Orientation Distribution Function for Diffusion MRI

Similar documents
A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any

Ordinary Least Squares and its applications

Lecture 8 Analyzing the diffusion weighted signal. Room CSB 272 this week! Please install AFNI

Decomposition of Higher-Order Homogeneous Tensors and Applications to HARDI

LOWELL WEEKLY JOURNAL

Neatest and Promptest Manner. E d i t u r ami rul)lihher. FOIt THE CIIILDIIES'. Trifles.

On the Blurring of the Funk Radon Transform in Q Ball Imaging

Two Posts to Fill On School Board

LOWELL JOURNAL. MUST APOLOGIZE. such communication with the shore as Is m i Boimhle, noewwary and proper for the comfort

Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt

Sec. 1.1: Basics of Vectors

Closed-Form Solution Of Absolute Orientation Using Unit Quaternions

Rigid body simulation. Once we consider an object with spatial extent, particle system simulation is no longer sufficient

Rotational Motion. Chapter 4. P. J. Grandinetti. Sep. 1, Chem P. J. Grandinetti (Chem. 4300) Rotational Motion Sep.

General Physics I. Lecture 10: Rolling Motion and Angular Momentum.

M E 320 Professor John M. Cimbala Lecture 10

' Liberty and Umou Ono and Inseparablo "

Tensor Visualization. CSC 7443: Scientific Information Visualization

Wavelet Frames on the Sphere for Sparse Representations in High Angular Resolution Diusion Imaging. Chen Weiqiang

PALACE PIER, ST. LEONARDS. M A N A G E R - B O W A R D V A N B I E N E.

MECH 5312 Solid Mechanics II. Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso

MANY BILLS OF CONCERN TO PUBLIC

Crew of25 Men Start Monday On Showboat. Many Permanent Improvements To Be Made;Project Under WPA

OWELL WEEKLY JOURNAL

Fast and Accurate HARDI and its Application to Neurological Diagnosis

A Novel Tensor Distribution Model for the Diffusion Weighted MR Signal

6. 3D Kinematics DE2-EA 2.1: M4DE. Dr Connor Myant

Lesson Rigid Body Dynamics

OCN/ATM/ESS 587. The wind-driven ocean circulation. Friction and stress. The Ekman layer, top and bottom. Ekman pumping, Ekman suction

Rock Rheology GEOL 5700 Physics and Chemistry of the Solid Earth

Chapter 5. The Differential Forms of the Fundamental Laws

AE/ME 339. K. M. Isaac Professor of Aerospace Engineering. 12/21/01 topic7_ns_equations 1

PEAT SEISMOLOGY Lecture 2: Continuum mechanics

Finsler Geometry on Higher Order Tensor Fields and Applications to High Angular Resolution Diffusion Imaging

A. H. Hall, 33, 35 &37, Lendoi

Diffusion Tensor Imaging (DTI): An overview of key concepts

Unit IV State of stress in Three Dimensions

Uniformity of the Universe

14.7: Maxima and Minima

Rotational & Rigid-Body Mechanics. Lectures 3+4

1/30. Rigid Body Rotations. Dave Frank

Homogenization Methods for Full Core Solution of the Pn Transport Equations with 3-D Cross Sections. Andrew Hall October 16, 2015

Homework 1/Solutions. Graded Exercises

12. Stresses and Strains

Rigid body dynamics. Basilio Bona. DAUIN - Politecnico di Torino. October 2013

Course 2BA1: Hilary Term 2007 Section 8: Quaternions and Rotations

Generalizing Diffusion Tensor Model Using Probabilistic Inference in Markov Random Fields

General Relativity ASTR 2110 Sarazin. Einstein s Equation

FMIA. Fluid Mechanics and Its Applications 113 Series Editor: A. Thess. Moukalled Mangani Darwish. F. Moukalled L. Mangani M.

GG303 Lecture 6 8/27/09 1 SCALARS, VECTORS, AND TENSORS

Diffusion Tensor Imaging tutorial

LOWELL WEEKLY JOURNAL.

Q SON,' (ESTABLISHED 1879L

Getting started: CFD notation

Approach Curve COMSOL Report File

Introduction to Fluid Mechanics

AB-267 DYNAMICS & CONTROL OF FLEXIBLE AIRCRAFT

Numerical Implementation of Transformation Optics

7a3 2. (c) πa 3 (d) πa 3 (e) πa3

Higher Order Cartesian Tensor Representation of Orientation Distribution Functions (ODFs)

Chapter 1 Fluid Characteristics

In this section, mathematical description of the motion of fluid elements moving in a flow field is

Projectively Flat Fourth Root Finsler Metrics

Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik. Robot Dynamics. Dr.-Ing. John Nassour J.

Classical Mechanics. Luis Anchordoqui

This sample exam is longer than the actual exam will be. Many of the sample exam problems are similar to those of the actual exam. = m a. I xx.

ACCEPTS HUGE FLORAL KEY TO LOWELL. Mrs, Walter Laid to Rest Yesterday

Metric tensors for homogeneous, isotropic, 5-dimensional pseudo Riemannian models

Modelling ice shelf basal melt with Glimmer-CISM coupled to a meltwater plume model

Numerical Modelling in Geosciences. Lecture 6 Deformation

LOWELL WEEKLY JOURNAL

Algebraic Expressions

CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017

PEAT SEISMOLOGY Lecture 12: Earthquake source mechanisms and radiation patterns II

Math Review: Vectors and Tensors for Rheological Applications

MATH 31BH Homework 5 Solutions

A Riemannian Framework for Denoising Diffusion Tensor Images

Basic Equations of Elasticity

L bor y nnd Union One nnd Inseparable. LOW I'LL, MICHIGAN. WLDNHSDA Y. JULY ), I8T. liuwkll NATIdiNAI, liank

P A L A C E P IE R, S T. L E O N A R D S. R a n n o w, q u a r r y. W WALTER CR O TC H, Esq., Local Chairman. E. CO O PER EVANS, Esq.,.

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost

AE/ME 339. Computational Fluid Dynamics (CFD) K. M. Isaac. Momentum equation. Computational Fluid Dynamics (AE/ME 339) MAEEM Dept.

DIPOLES III. q const. The voltage produced by such a charge distribution is given by. r r'

Lecture notes on introduction to tensors. K. M. Udayanandan Associate Professor Department of Physics Nehru Arts and Science College, Kanhangad

Solving Einstein s Equation Numerically III

II&Ij <Md Tmlaiiiiiit, aad once in Ihe y a w Teataa m i, the vmb thatalmta oot Uiaapirit world. into as abode or wotld by them- CooTBOtioa

Diffusion Tensor Imaging I. Jennifer Campbell

Programming Project 2: Harmonic Vibrational Frequencies

1 First and second variational formulas for area

Exercise 1: Inertia moment of a simple pendulum

Estimation of Non-Negative ODFs using the Eigenvalue Distribution of Spherical Functions

Rigid Body Rotation. Speaker: Xiaolei Chen Advisor: Prof. Xiaolin Li. Department of Applied Mathematics and Statistics Stony Brook University (SUNY)

NDT&E Methods: UT. VJ Technologies CAVITY INSPECTION. Nondestructive Testing & Evaluation TPU Lecture Course 2015/16.

MATH 19520/51 Class 5

Topological insulator part I: Phenomena

EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science. CASA-Report September 2010

Solution of Matrix Eigenvalue Problem

Flight Dynamics & Control Equations of Motion of 6 dof Rigid Aircraft-Kinematics

CSE 167: Introduction to Computer Graphics Lecture #2: Linear Algebra Primer

Problem Set 2 Due Tuesday, September 27, ; p : 0. (b) Construct a representation using five d orbitals that sit on the origin as a basis: 1

Transcription:

Orientation Distribution Function for Diffusion MRI Evgeniya Balmashnova 28 October 2009

Diffusion Tensor Imaging

Diffusion MRI

Diffusion MRI P(r, t) = 1 (4πDt) 3/2 e 1 4t r 2 D 1 t Diffusion time D Diffusion coefficient P Probability of travel to point r in time t

Diffusion Tensor Imaging P(r, t) = 1 (4π D t) 3/2 e 1 4t rt D 1 r D = D xx D xy D xz D yx D yy D yz D zx D zy D zz

Diffusion Tensor Imaging: Application

Diffusion Tensor Imaging

Diffusion Tensor Imaging

MRI and Diffusion Tensor Imaging

MRI and Diffusion Tensor Imaging

MRI and Diffusion Tensor Imaging

MRI and Diffusion Tensor Imaging

MRI and Diffusion Tensor Imaging

High Angular Resolution Diffusion Imaging S(g) = S 0 e bd(g) (Stejskal & Tanner, 1965)

High Angular Resolution Diffusion Imaging S(g) = S 0 e bd(g) (Stejskal & Tanner, 1965)

HARDI

HARDI

HARDI

Diffusion Orientation Distribution Function

Diffusion Orientation Distribution Function

Diffusion Orientation Distribution Function

Diffusion Orientation Distribution Function

Alternative Decompositions Spherical harmonics N l D N (g) = c lm Y lm (g) l=0 m= l High order tensors 3 3 D N (g) =... D i 1...i N g i1... g in i 1 =1 i N =1 Hierarchial tensors N 3 3 D N (g) =... D i 1...i l g i1... g il (Florack & Balmashnova, 2008) l=0 i 1 =1 i N =1

Alternative Decompositions Spherical harmonics N l D N (g) = c lm Y lm (g) l=0 m= l High order tensors 3 3 D N (g) =... D i 1...i N g i1... g in i 1 =1 i N =1 Hierarchial tensors N 3 3 D N (g) =... D i 1...i l g i1... g il (Florack & Balmashnova, 2008) l=0 i 1 =1 i N =1

Alternative Decompositions Spherical harmonics N l D N (g) = c lm Y lm (g) l=0 m= l High order tensors 3 3 D N (g) =... D i 1...i N g i1... g in i 1 =1 i N =1 Hierarchial tensors N 3 3 D N (g) =... D i 1...i l g i1... g il (Florack & Balmashnova, 2008) l=0 i 1 =1 i N =1

Alternative Decompositions Spherical harmonics N l D N (g) = c lm Y lm (g) l=0 m= l High order tensors 3 3 D N (g) =... D i 1...i N g i1... g in i 1 =1 i N =1 Hierarchial tensors N 3 3 D N (g) =... D i 1...i l g i1... g il (Florack & Balmashnova, 2008) l=0 i 1 =1 i N =1

Spherical Harmonics Regularization Simple formula for ODF Requires bookkeeping No maxima detection High Order Tensors No straightforward regularization No straightforward ODF formulas Simple bookkeeping Maxima detection algorithms

Spherical Harmonics Regularization Simple formula for ODF Requires bookkeeping No maxima detection High Order Tensors No straightforward regularization No straightforward ODF formulas Simple bookkeeping Maxima detection algorithms

Spherical Harmonics Regularization Simple formula for ODF Requires bookkeeping No maxima detection High Order Tensors No straightforward regularization No straightforward ODF formulas Simple bookkeeping Maxima detection algorithms

Spherical Harmonics Regularization Simple formula for ODF Requires bookkeeping No maxima detection High Order Tensors No straightforward regularization No straightforward ODF formulas Simple bookkeeping Maxima detection algorithms

Spherical Harmonics Regularization Simple formula for ODF Requires bookkeeping No maxima detection High Order Tensors No straightforward regularization No straightforward ODF formulas Simple bookkeeping Maxima detection algorithms

Spherical Harmonics Regularization Simple formula for ODF Requires bookkeeping No maxima detection High Order Tensors No straightforward regularization No straightforward ODF formulas Simple bookkeeping Maxima detection algorithms

1. E 0 (D 0 ) = (S(g) D 0 ) 2 dω, Ω 2. E n(d i 1...in n 1 ) = ((S(g) D i 1...i k g i1... g ik ) D i 1...in g i1... g in ) 2 dω Ω k=0 D i 1...i n g i1... g in span{y nm (g), m = n,..., n}

1. E 0 (D 0 ) = (S(g) D 0 ) 2 dω, Ω 2. E n(d i 1...in n 1 ) = ((S(g) D i 1...i k g i1... g ik ) D i 1...in g i1... g in ) 2 dω Ω k=0 D i 1...i n g i1... g in span{y nm (g), m = n,..., n}

1. E 0 (D 0 ) = (S(g) D 0 ) 2 dω, Ω 2. E n(d i 1...in n 1 ) = ((S(g) D i 1...i k g i1... g ik ) D i 1...in g i1... g in ) 2 dω Ω k=0 D i 1...i n g i1... g in span{y nm (g), m = n,..., n}

Regularization D N (g)= N 3 l=0 i 1 =1... 3 i N =1 Di 1...i l g i1...g il D t (g)=e t g D(g)= N 3 l=0 i 1 =1... 3 i N =1 Di 1...i l(t) g i1...g il D i 1...i l (t) = e tl(l+1) D i 1...i l

Regularization D N (g)= N 3 l=0 i 1 =1... 3 i N =1 Di 1...i l g i1...g il D t (g)=e t g D(g)= N 3 l=0 i 1 =1... 3 i N =1 Di 1...i l(t) g i1...g il D i 1...i l (t) = e tl(l+1) D i 1...i l

Regularization D N (g)= N 3 l=0 i 1 =1... 3 i N =1 Di 1...i l g i1...g il D t (g)=e t g D(g)= N 3 l=0 i 1 =1... 3 i N =1 Di 1...i l(t) g i1...g il D i 1...i l (t) = e tl(l+1) D i 1...i l

Regularization D N (g)= N 3 l=0 i 1 =1... 3 i N =1 Di 1...i l g i1...g il D t (g)=e t g D(g)= N 3 l=0 i 1 =1... 3 i N =1 Di 1...i l(t) g i1...g il D i 1...i l (t) = e tl(l+1) D i 1...i l

Regularization D N (g)= N 3 l=0 i 1 =1... 3 i N =1 Di 1...i l g i1...g il D t (g)=e t g D(g)= N 3 l=0 i 1 =1... 3 i N =1 Di 1...i l(t) g i1...g il D i 1...i l (t) = e tl(l+1) D i 1...i l

MRI and Diffusion Tensor Imaging

MRI and Diffusion Tensor Imaging

MRI and Diffusion Tensor Imaging

MRI and Diffusion Tensor Imaging

MRI and Diffusion Tensor Imaging

MRI and Diffusion Tensor Imaging

MRI and Diffusion Tensor Imaging

MRI and Diffusion Tensor Imaging

MRI and Diffusion Tensor Imaging

MRI and Diffusion Tensor Imaging

MRI and Diffusion Tensor Imaging

MRI and Diffusion Tensor Imaging

MRI and Diffusion Tensor Imaging

MRI and Diffusion Tensor Imaging

Orientation Distribution Function P(R) = S(q) exp ( 2πiq R)dq ODF(g) = 0 P(r g)dr

Orientation Distribution Function P(R) = S(q) exp ( 2πiq R)dq ODF(g) = 0 P(r g)dr

Orientation Distribution Function: Q-ball Approximation by Funk-Radon transform ODF (g) ζ[s](g) = δ(g T w)s(w)dw w =1 w =1 δ(g T w)y lm (w)dw = 2πP l (0)Y lm (g)

Orientation Distribution Function: Q-ball Approximation by Funk-Radon transform ODF (g) ζ[s](g) = δ(g T w)s(w)dw w =1 w =1 δ(g T w)y lm (w)dw = 2πP l (0)Y lm (g)

Orientation Distribution Function: Q-ball Approximation by Funk-Radon transform ODF (g) ζ[s](g) = δ(g T w)s(w)dw w =1 w =1 δ(g T w)y lm (w)dw = 2πP l (0)Y lm (g)

Orientation Distribution Function: Q-ball 1. Fit Nth order tensor decomposition to the signal by solving linear system of equations. This yields D i 1...i k for k = 0,... N. 2. Compute the ODF coefficients D i 1...i k ODF (t) = 2π( 1)k/2 (k 1)!! k!! e k(k+1)t D i 1...i k.

Orientation Distribution Function: Q-ball 1. Fit Nth order tensor decomposition to the signal by solving linear system of equations. This yields D i 1...i k for k = 0,... N. 2. Compute the ODF coefficients D i 1...i k ODF (t) = 2π( 1)k/2 (k 1)!! k!! e k(k+1)t D i 1...i k.

Orientation Distribution Function: Q-ball 1. Fit Nth order tensor decomposition to the signal by solving linear system of equations. This yields D i 1...i k for k = 0,... N. 2. Compute the ODF coefficients D i 1...i k ODF (t) = 2π( 1)k/2 (k 1)!! k!! e k(k+1)t D i 1...i k.

Orientation Distribution Function: Q-ball 1. Fit Nth order tensor decomposition to the signal by solving linear system of equations. This yields D i 1...i k for k = 0,... N. 2. Compute the ODF coefficients D i 1...i k ODF (t) = 2π( 1)k/2 (k 1)!! k!! e k(k+1)t D i 1...i k.

Diffusion Orientation transform (DOT) P(R) = S(q) exp ( 2πiq R)dq e 2πiq R = 4π P(R 0 g) = l l=0 m= l l l=0 m= l ( i) l j l (2πqr)Y lm (u)y lm(g) ( i) l Y lm (g) Y lm (u)i l(u)du

Diffusion Orientation transform (DOT) P(R) = S(q) exp ( 2πiq R)dq e 2πiq R = 4π P(R 0 g) = l l=0 m= l l l=0 m= l ( i) l j l (2πqr)Y lm (u)y lm(g) ( i) l Y lm (g) Y lm (u)i l(u)du

Diffusion Orientation transform (DOT) P(R) = S(q) exp ( 2πiq R)dq e 2πiq R = 4π P(R 0 g) = l l=0 m= l l l=0 m= l ( i) l j l (2πqr)Y lm (u)y lm(g) ( i) l Y lm (g) Y lm (u)i l(u)du

Diffusion Orientation transform (DOT)

Diffusion Orientation transform (DOT) Quality depends on R 0 There is no way to indicate optimal choice of R 0 Not robust to noise

Diffusion Orientation transform (DOT) Quality depends on R 0 There is no way to indicate optimal choice of R 0 Not robust to noise

Diffusion Orientation transform (DOT) Quality depends on R 0 There is no way to indicate optimal choice of R 0 Not robust to noise

P(R 0 g) = l,m ( i) l Y lm (g) Y lm (u)i l(u, R 0 )du I l (u, R 0 ) = 4π ODF(g) = ( i) l Y lm (g) l,m 0 J 1 (2πqR 0 )e 4π2 q 2 td(u) dq Y ( ) lm (u) I l (u, R 0 )dr 0 du 0

P(R 0 g) = l,m ( i) l Y lm (g) Y lm (u)i l(u, R 0 )du I l (u, R 0 ) = 4π ODF (g) = ( i) l Y lm (g) l,m 0 J 1 (2πqR 0 )e 4π2 q 2 td(u) dq Y ( ) lm (u) I l (u, R 0 )dr 0 du 0

P(R 0 g) = l,m ( i) l Y lm (g) Y lm (u)i l(u, R 0 )du I l (u, R 0 ) = 4π ODF (g) = ( i) l Y lm (g) l,m 0 J 1 (2πqR 0 )e 4π2 q 2 td(u) dq Y ( ) lm (u) I l (u, R 0 )dr 0 du 0

R l l+3 0Γ( 2 I l (u, R 0 ) = ) 2 l+3 π 3/2 (D(u)t) (l+3)/2 Γ(l + 3/2) 1 F 1 ( l + 3 2 ; l + 3 2 ; R2 0 4D(u)t ) 1 1F 1 (a, b, z) = t a 1 (1 t) b a 1 e zt dt 0 where 0 I l (u, R 0 )dr 0 = 1 Ĩ l D(u)t Ĩ l = Γ( l+1 2 ) 4lπ 3/2 Γ(l/2)

R l l+3 0Γ( 2 I l (u, R 0 ) = ) 2 l+3 π 3/2 (D(u)t) (l+3)/2 Γ(l + 3/2) 1 F 1 ( l + 3 2 ; l + 3 2 ; R2 0 4D(u)t ) 1 1F 1 (a, b, z) = t a 1 (1 t) b a 1 e zt dt 0 where 0 I l (u, R 0 )dr 0 = 1 Ĩ l D(u)t Ĩ l = Γ( l+1 2 ) 4lπ 3/2 Γ(l/2)

R l l+3 0Γ( 2 I l (u, R 0 ) = ) 2 l+3 π 3/2 (D(u)t) (l+3)/2 Γ(l + 3/2) 1 F 1 ( l + 3 2 ; l + 3 2 ; R2 0 4D(u)t ) 1 1F 1 (a, b, z) = t a 1 (1 t) b a 1 e zt dt 0 where 0 I l (u, R 0 )dr 0 = 1 Ĩ l D(u)t Ĩ l = Γ( l+1 2 ) 4lπ 3/2 Γ(l/2)

R l l+3 0Γ( 2 I l (u, R 0 ) = ) 2 l+3 π 3/2 (D(u)t) (l+3)/2 Γ(l + 3/2) 1 F 1 ( l + 3 2 ; l + 3 2 ; R2 0 4D(u)t ) 1 1F 1 (a, b, z) = t a 1 (1 t) b a 1 e zt dt 0 where 0 I l (u, R 0 )dr 0 = 1 Ĩ l D(u)t Ĩ l = Γ( l+1 2 ) 4lπ 3/2 Γ(l/2)

1 D(u)t = l,m α lm Y lm (u) ODF(g) = l,m ( 1) l/2 Ĩ l α lm Y lm (g)

1 D(u)t = l,m α lm Y lm (u) ODF(g) = l,m ( 1) l/2 Ĩ l α lm Y lm (g)

1 1. Fit Nth order tensor decomposition to D(u)t. This yields D i 1...i k for k = 0,... N. 2. Compute the ODF coefficients D i 1...i k ODF (t) = ( 1)k/2 Γ( k+1 2 ) 4kπ 3/2 Γ(k/2) e k(k+1)t D i 1...i k.

1 1. Fit Nth order tensor decomposition to D(u)t. This yields D i 1...i k for k = 0,... N. 2. Compute the ODF coefficients D i 1...i k ODF (t) = ( 1)k/2 Γ( k+1 2 ) 4kπ 3/2 Γ(k/2) e k(k+1)t D i 1...i k.

1 1. Fit Nth order tensor decomposition to D(u)t. This yields D i 1...i k for k = 0,... N. 2. Compute the ODF coefficients D i 1...i k ODF (t) = ( 1)k/2 Γ( k+1 2 ) 4kπ 3/2 Γ(k/2) e k(k+1)t D i 1...i k.

1 1. Fit Nth order tensor decomposition to D(u)t. This yields D i 1...i k for k = 0,... N. 2. Compute the ODF coefficients D i 1...i k ODF (t) = ( 1)k/2 Γ( k+1 2 ) 4kπ 3/2 Γ(k/2) e k(k+1)t D i 1...i k.

Hardware phantom

Synthetic data Multi-tensor model n S(g) = p k e bgt D k g k=1

Q-ball and DOT-ODF comparison S(g) = S 0 e bd(g) Squared difference 9 1e 7 ODF-based method validation, without numerical 8 7 6 5 4 3 2 1 0 1000 1500 2000 2500 3000 3500 4000 b-value

Tracking Riemannian metric Finsler metric.

Finsler Metric Riemannian metric Finsler metric.

Open Questions Voxel classification Scales selection Reality check

Open Questions Voxel classification Scales selection Reality check

Open Questions Voxel classification Scales selection Reality check