small V DS : Resistor (value controlled by V GS ) Large V DS : Current source (value controlled by V GS )

Lecture #27. The Short Channel Effect (SCE)

Chapter 13 Small-Signal Modeling and Linear Amplification

5. EXPERIMENT 5. JFET NOISE MEASURE- MENTS

Section 12: Intro to Devices

MICROELECTRONIC CIRCUIT DESIGN Second Edition

Chapter 6: Field-Effect Transistors

Scaling Issues in Planar FET: Dual Gate FET and FinFETs

Electronics and Communication Exercise 1

Circuits. L5: Fabrication and Layout -2 ( ) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

Frequency Response Prof. Ali M. Niknejad Prof. Rikky Muller

ELEC 3908, Physical Electronics, Lecture 19. BJT Base Resistance and Small Signal Modelling

Microelectronics Main CMOS design rules & basic circuits

CMOS Cross Section. EECS240 Spring Today s Lecture. Dimensions. CMOS Process. Devices. Lecture 2: CMOS Technology and Passive Devices

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

MOS Transistor Theory

EE 560 CHIP INPUT AND OUTPUT (I/0) CIRCUITS. Kenneth R. Laker, University of Pennsylvania

GATE 2009 Electronics and Communication Engineering

Electronic Devices and Circuits Lecture 15 - Digital Circuits: Inverter Basics - Outline Announcements. = total current; I D

Transcription:

Workshop WMB Noise Modeling Manfred Berroth, Markus Grözing, Stefan Heck, Alexander Bräckle University of Stuttgart, Germany WMB (IMS) Parameter Extraction Strategies For Compact Transistor Models IMS 9

Outline Motivation Fundamentals Noise Modeling Noise Measurements Parameter Extraction Application Low Noise Amplifier

Local network Access point Motivation Mobile phone Headset Mouse Printer Laptop Noise limits transmission distance!

PSD/KHz -8 Noise Fundamentals Antenna Noise Power Spectral Density db - max. Noise - Receiver Noise Cosmic Noise -4.. m λ

Fundamentals Noise is caused by spontaneous fluctuations. Spontaneous fluctuations limit the accuracy of measurements. The signal-to-noise ratio limits the range of any communications system. Three types of noise are present in electronic circuits: - Thermal noise - Shot noise - Flicker noise

Probability dp that the value of a fluctuating quantity is between x and x + dx Fundamentals Probability distribution ( ) dx Probability distribution function f(x): dp f x Average value of the n-th moment xn x n dp True fluctuating quantity: Most important average value real mean square: Example: Normal distribution p ( ξ) x f ( x) e σ σ π σ p ( ξ ) x x ξ u u σ ξ u u σ

Fundamentals Definition of Correlation x, y mean-free fluctuating quantities Uncorrelated: xy xy x if y x Correlation coefficient c x xy y c c uncorrelated completely correlated < c < partly correlated

Fundamentals Fourier Analysis Noise signal x(t) w(f) spectral intensity of the noise X w( f) df Amplifier example: Y ( t) h ( t) x ( t) ( time domain) y * ( f) g ( f) X ( f) ( frequency domain) y g ( f) w( f) df

Thermal Noise Available noise power in the frequency interval df at a resistance R at temperature T. P 4 with u R S p i 4 i ( f,t) R e kt p 4 kt ( f) p( f, T) R hf kt hf kt ( f,t) df (Planck's correction factor) at room temperature (3 K) termal noise is flat up to ~6 THz

Thermal Noise White Noise Sources S ir Diffusion Noise S ig 4 k T R 4 k Te G (all resistive parts of the circuit) (channel noise) f << τ Shot Noise S ij q I (e.g. pn-junctions) T absolute temperature T e electron gas temperature

Channel Noise Inversion Charge Model t ds id N L R 4kT (f) S + Wang et.al [7] + 3 D ox eff id ) ( ) ( L I W C 4kTµ (f) S inv eff ds Q µ R + Wang et.al [7] + DSeff DSeff T GS C eff ox 3 DSeff DSeff T GS DSeff T GS ) ( L E µ 4kTWC 3 ) ( ) (

BSiM Channel Noise S 4kT dseff 4 ktθtnoi (gm + I R + g DSeff id (f) + βtnoi(gm + gmbs) I D R ds d ds mbs ) θ TNOI R nb + T nb L gs E C L β TNOI R na + T na L gs E C L

Flicker Noise i f K f I f A E f f df Example MOSFET : S id K I f C f f d ( f) with A E f E A ' X L f f

Unified Model (Hung) Flicker- Noise S id (f) ktq µ α γ fc eff ' ox I d L d kti + L γ fwl N Aln N L A+ BN + N + N L + CN ( N ) L N + + B L ( ) ( N N + N N ) L C L

Amplifier Noise Power Spectral Density S i (f) -6 A /Hz -7-8 -9 - - - I II f a I f µ f obs K K K M M f c Hz III M G f o f

Noisy Two-Port Noise Factor F S S i /N /N i Noise Figure NF log (F)

Noisy Two-Port P T n e i i i T T B G T k N B S T k S N S N S N F + k B G P T n e ( ) e T T k B G N +

Noisy Two-Port Interaction of Different Noise Sources e e e e e e a W W W W W + + + e e e e e e a W W W W W + + + e e e e e e a u u u u u u u + + +

Noisy Two-Port I U A I Noiseless Two-Port Z S U U S U I A Z U I A A U U + + A A I I + + I U A A F S N i i N S + U A + Z S I A / ( 8 kt f Re { Z }) S F 4R Z Γ n S opt Fmin + Z + Γ opt ZS

ector Network Analyzer Noise Test Setup Device Driver HP EE MATLAB Port Port Test Set IEEE 488. PC Noise Figure Metre Noise Source NPT 8 Tuner Γ NS Γ S Γ D Γ rcvr DUT NPT 8 Tuner Parameter Analyzer

Noise Hyperbolic of the used MOSFET 6 5 w 43.75 µm l.35 µm 4 F 3 8 U ds, U gs, @ GHz I d 9,7 ma F min.8 db

Minimum Noise Figure ersus Operating oltage 6 db F min 8 6 4 U DS 3 5,8,4,6 4, U GS

Correlation Matrices ABCD Noiseless Two-Port C Trans A kt NF R n NF min R Y min R nyopt Rn Yopt n * opt Trans Trans C Z TAZC A T + AZ T: Transformation Matrix T + : Hermitian Conjugate Complex int Trans C C C Z,transistor Z,transistor Z,Rs Trans Trans C Y TZYC A T + ZY

Intrinsic Transistor Noise Model i > < i d > < g < i g > Admittance Noiseless < i d > Two-Port * < ig id > Series resistances already subtracted by correlation matrices * * Cross correlation between gate : and channel noise C < igig > < igid > B idig idi < > < d > Y * *

Device Parasitics Γ s, e Γ s, i Noise of Lossy Substrate

MOSFET Substrate Modeling Polysilicon Gate Drain Bulk Source Bulk R s R g R d n + n+ C sb R ch C db R dsb C sub R sb R db C sub

High Frequency Modeling of MOSFET Intrinsic Transistor Source and bulk connected!

.6.5.4.3. High Frequency Model and Measurement.4.. -. real(ymodel(,)) real(ymeas(,)) real(ymodel(,)) real(ymeas(,)).. -..6.48.36 5 5 5 3 35 4 -.4 5 5 5 3 35 4 freq, GHz freq, GHz..8.6.4. real(ymodel(,)) real(ymeas(,)) real(ymodel(,)) real(ymeas(,)).4.. 5 5 5 3 35 4. 5 5 5 3 35 4 freq, GHz freq, GHz

High Frequency Noise Model of MOSFETs Contact Pad Contact Pad All resistors generate thermal noise with the spectral density < i R > 4kT R

Induced Gate Noise Gate noise only induced by capacitive coupering < i > g 4 4kTggsB 3 < 6 i > ktr C 3 ω g gs gs an der Ziel, Noise in Solid-State Devices and Circuits, John Wiley & Sons, 986 Norton equivalent circuit

Deembedding with Correlation Matrices Y pad pad C kt Re( Y ) Y Z C Y y y -y y y -y Z z z z z -z -z Transformations Between Correlation Matrices C a -a a -a Equivalent Circuit of Pads Hillbrand und Russer, An efficient method for computer-aided analysis of linear amplifier networks, 976. C Trans A kt NF min R n R Y n opt NF min R R Y n Y opt n * opt ABCD Matrix

Parameter Extraction (MOSFET) After Deembedding of pad capacitances and inductances, the series resistances of gate and drain have to be deembedded: [ CZ,T ] [ TZ Y ] [ CA ] [ TA Z ] [ ] Rg C Z, T [ CZ,T ] kt Rd + + Hermitian Conjugation

Parameter Extraction (MOSFET) To deembed the substrate admittance, the correlation matrices have to be transformed to the admittance form: [ C ] [ T ] [ C ] [ T ] Y, T Z Y [ C ] [ C ] Y, T Y, T Z, T Z Y kt Re + Y sub

Parameter Extraction (MOSFET) To deembed the source resistance, the impedance form of the correlation matrix is required: [ C ] [ T ] [ C ] [ T ] Z, T Y Z Y, T [ ] [ ] int Rs C Z, T C Z, T kt Rs Y Z +

Measured Noise Parameters ( ds, gs, W394 µm)

Noise Figure of the MOSFET at a Source Impedance of 5 Ω db 8 F 5 6 4 measurement simulation with parasitics simulation without parasitics 3 4 5 6 7 8 GHz f

Noise Parameters ( DS, GS )

Minimum Noise Figure of the MOSFET F min, G ass db 6 4 8 6 4 F min - measurement G ass - measurement F min - simulation 3 4 5 6 7 8 GHz f

Sensitivity Analysis of all Noise Sources at 5 Ω F 5 9 db 8 7 6 5 4 channel current noise MOSFET w 43.75 µm lg.35 µm 3 R g thermal noise sources Rs R gs g ds 4 6 8 GHz frequency U ds and U gs R d

Noise Circles Noise Matching NFmin@4GHz GA@4GHz L g improves the stability Gain Circles Z in gm jω L + + L + jω L jωc C s s g gs gs

Low Noise Amplifier

Layout 48 µm 69 µm 8 µm LNA 4GHz LNA 5GHz

Measurements of Low Noise Amplifier

Measurements of Low Noise Amplifier

Summary Analytical modeling of the noise spectral density High frequency noise model Noise parameter extraction Application of the model Low noise amplifier

References: [] A. van der Ziel, Noise, Prentice Hall, 954 [] H. Hillbrand, P. H. Russer, An Efficient Method for Computer Aided Noise Analysis of Linear Amplifier Networks, IEEE Trans. Circuits and Systems, ol. AS-3, no. 4, 976, pp. 35-38 [3] U. Basaran, Modellierung von Transistoren in CMOS/BiCMOS-Technologie zum Entwurf von rauscharmen erstärkern, Dissertation Universität Stuttgart, 7

Questions?