The Effect of Deposition Parameter on Electrical Resistivity of TiAlN Thin Film

Similar documents
An Example file... log.txt

Framework for functional tree simulation applied to 'golden delicious' apple trees

Estimation of Retention Factors of Nucleotides by Buffer Concentrations in RP-HPLC

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce


The University of Bath School of Management is one of the oldest established management schools in Britain. It enjoys an international reputation for

Plasmonic Hot Hole Generation by Interband Transition in Gold-Polyaniline

A Study on the Analysis of Measurement Errors of Specific Gravity Meter

Inductively Coupled Plasma Reactive Ion Etching of GeSbTe Thin Films in a HBr/Ar Gas

T i t l e o f t h e w o r k : L a M a r e a Y o k o h a m a. A r t i s t : M a r i a n o P e n s o t t i ( P l a y w r i g h t, D i r e c t o r )

Optimal Control of PDEs

Obtain from theory/experiment a value for the absorbtion cross-section. Calculate the number of atoms/ions/molecules giving rise to the line.

Examination paper for TFY4240 Electromagnetic theory

OC330C. Wiring Diagram. Recommended PKH- P35 / P50 GALH PKA- RP35 / RP50. Remarks (Drawing No.) No. Parts No. Parts Name Specifications

General Neoclassical Closure Theory: Diagonalizing the Drift Kinetic Operator

Matrices and Determinants

$%! & (, -3 / 0 4, 5 6/ 6 +7, 6 8 9/ 5 :/ 5 A BDC EF G H I EJ KL N G H I. ] ^ _ ` _ ^ a b=c o e f p a q i h f i a j k e i l _ ^ m=c n ^

Redoing the Foundations of Decision Theory

Vectors. Teaching Learning Point. Ç, where OP. l m n

Relation Between the Growth Twin and the Morphology of a Czochralski Silicon Single Crystal

Oxygen Transfer Characterization in Aeration Tank for Oxidation Treatment of Water Pollutants

Dimethyl Ether Production using a Reactive Distillation Process

Planning for Reactive Behaviors in Hide and Seek

" #$ P UTS W U X [ZY \ Z _ `a \ dfe ih j mlk n p q sr t u s q e ps s t x q s y i_z { U U z W } y ~ y x t i e l US T { d ƒ ƒ ƒ j s q e uˆ ps i ˆ p q y

Inductively Coupled Plasma Etching of Ta, Co, Fe, NiFe, NiFeCo, and MnNi with Cl 2 /Ar Discharges

ALTER TABLE Employee ADD ( Mname VARCHAR2(20), Birthday DATE );

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD

ETIKA V PROFESII PSYCHOLÓGA

Department of Chemistry, NanoCarbon Center, Houston, Texas 77005, United States, University of Central Florida, Research Parkway,

Pharmacological and genomic profiling identifies NF-κB targeted treatment strategies for mantle cell lymphoma

The New Technique and Application of Pile-cap Treatment on DH-PHC pile

Constructive Decision Theory

A General Procedure to Design Good Codes at a Target BER

QUESTIONS ON QUARKONIUM PRODUCTION IN NUCLEAR COLLISIONS

Growth of carbon nanotubes by chemical vapor deposition

Principal Secretary to Government Haryana, Town & Country Planning Department, Haryana, Chandigarh.


The Effect of Temperature and Space Velocity on the Performance of Plate Reformer for Molten Carbonate Fuel Cell

SOLAR MORTEC INDUSTRIES.

Max. Input Power (W) Input Current (Arms) Dimming. Enclosure

Complex Analysis. PH 503 Course TM. Charudatt Kadolkar Indian Institute of Technology, Guwahati

UNIQUE FJORDS AND THE ROYAL CAPITALS UNIQUE FJORDS & THE NORTH CAPE & UNIQUE NORTHERN CAPITALS

Influence of Loading Position and Reaction Gas on Etching Characteristics of PMMA in a Remote Plasma System

Improvement of MgO Characteristics Using RF-Plasma Treatment in AC Plasma Display Panel

MICROCHIP MANUFACTURING by S. Wolf

Juan Juan Salon. EH National Bank. Sandwich Shop Nail Design. OSKA Beverly. Chase Bank. Marina Rinaldi. Orogold. Mariposa.

Energy fluxes in plasmas for fabrication of nanostructured materials

4.3 Laplace Transform in Linear System Analysis

Supporting Information. Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition

The Synthesis of Zeolite Using Fly Ash and its Investigate Adsorption Character

X-ray photoelectron spectroscopic characterization of molybdenum nitride thin films

A Beamforming Method for Blind Calibration of Time-Interleaved A/D Converters

Manipulation of Cooling Water Flow Rates in a Cooling Water Heat Exchangers Network

Research of Application the Virtual Reality Technology in Chemistry Education

A Functional Quantum Programming Language

February 17, 2015 REQUEST FOR PROPOSALS. For Columbus Metropolitan Library. Issued by: Purchasing Division 96 S. Grant Ave. Columbus, OH 43215

Fig 1: Auger Electron Generation (a) Step 1 and (b) Step 2

Repetition: Practical Aspects

ECE 695 Numerical Simulations Lecture 35: Solar Hybrid Energy Conversion Systems. Prof. Peter Bermel April 12, 2017

Effect of Sample Configuration on Droplet-Particles of TiN Films Deposited by Pulse Biased Arc Ion Plating

New method for solving nonlinear sum of ratios problem based on simplicial bisection

Supplementary Figure S1. AFM characterizations and topographical defects of h- BN films on silica substrates. (a) (c) show the AFM height

Modeling of the Thermal Behavior of an Electric-Vehicle Battery

PART IV LIVESTOCK, POULTRY AND FISH PRODUCTION

Low-temperature-processed inorganic perovskite solar cells via solvent engineering with enhanced mass transport

Control of deposition profile of Cu for largescale integration (LSI) interconnects by plasma chemical vapor deposition*

Effect of Spiral Microwave Antenna Configuration on the Production of Nano-crystalline Film by Chemical Sputtering in ECR Plasma

Symbols and dingbats. A 41 Α a 61 α À K cb ➋ à esc. Á g e7 á esc. Â e e5 â. Ã L cc ➌ ã esc ~ Ä esc : ä esc : Å esc * å esc *

New Sol-Gel Solution with 45 Days Stability for Preparation Silica Thin Films

Electronic Supplementary Information

Tailorable and Wearable Textile Devices for Solar Energy Harvesting and Simultaneous Storage

TELEMATICS LINK LEADS

Body Centered Cubic Magnesium Niobium Hydride with Facile Room Temperature Absorption and Four Weight Percent Reversible Capacity

A novel sputtering technique: Inductively Coupled Impulse Sputtering (ICIS)

Enhanced surface morphologies of screen-printed carbon nanotube films by heat treatment and their field-emission properties

An Introduction to Optimal Control Applied to Disease Models

1. Allstate Group Critical Illness Claim Form: When filing Critical Illness claim, please be sure to include the following:

New BaBar Results on Rare Leptonic B Decays

Supporting information

The importance of the momentum flux on the mechanical properties of sputter deposited TiN thin films.

Vector analysis. 1 Scalars and vectors. Fields. Coordinate systems 1. 2 The operator The gradient, divergence, curl, and Laplacian...

A Study on Dental Health Awareness of High School Students

Sample Exam 1: Chapters 1, 2, and 3

Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications

Electronic Supplementary Information. Three-Dimensional Carbon Foam/N-doped 2. Hybrid Nanostructures as Effective Electrocatalysts for

Control of Optical Properties by the Stepwise Chemical and Plasma Spray Treatment of Polycarbonate

Simulation of Metal TRAnport. SIMTRA : a tool to predict and understand deposition. K. Van Aeken, S. Mahieu, D. Depla.

Preparation of Hydrophilic Inorganic-Organic Hybrid Coating Solutions by Sol-Gel Method

Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi, 1295, Changning,

Low-Dielectric-Constant SiOC(-H) Films Prepared from DMDMS and O 2 Precursors by Using Plasma Enhanced Chemical Vapor Deposition

The Effect of Reaction Conditions on Particle Size and Size Distribution in the Synthesis of SiO 2 Nanoparticles from W/O Microemulsion Method

Design of the Triple and Quadruple Fixed-Bed Catalytic Reactor for Phthalic Anhydride Production

Effects of Pressure and NH 3 Flow on the Two-Dimensional Electron Mobility in AlGaN/GaN Heterostructures

Reaction Mechanism of Area-Selective Atomic

Electronic Supplementary Information

Atomic layer deposition of titanium nitride

Analysis of a MgO Protective Layer Deposited with Ion-Beam-Assisted Deposition in an AC PDP

수소가스화기에서석탄의메탄화반응특성. Characteristics of Coal Methanation in a Hydrogasifier

Temperature Effect on the Retention Behavior of Sugars and Organic Acids on poly (4-vinylpyridine) Resin

PRECISE ORBIT DETERMINATION OF GPS SATELLITES FOR REAL TIME APPLICATIONS

Transcription:

HWAHAK KONGHAK Vol. 40, No. 4, August, 00, pp. 59-533 TiAlN Electrical Resistivity * * (00 4 3, 00 7 31 ) The Effect of Deposition Parameter on Electrical Resistivity of TiAlN Thin Film Young Soo Song, Yo Han Byun, Hye In Kim, Jin Koo Yoon, In Sook Kim* and Chee Won Chung School of Chemical Engineering, Inha University, Incheon 40-751, Korea *U-Team, Samsung Advanced Institute of Technology, Suwon 440-660, Korea (Received 3 April 00; accepted 31 July 00) (dc magnetron reactive sputtering) N flow rate dc power!" TiAlN #$ %&'( )*+., #$' -./ electrical resistivity 0 1)* 34 51 34/6 78 9 X-ray :;< )*+. FESEM, #$= grain > 8?@ A BC DE)*+../F = G' - H4IJK, N flow rate0 0L' MN OP QRI dc power0 0L' MN( STUJ 0)*+. Electrical resistivityf N flow rate= G' -V( H4 W X KYZ[\, dc power0 0]^ QRF _` aijb 0]^ 0I+. Abstract TiAlN thin films were deposited at room temperature by varying nitrogen flow rate, dc power and deposition pressure by dc magnetron reactive sputtering. The deposition rate and electrical resistivity of the deposited films were investigated and x-ray diffraction(xrd) was used to examine crystalline structure and crystallinity of the film. Surface morphology and grain shape of the deposited films were observed by using field emission scanning electron microscopy(fesem). The deposition rate was no noticeable variation for the change of deposition pressure but it was a little decrease with increasing N flow rate and was proportionally increased with increasing dc power. Electrical resistivity was constant with respect to the change of N flow rate but it was decreased as a dc power increased and increased as a deposition pressure increased. Key words: TiAIN, Electrical Resistivity, Dc Magnetron Sputtering, FESEM 1. Hard material coating TiN [1, ]!" # $ [3, 4]. %& hardness, adhesion, friction %' oxidation resistance ( )*+, -. / 0 1 34$. +3 5* TiN 67 8 TiAlN+ 94$. TiAlN :;,< =1>?@ A 0BC D E F GE H ( I J*, -. 1980K6 LMN,<, 8', OP Q 6 RST!" $[5, 6]. TiAlN :; sputtering, evaporation, ion plating (U V PVD H To whom correspondence should be addressed. E-mail: cwchung@inha.ac.kr WX Y Z @ [[7], +3 HW \ ]0 ^ _ `%abc denf gh HW i ji kl m A gh n o @ pd q,r sn tu @ :; Y u @ J* v] :; gh w + +4$. denfw + TiAlN :; gh u -, gh xc,,r s, dc power %' gas flow rate ( gh y@ : ; )z, { Y^ ( {} ~+!. " $[6-8]. %& +3 TiAlN :; 3!X gh y@ n yo ƒ gh4 :; Y+& {!Y 63,< 6 \*p!" pd[11-1] gh y@ TiAlN :; electrical resistivity {} ~ 6 " $. ˆ! thermal conductivity qš S 7 A thermal diffusivityn TiAlN :; 6 Œ y@ N flow ratež dc power %' gh xc yo ƒ gh4 :; electrical resistivity(ρ) yon Ym $. 59

530 Fig. 1. Schematic diagram of the dc magnetron sputtering system.. TiAlN :; ]0 ^_ `%abc den J n m ArU N j dn Œ SiO (4,000 )/Si,r s gh " $. / m3 gh J} š!yn Fig. 1 & k $. kl ^œ inch+d TiŽ Al+ 80 : 0 Y4 ji m $. v]p TiAlN :; gh žÿ p $. ˆ gh n A+,,rU klu 'n 5cm t $. v3 :; o, 1 rpmp,r+ " 0 sccm Ar d vz t" $. TiAlN :; N flow ratež dc power %' gh xc yo ƒ gh " $. Target # H, gh,r main shutter vz3 0 sccm Ar dž 53 W dc power presputtering 10ª«/ 3 / $. Mechanical pumpž )4 turbo molecular pumpn m gh /, 4±10 6 Torr t" $. Dektak surface profilometern m :; gh ²z" p D field emission scanning electron microscopy(fesem)(h-9000, Hitachi) + :; { Y^ ³ grain,ž µ (+ " $. 3 gh4 TiAlN :; )z!y Cu-Kα radiation m3 X-ray + thin film ¹º ª»" $. TiAlN :; electrical resistivity(ρ)¼ a four point probe(sr1000, Changmin)n + o $. 3. / N flow ratež dc power %' gh xc gh Œ y@ ½¾, gh4 TiAlN :; 6 XRDŽ FESEM 8' U electrical resistivity(ρ), + Ym" $. Fig. 3.5 mtorr gh xcu 53 W dc powern vz t N flow rate yo 6 gh4 TiAlN :; gh Ž electrical resistivity yon &k $. gh N flow rate g ˆ F$ vzà œ + $. Electrical resistivity N flow rate 4 sccmv -Á g % + vz3 ¼ &k $. ˆ N flow rate 4 sccm + / Y TiAlN :; gh Ž electrical resistivity N flow rate yo à ~ Ä Å @ $. N flow rate 40 4 00 8 Fig.. Deposition rate and electrical resistivity of TiAlN films deposited as a function of N flow rate; dc power: 53 W; deposition pressure: 3.5 mtorr; Ar flow rate: 0 sccm; target-to-substrate distance: 5 cm; deposition time: 0 min. n yo ƒ gh4 TiAlN :; X-ray ÆÇ Fig. 3 Œ $. ¹È N flow rate yo Y TiN(111), Ti AlN(110) ÉÊ3 peak $. %& N flow rate g <Ë+ : ; peak yo4 ¹Ì + Í$. ˆ Fig. 3 gh Y N flow rate yo :; )z!y à ~ Œ p Î 4$. %' TiN peak > &k& TiŽ Al 80 : 0 kl Y, p r54$. Fig. Ž 3pMN N flow rate yo 6 TiAlN :; gh Ž )z!y à ~ Ä p À»"[, kl " vz3 current 6 Ï critical N flow rate + N flow :; Y ³ gh ~ Œ $ 4 U v} $[8]. N flow rate yo À gh4 TiAlN :; FESEM m Fig. 4 &k $. :; =1 N flow rate g <Ë+ vð +D grain,ž ¹Ñ tm µ" + " $. 6 sccm N flow ratež 3.5 mtorr gh xc vz z dc power yo ˆ gh4 :; gh Ž electrical resistivity

TiAlN Electrical Resistivity Fig. 3. XRD patterns of TiAlN thin films deposited as a function of N flow rate. 531 Fig. 5. Deposition rate and electrical resistivity of TiAlN films deposited as a function of dc power; deposition pressure: 3.5 mtorr; N flow rate: 6 sccm; Ar flow rate: 0 sccm; target-to-substrate distance: 5 cm; deposition time: 0 min. Fig. 6. XRD patterns of TiAlN thin films deposited as a function of dc power. yo Fig. 5 $. gh dc power ÒÓ g electrical resistivity dc power 70 Wv -Á ÔÕT F % + {{ F $. Fig. N flow rate yo gh4 :; electrical resistivity Ö 1 Fig. 5 dc power yo gh4 :; electrical resistivity q dc power 6 p à ¼ @ $. + q dc power Y 3 :;+ µ ", -. electrical resistivity Ò p À»4$. Fig. 6 vz3 3.5 mtorr gh xcu 6 sccm N flow rate dc power yo gh4 TiAlN : ; XRD ÆÇ Ø$. N flow raten yo :; gh3? U V+ dc power g TiN Ti AlN peak intensity g " + 4$. 3 150 W Ti Al N Fig. 4. FESEM photograph of TiAlN films deposited as a function of N flow rate. (a) sccm, (b) 8 sccm 3 HWAHAK KONGHAK Vol. 40, No. 4, August, 00

53 Fig. 8. Deposition rate and electrical resistivity of TiAlN films deposited as a function of deposition pressure; dc power: 53 W; N flow rate: 6 sccm; Ar flow rate: 0 sccm; target-to-substrate distance: 5 cm; deposition time: 0 min. resistivity 3.5 mtorrá vz % + g " + 4 $. Fig. N flow raten y@ gh4 TiAlN :; gh `ß gh xc gh à ~ electrical resistivity 6À à ~ y@à G u @ $. gh xc yo 6 XRD ³ FESEM m + Ym" $. gh xc y@ gh4 TiAlN :; Fig. 3 N flow rate yo 6 ª»4 XRD ÆÇ U áv ¹È Y TiN(111) Ti AlN(110) peak ÉÊ $. 3 gh x C g <Ë+ peak intensity yo4 ¹Ì + Í$. N flow rate yo `ß gh xc yo TiAlN :; )z!y à ~ p Î 4$. FESEM m 1 yo4 ¹È gh xc â gh4 :; =1!Y& grain, à ~ + + G " $. 4. S 7 A thermal diffusivityn TiAlN :;+ N flow dc power %' gh xc ( y@ gh " $. gh 4 :;X gh, )z!y, :; grain µ ( * ª»" electrical resistivity yon ãä, a four point proben m sheet resistance ²z" $. gh gh xc g 6 vz N flow rate g 6À «F $ vzà $. % & dc power g 6À * p g $. Electrical resistivity N flow rate yo 6 à yon + Íp& dc power g Ð 70 WÁ ÔÕT F D + «F" + " $. gh xc yo 6À 3.5 mtorr gh xc + g @ $. 3 q dc power A g h xc electrical resistivity N flow rate yo À gh 4 :; electrical resistivity ¼ $ 6 p à @}n &k p G " $. / S 7 j3 TiAlN :; q dc power A gh xc gh " å 3$ )c o @ $. Fig. 7. FESEM photograph of TiAlN films deposited as a function of dc power. (a) 30 W, (b) 110 W, (c) 188 W peak &k& dc power g 1 intensity, Ò u @ $. dc power yo TiNU Ti AlN peak " Ù Ú Ti Al N peak + Û dc power TiAlN :; )z!y à ~ @ $. Fig. 7 dc power yo gh4 TiAlN :; FESEM m &k $. dc power g Ð grain ÜÝ µ ¹Ñp J"D, g " ¹Ì+ " $. 3 q dc powerv@þ :;+ Y µ " + 4$. Dc powern 53 W, N flow raten 6 sccmp vz t gh xc yo gh4 :; gh electrical resistivity Fig. 8 $. gh xc g 6 gh «g $ vz t " + "D, electrical (1016) 3 40 4 00 8 rate

+. 6PÖ æz,],ç!f è!" $. 1. Huang, C. T. and Duh, J. G.: Surf. Coat. Technol., 81, 164(1996).. Carson, R. T., Givens, J. H., Savage, H. S., Lee, Y. W., Rigsbee, J. M. and Croisant, W. J.: Thin Solid Films, 04, 85(1991). 3. Yun, J.-Y. and Rhee, S.-W.: Korean J. of Chem. Eng., 13, 510(1996). 4. Kim, D.-H. and Kim, B.-Y.: Korean J. of Chem. Eng., 17, 449(000). TiAlN Electrical Resistivity 533 5. Munz, W. D.: J. Vac. Sci. Technol. A, 4, 717(1986). 6. Knotek, O., Munz, W. D. and Leyendecker, T.: J. Vac. Sci. Technol. A, 5, 173(1987). 7. Knotek, O. and Leyendecker, T.: J. Solid State Chem., 70, 318(1987). 8. Shew, B.-Y. and Huang, J.-L.: Surf. Coat. Technol., 71, 30(1995). 9. Cheng, Y. H., Tay, B. K., Lau, S. P. and Shi, X.: J. Appl. Phys., 89, 619(001). 10. Musil, J. and Hruby, H.: Thin Solid Films, 365, 104(000). 11. Hsieh, J. H., Liang, C., Yu, C. H. and Wu, W.: Surf. Coat. Technol., 108, 13(1998). 1. Chen, Y. I. and Duh, J. G.: Surf. Coat. Technol., 48, 163(1991). HWAHAK KONGHAK Vol. 40, No. 4, August, 00