EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR

Similar documents
EE 230 Lecture 33. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET

EE 434 Lecture 33. Logic Design

EE 330 Lecture 22. Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits

EE 330 Lecture 16. MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow

Chapter 13 Small-Signal Modeling and Linear Amplification

Bipolar Junction Transistor (BJT) - Introduction

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

EE 330 Lecture 16. Devices in Semiconductor Processes. MOS Transistors

EE 330 Lecture 36. Digital Circuits. Transfer Characteristics of the Inverter Pair One device sizing strategy Multiple-input gates

ECE 546 Lecture 10 MOS Transistors

GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering

ECE 342 Electronic Circuits. 3. MOS Transistors

6.012 Electronic Devices and Circuits

EE 330 Lecture 16. MOSFET Modeling CMOS Process Flow

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

Lecture 210 Physical Aspects of ICs (12/15/01) Page 210-1

High-to-Low Propagation Delay t PHL

Switching circuits: basics and switching speed

EE 434 Lecture 34. Logic Design

Biasing the CE Amplifier

Review of Band Energy Diagrams MIS & MOS Capacitor MOS TRANSISTORS MOSFET Capacitances MOSFET Static Model

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices

Lecture 17 - The Bipolar Junction Transistor (I) Forward Active Regime. April 10, 2003

The Devices. Jan M. Rabaey

EE 330 Lecture 17. MOSFET Modeling CMOS Process Flow

Microelectronic Devices and Circuits Lecture 9 - MOS Capacitors I - Outline Announcements Problem set 5 -

Electronic Devices and Circuits Lecture 15 - Digital Circuits: Inverter Basics - Outline Announcements. = total current; I D

EE 330 Lecture 37. Digital Circuits. Other Logic Families. Propagation Delay basic characterization Device Sizing (Inverter and multiple-input gates)

Lecture 17. The Bipolar Junction Transistor (II) Regimes of Operation. Outline

Circle the one best answer for each question. Five points per question.

EE 330. Lecture 35. Parasitic Capacitances in MOS Devices

3. Design a stick diagram for the PMOS logic shown below [16] Y = (A + B).C. 4. Design a layout diagram for the CMOS logic shown below [16]

MOSFET: Introduction

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

Electronic Devices and Circuits Lecture 18 - Single Transistor Amplifier Stages - Outline Announcements. Notes on Single Transistor Amplifiers

Homework Assignment 08

EE 330 Lecture 16. MOSFET Modeling CMOS Process Flow

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EE105 Fall 2014 Microelectronic Devices and Circuits

1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp)

Digital Electronics Part II - Circuits

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS

Figure 1 Basic epitaxial planar structure of NPN. Figure 2 The 3 regions of NPN (left) and PNP (right) type of transistors

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

Lecture 28 Field-Effect Transistors

Charge-Storage Elements: Base-Charging Capacitance C b

ECE 342 Electronic Circuits. Lecture 34 CMOS Logic

Chapter 2. - DC Biasing - BJTs

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Chapter 2 - DC Biasing - BJTs

Lecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER

6.012 Electronic Devices and Circuits

6.012 Electronic Devices and Circuits Spring 2005

MOS Transistor I-V Characteristics and Parasitics

Lecture 29 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 20, 2007

At point G V = = = = = = RB B B. IN RB f

Device Models (PN Diode, MOSFET )

ECE 497 JS Lecture - 12 Device Technologies

EE 435. Lecture 37. Parasitic Capacitances in MOS Devices. String DAC Parasitic Capacitances

Lecture 11: J-FET and MOSFET

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

EE 330 Lecture 18. Small-signal Model (very preliminary) Bulk CMOS Process Flow

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

VLSI VLSI CIRCUIT DESIGN PROCESSES P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT

Chapter 4 Field-Effect Transistors

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II )

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Lecture 17 The Bipolar Junction Transistor (I) Forward Active Regime

ELECTRONICS IA 2017 SCHEME

DC and Transient Responses (i.e. delay) (some comments on power too!)

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

Capacitors Diodes Transistors. PC200 Lectures. Terry Sturtevant. Wilfrid Laurier University. June 4, 2009

Device Models (PN Diode, MOSFET )

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson

Floating Point Representation and Digital Logic. Lecture 11 CS301

Chapter 6: Field-Effect Transistors

Lecture 35 - Bipolar Junction Transistor (cont.) November 27, Current-voltage characteristics of ideal BJT (cont.)

Lecture 4: CMOS Transistor Theory

University of Toronto. Final Exam

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom

Integrated Circuits & Systems

MOS Transistor Theory

CMOS Logic Gates. University of Connecticut 181

MOS Transistor Properties Review

Lecture 3: CMOS Transistor Theory

Digital Electronics Part II Electronics, Devices and Circuits

Bipolar junction transistors

Lecture 12: MOSFET Devices

MOS Transistor Theory

Microelectronic Devices and Circuits Lecture 13 - Linear Equivalent Circuits - Outline Announcements Exam Two -

2007 Fall: Electronic Circuits 2 CHAPTER 10. Deog-Kyoon Jeong School of Electrical Engineering

Figure 1: MOSFET symbols.

Field-Effect (FET) transistors

2. (2pts) What is the major difference between an epitaxial layer and a polysilicon layer?

The Devices: MOS Transistors

Transcription:

EE 23 Lecture 3 THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR

Quiz 3 Determine I X. Assume W=u, L=2u, V T =V, uc OX = - 4 A/V 2, λ=

And the number is? 3 8 5 2? 6 4 9 7

Quiz 3 (solution) Determine I X. Assume W=u, L=2u, V T =V, uc OX = - 4 A/V 2, λ= I G = V V GS T W V = < L 2 W 2 μc ( V V ) ( + λv ) V V V V V 2L DS I μc V V V V V V V V D OX GS T DS GS T DS GS T OX GS T DS GS T DS GS T Cutoff Triode Saturation Guess Saturation: W I = μc V V 2L ( ) 2 D OX GS T V V V > V V GS T DS GS T

Quiz 3 (solution) Determine I X. Assume W=u, L=2u, V T =V, uc OX = - 4 A/V 2, λ= Guess Saturation: W I = μc ( V V ) 2 D OX GS T 2L V V V > V V GS T DS GS T u I = 2 D 2 2u I D ( ) 4 2 = 25. ma 2V V 7V > 2V V

Review from Last Time: n-channel MOSFET Operation and Model V DS V GS I D V BS I B I G (V BS small) Saturation region of operation Inversion layer disappears near drain Saturation first occurs when V DS =V GS -V T I D =? I G = I B =

Review from Last Time: Transistor Size Comparison with 24AWG Copper Cable (Drawn to scale) State of Art transistor dimensions about 2 times smaller (lateral) than μ fiber The gates of about 4 transistors can be placed on the cross-section of this fiber (maybe only 4 transistors)

Review from Last Time: MOS Transistors I= G Standard square-law model V <V GS T μ C W V L 2 2L n OX DS I= V -V V V V V V -V D GS T DS GS T DS GS T μ C W 2 n OX ( V ) ( ) GS -V T +λv DS V GS V T V DS > V GS -V T μ C n OX λ. V T W/L V -4 A V.5V to 3V varies by design 2

Review from Last Time: MOS Transistors p-channel MOSFET I= G Standard square-law model V <V GS T μ C W V L 2 2L p OX DS I= V -V V V V V V -V D GS T DS GS T DS GS T μ C W 2 p OX ( V ) ( ) GS -V T +λv DS V GS V T V DS < V GS -V T V T < I D V DS

Review from Last Time: MOS Transistor Models simplifications I= G I= V <V D GS T V = V V DS GS T Equivalent Circuit Models D D D S S G GS T GS T S

Review from Last Time: MOS Transistor Models simplifications V DS I= G I= V > V D GS T V = V V DS GS T I D Equivalent Circuit Models

Review from Last Time: MOS Transistor Models simplifications I= G V <V GS T I= D V DS V V GS T RFET R FET L V -V μc W GS T OX Better Switch-level dc model good enough for predicting basic operation of many digital circuits and can be used to predict speed performance if parasitic capacitances are added

Review from Last Time: MOS Transistor Models Voltage Variable Resistor (VVR) operation D V CONT FET S R FET L V -V μc W GS T OX Analog application of MOSFET in triode region

Review from Last Time: Voltage Variable Resistor R 2 A =+ V R R2 A=+ V R Applications include Automatic Gain Control (AGC) R FET FET L V -V μc W GS T OX

MOS Transistor Models simplifications I D V GS6 V GS5 V GS4 V GS3 V GS2 I= G μc W 2L 2 ( ) ( ) OX I= V -V +λv D GS T DS Can often assume λ= Saturation V GS V DS Saturation Region Model used for many analog applications

MOS Transistor Models simplifications I= G μc W 2 ( ) 2L Saturation OX I= V -V D GS T With λ= Saturation Region Model good enough for many analog applications

MOS Transistor Models simplifications μc W OX V GS -V T +λv DS 2L 2 ( ) ( ) Saturation Region Model good enough for many analog applications

MOS Transistor Models (Summary)

MOS Transistor Models (Summary) μc W OX V -V +λv 2L ( 2 ) ( ) GS T DS D V CONT FET S

MOS Transistor Applications (Digital Circuits) Assume ~ V H = V DD > V T Assume ~ V L = V < V T MOSFET Model I= G I= V <V D GS T V = V V DS GS T Assume V T ~V DD /5

MOS Transistor Applications (Digital Circuits) R V DD Assume ~ V H = V DD > V T Assume ~ V L = V < V T X M I= V <V D GS T V = V V DS GS T Assume V T ~V DD /5 If ~ X= V DD, V DS = V so = V ~ If ~ X= V, I D = A so =V DD -I D R = V DD ~ So this circuit performs as a Boolean inverter Assume ~ V L < V T Assume ~ V H > V T X Truth Table

MOS Transistor Applications (Digital Circuits) V DD R Assume ~ V H = V DD > V T Assume ~ V L = V < V T A B 2 MOSFET Model I= G I= V <V D GS T V = V V DS GS T Assume V T ~V DD /5

MOS Transistor Applications (Digital Circuits) V DD R Assume ~ V H = V DD > V T Assume ~ V L = V < V T A B 2 I= V <V D GS T V = V V DS GS T Assume V T ~V DD /5 If ~ A= V DD, ~ B= V V DD, DS =V DS2 = V so = V ~ If ~ A= V DD, ~ B= V V, DS = V (and I D2 =A) so = V ~ If ~ A= V, ~ B= V DD, V DS2 = V (and I D =A) so = V ~ If ~ A= V, ~ B= V, I D2 = A and I D =A so I R =A, thus = V DD = I R R=V DD ~

A B MOS Transistor Applications (Digital Circuits) R V DD 2 A B Truth Table If ~ A= V DD, ~ B= V V DD, DS =V DS2 = V so = V ~ If ~ A= V DD, ~ B= V, V DS = V (and I D2 =A) so = V ~ If ~ A= V, ~ B= V DD, V DS2 = V (and I D =A) so = V ~ If ~ A= V, ~ B= V, I D2 = A and I D =A so I R =A, thus = V DD = I R R=V DD ~ 2-input NOR Gate

MOS Transistor Applications (Digital Circuits) V DD R Assume ~ V H = V DD > V T Assume ~ V L = V < V T A M B M 2 I= V <V D GS T V = V V DS GS T Assume V T ~V DD /5 If ~ A= V DD, ~ B= V V DD, DS =V DS2 = V so =V ~ If ~ A= V DD, If ~ A= V, If ~ A= V, ~ B= V V, DS = V and I D2 =A so I R =A thus =V DD -I R R= V DD ~ ~ B= V V DD, DS2 = V and I D =A so I R =A thus =V DD -I R R= V DD ~ ~ B= V, I D = A and I D2 =A so I R =A thus =V DD -I R R= V DD ~

V DD R A M B M 2 MOS Transistor Applications (Digital Circuits) A B Truth Table If ~ A= V DD, ~ B= V V DD, DS =V DS2 = V so =V ~ If ~ A= V DD, If ~ A= V, If ~ A= V, ~ B= V V, DS = V and I D2 =A so I R =A thus =V DD -I R R= V DD ~ ~ B= V V DD, DS2 = V and I D =A so I R =A thus =V DD -I R R= V DD ~ ~ B= V I, D = A and I D2 =A so I R =A thus =V DD -I R R= V DD ~ 2-input NAND Gate

MOS Transistor Applications (Digital Circuits) V DD V DD R R A M A B 2 B M 2 A B A B Can be extended to arbitrary number of inputs But the resistor is not practically available in most processes and static power dissipation is too high

MOS Transistor Applications (Digital Circuits) DD X 2 Assume ~ V H = V DD Assume ~ V L = V MOSFET Models

MOS Transistor Applications (Digital Circuits) DD 2 Assume ~ V H = V DD X Assume ~ V L = V MOSFET Models Assume V T ~V DD /5 n-channel device Assume V T2 ~ - V DD /5 p-channel device

MOS Transistor Applications (Digital Circuits) DD DD 2 2 X X ~ V H = V DD ~ V L = V If X=V DD, then V GS =V DD >V T, V GS2 = > V T2 S closed, S 2 open = V~

MOS Transistor Applications (Digital Circuits) DD DD 2 2 X X ~ V H = V DD ~ V L = V If X=V, then V GS =V<V T, V GS2 =-V DD < V T2 S 2 closed, S open = V DD ~

MOS Transistor Applications (Digital Circuits) DD X X 2 Truth Table Performs as a digital inverter

MOS Transistor Applications (Digital Circuits) DD A 4 3 A B B 2 Truth Table Performs as a 2-input NOR Gate Can be easily extended to an n-input NOR Gate

MOS Transistor Applications (Digital Circuits) DD A B 3 4 2 Truth Table Performs as a 2-input NAND Gate Can be easily extended to an n-input NAND Gate A B

MOS Transistor Applications (Digital Circuits) DD DD X M 2 A M 3 M 4 M M B M 2 Termed CMOS Logic Widely used in industry today (millions of transistors in many ICs using this logic Almost never used as discrete devices

Bipolar Transistor B: Base C: Collector E: Emitter

Bipolar Transistor npn pnp

Bipolar Transistor npn pnp p-type silicon n-type silicon

Vertical npn BJT Base Emitter Collector n+ buried collector implant Buried collector Vertical npn BJT

Lateral pnp BJT BE E C CB Lateral pnp BJT

Bipolar Transistor I C I B5 npn I B4 I B3 I B2 I B V CE

Bipolar Transistor C I C B I B V CE V BE E pnp

Bipolar Transistor C B E C npn CE

Bipolar Transistor C npn CE Most analog or linear applications based upon Forward Active region Most digital applications involve Saturation and Cutoff regions and switching between these regions as the Boolean value changes states

Bipolar and MOS Region Comparisons I C Saturation Forward Active V CE MOSFET BJT Cutoff Cutoff Saturation Triode Cutoff Forward Active Saturation

Bipolar Transistor I C I B5 I B4 I B3 I B2 I B V CE npn

Bipolar Transistor Multi-Region Model I βi V + = CE C B VAF JSA I B = β E e V BE V t V BE >.4V V BC < Forward Active V t = kt q V BE =.7V V CE =.2V I C <βi B Saturation I C =I B = V BE < V BC < Cutoff

Bipolar Transistor I C I B5 I B4 I B3 I B2 I B V CE npn C CE

Bipolar Transistor I C = βi JSA I B = β V t = kt q B E e V BE V t Simplifier Basic Multi-Region Model V BE >.4V V BC < Forward Active V BE =.7V V CE =.2V I C <βi B Saturation I C =I B = V BE < V BC < Cutoff

End of Lecture 3