The Documentation of Extreme Hydrometeorlogical Events: Two Case Studies in Utah, Water Year 2005

Similar documents
-Assessment of current water conditions. - Precipitation Forecast. - Recommendations for Drought Monitor

Oregon Water Conditions Report May 1, 2017

NIDIS Intermountain West Regional Drought Early Warning System February 7, 2017

NIDIS Drought and Water Assessment

Upper Missouri River Basin December 2017 Calendar Year Runoff Forecast December 5, 2017

Upper Missouri River Basin February 2018 Calendar Year Runoff Forecast February 6, 2018

Flood Risk Assessment

NIDIS Intermountain West Drought Early Warning System December 18, 2018

January 2011 Calendar Year Runoff Forecast

Monthly Long Range Weather Commentary Issued: APRIL 18, 2017 Steven A. Root, CCM, Chief Analytics Officer, Sr. VP,

Operational Perspectives on Hydrologic Model Data Assimilation

Arizona Climate Summary February 2012

The hydrologic service area (HSA) for this office covers Central Kentucky and South Central Indiana.

Bill Kappel. Doug Hultstrand. Applied Weather Associates

NIDIS Intermountain West Drought Early Warning System January 15, 2019

NIDIS Intermountain West Drought Early Warning System February 12, 2019

WSWC/NOAA Workshops on S2S Precipitation Forecasting

The following information is provided for your use in describing climate and water supply conditions in the West as of April 1, 2003.

NIDIS Intermountain West Drought Early Warning System May 23, 2017

Oregon Water Conditions Report April 17, 2017

Precipitation. Standardized Precipitation Index. NIDIS Intermountain West Regional Drought Early Warning System January 3, 2017

Missouri River Basin Water Management

Novel Snotel Data Uses: Detecting Change in Snowpack Development Controls, and Remote Basin Snow Depth Modeling

NIDIS Weekly Climate, Water and Drought Assessment Summary. Upper Colorado River Basin

Prediction of Snow Water Equivalent in the Snake River Basin

FEMA Hazards Loss Modeling Task Force (MOTF) Situation Report #14. Colorado Spring Flood Risk ***FINAL REPORT***

HyMet Company. Streamflow and Energy Generation Forecasting Model Columbia River Basin

Upper Missouri River Basin January 2018 Calendar Year Runoff Forecast January 3, 2018

PRECIPITATION. Last Week Precipitation:

Jessica Lundquist 1, Paul Neiman 3, Brooks Martner 2,3, Allen White 2,3, Dan Gottas 2,3, Marty Ralph 3

NOAA Spring Flood Outlook for Iowa

Highlights of the 2006 Water Year in Colorado

Results of Intensity-Duration- Frequency Analysis for Precipitation and Runoff under Changing Climate

March 1, 2003 Western Snowpack Conditions and Water Supply Forecasts

Quenching the Valley s thirst: The connection between Sierra Nevada snowpack & regional water supply

NIDIS Intermountain West Drought Early Warning System November 14, 2017

Spatial and Temporal Variability in Snowpack Controls: Two Decades of SnoTel Data from the Western U.S.

Webinar and Weekly Summary February 15th, 2011

Missouri River Basin Water Management Monthly Update

NIDIS Weekly Climate, Water and Drought Assessment Summary Upper Colorado River Basin Pilot Project 13 July 2010

INVISIBLE WATER COSTS

Overview of a Changing Climate in Rhode Island

NIDIS Intermountain West Drought Early Warning System April 18, 2017

RELATIONSHIP BETWEEN CLIMATIC CONDITIONS AND SOIL PROPERTIES AT SCAN AND SNOTEL SITES IN UTAH. Karen Vaughan 1 and Randy Julander 2 ABSTRACT

El Niño, Climate Change and Water Supply Variability

-Assessment of current water conditions. - Precipitation Forecast. - Recommendations for Drought Monitor

ASSESSING THE SENSITIVITY OF WASATCH MOUNTAIN SNOWFALL TO TEMPERATURE VARIATIONS. Leigh P. Jones and John D. Horel 1 ABSTRACT INTRODUCTION

Memo. I. Executive Summary. II. ALERT Data Source. III. General System-Wide Reporting Summary. Date: January 26, 2009 To: From: Subject:

NIDIS Intermountain West Drought Early Warning System May 1, 2018

2015 Fall Conditions Report

How Will the Colorado Run? The Colorado River in a Warmer World

PRECIPITATION. Last Week Precipitation:

Upper Missouri River Basin May 2018 Calendar Year Runoff Forecast May 4, 2018

Presentation Overview. Southwestern Climate: Past, present and future. Global Energy Balance. What is climate?

Lake Tahoe Watershed Model. Lessons Learned through the Model Development Process

Preliminary Runoff Outlook February 2018

Forecast Challenges for the Colorado Basin River Forecast Center

NIDIS Intermountain West Drought Early Warning System November 21, 2017

Water information system advances American River basin. Roger Bales, Martha Conklin, Steve Glaser, Bob Rice & collaborators UC: SNRI & CITRIS

2017 Fall Conditions Report

NIDIS Intermountain West Drought Early Warning System April 24, 2018

2016 Fall Conditions Report

David R. Vallee Hydrologist-in-Charge NOAA/NWS Northeast River Forecast Center

Presented by Jerry A. Gomez, P.E. National Hydropower Association Northeast Regional Meeting - September 17, 2009

STRUCTURAL ENGINEERS ASSOCIATION OF OREGON

Souris River Basin Spring Runoff Outlook As of March 1, 2019

SEPTEMBER 2013 REVIEW

NOAA Water Resources Monitor and Outlook

Natural Variability in Annual Maximum Water Level and Outflow of Yellowstone Lake

NIDIS Intermountain West Drought Early Warning System November 13, 2018

NIDIS Intermountain West Drought Early Warning System December 11, 2018

Flood Forecasting Tools for Ungauged Streams in Alberta: Status and Lessons from the Flood of 2013

NIDIS Weekly Climate, Water and Drought Assessment Summary. Upper Colorado River Basin July 31, 2012

9. PROBABLE MAXIMUM PRECIPITATION AND PROBABLE MAXIMUM FLOOD

Gateway Trail Project

DK DM M EMORANDUM D ECEMBER 28, 2018 SUBJECT:

Variability Across Space

Linking the Hydrologic and Atmospheric Communities Through Probabilistic Flash Flood Forecasting

A Synopsis of the December 1-4, 2007 Storm Events

A Century of Meteorological Observations at Fort Valley Experimental Forest: A Cooperative Observer Program Success Story

A Review of the 2007 Water Year in Colorado

2011 National Seasonal Assessment Workshop for the Eastern, Southern, & Southwest Geographic Areas

Drought and Future Water for Southern New Mexico

Basic Hydrologic Science Course Understanding the Hydrologic Cycle Section Six: Snowpack and Snowmelt Produced by The COMET Program

Souris River Basin Spring Runoff Outlook As of March 15, 2018

NWS FORM E-5 U.S. DEPARTMENT OF COMMERCE I HYDRO SERVICE AREA NOAA, NATIONAL WEATHER SERVICE I Indianapolis, IN MONTHLY REPORT

Lake Tahoe. Response to Winter Rain Events. Dr. David Maidment University of Texas at Austin. Dr. David Tarboton Utah State University

4.3 Climate (6.3.3) Explore this Phenomena. The same sun shines on the entire Earth. Explain why these two areas have such different climates.

Areal Reduction Factors for the Colorado Front Range and Analysis of the September 2013 Colorado Storm

May 2016 Volume 23 Number 5

NIDIS Intermountain West Drought Early Warning System December 4, 2018

Foundations of Earth Science, 6e Lutgens, Tarbuck, & Tasa

Filling Gaps in Water Supply Predictions: The RIO-SNO-FLOW Project

Investigation of the Arizona Severe Weather Event of August 8 th, 1997

Water Year 2019 Wet or Dry?? Improving Sub-seasonal to Seasonal Precipitation Forecasting Jeanine Jones, Department of Water Resources

NIDIS Intermountain West Drought Early Warning System January 16, 2018

An Overview of Operations at the West Gulf River Forecast Center Gregory Waller Service Coordination Hydrologist NWS - West Gulf River Forecast Center

WWA Summer Tour. Tuesday, June 20, Lander, Wyoming. Contents. Final Water Forum for Snowcover & Stream flow Generation

Weather Outlook: 2015 Growing Season

What does the El Niño have in store for the Upper Colorado Basin?

Transcription:

The Documentation of Extreme Hydrometeorlogical Events: Two Case Studies in Utah, Water Year 2005 Tim Bardsley1*, Mark Losleben2, Randy Julander1 1. USDA, NRCS, Snow Survey Program, Salt Lake City, Utah. 2. INSTAAR, University of Colorado, Boulder, Coloroado. * Corresponding Author, contact at Timothy.Bardsley@ut.usda.gov

INTRODUCTION The Natural Resources Conservation Service (NRCS) maintains a network of over 700 automated hydrometeorlogical stations called SNOTEL SNOw TELemetry for the purpose of making water supply predictions. These stations consist of a snow pillow to measure the snow water equivalent of the snowpack, a precipitation gage, air temperature, and in many cases snow depth and soil moisture. Many SNOTEL sites and all sites out of the Utah Data Collection Office (DCO) are now measured hourly. The SNOTEL network represents the largest network of near real-time hydrometeorlogical stations in the mountainous regions of the Western U.S. As such, data from the SNOTEL system are used for a large variety of applications. Extreme events are encountered during the course of data collection. These events are of particular interest to a wide variety of data users, due to large economic impacts of associated floods and droughts. The Utah DCO is working towards implementing a program-wide protocol for the documentation of such events. A current working definition of an extreme event requiring greater investigation is when a site with 15 or more years of record is outside the historic upper or lower 5%, and these data could have extreme consequences. These events will be validated and documented using whatever means are practical and reasonable, including, but not limited to, ground verification, comparison with neighboring sites, and remote sensing products. Two such events were apparent during the first third of the 2005 water year in Utah, and are the motivation for this poster. They are the events of October 17 to October23, 2004, and January 8 to January 11, 2005, and will be presented here.

Circulation Indicies and Vector Analysis 3 2.5 2 1.5 1 0.5 0 Southerly (S) Westerly (W) Flow Strength (F) Vorticity (Z) Std. Deviation from Ave. October January Figure 1. October 20, 2004. 700 mb Geopotential Height Anomaly Map. Scale is in meters and based on 1968 to 1996. (NOAA-CIRES/Climate Diagnostic Center) Figure 2. Circulation Indices and Vector Analysis Results for the October and January storms vs. 1970 to 2004 average. October 2004 Storm Analysis: A strong low pressure system centered off the coast of Northern California creating a strong SW flow over Utah (Figure1). Circulation and Vector analysis indicates this event was dominated by greater southerly vectors (S) and stronger air flow (F). Interestingly, increased vorticity (Z), or atmospheric instability, was not a factor (Figure 2). For more information on this technique, see Losleben (2000). Storm totals for October 17th through 23rd ranged between 31.5cm and 2cm with an average of 12.7 cm for 88 sites. This storm was followed by another significant, but lower intensity storm with little or no gap at many sites before the beginning of November. Of the 77 SNOTEL sites with a period of record of 15 years or greater, 51 had the cumulative October precipitation of record, and two tied the record. Twenty-four hour precipitation intensity frequency analysis revealed 12 of 86 sites (two missing) in excess of 25 year return intervals with 6 of those sites exceeding 100 year return intervals, with Gutz Peak site exceeding 1000 years (Figure 3) (NOAA 2005). Five of the six highest intensity sites were in the Southwest region of Utah. Additionally, the maximum 24 hour precipitation was compared with the historic 24 hour maximum, when sites had 15 or more years of record. This reveled 12 of 77 sites with a record 24 hour precipitation intensity, six of which were in SW Utah.

Stream Response: In general stream response to this event was relatively benign. This was in part a result of very low antecedent soil moisture and snowpack conditions. Most rivers showed moderate increases, while rivers in the Southwest and South-Central regions of the State showed increases on the order of 100 fold, these were still well below flood stage, and reservoir levels allowed much of this water to be captured. Figure 3. Average return interval for maximum 24 hour precipitation intensity. Select sites indicate maximum rate.

Figure 4. January 11, 2005 Geopotential Height Anomaly Map Scale is in meters and based on 1968 to 1996 (NOAA-CIRES) Figure 5. Basin Average precipitation and SWE increase for January event.

January 2005 Storm Analysis: Another very deep and slow moving low pressure system centered over the Southwest U.S. brought warm moist air over Utah for the days of this event. The timing of this storm was from January 8th to 11th 2005. The atmospheric circulation creating the January event was very similar to that of the October event, but with slightly weaker low pressure and Southwest flow (figure 4). This slightly weaker system corresponded to a somewhat weaker southerly flow (S) and flow vector (F), but a stronger westerly flow vector (W) (Figure 2). Similar to the October event, this storm impacted most of the state of Utah, but run-off in all but the Southwestern portion of the State was moderated as nearly all of these areas experience almost exclusively snow. Portions of Southwestern Utah collected a mixture of rain and snow, and had greater accumulation than other parts of the State. Basin average accumulated precipitation and snow water equivalent (SWE) for the entire state is displayed in (Figure 5). A closer look at accumulation in the Southwestern region of the State can be found in (Figure 6). The Little Grassy SNOTEL is the lowest elevation SNOTEL site in the Virgin Basin at 1830 meters. This site showed little net change in SWE during the event, starting and ending the event at near 15cm of SWE, indicating mostly rain fell at this elevation, but passed through the snowpack without causing significant melt. SNOTEL sites above approximately 2130 meters in this region collected nearly all precipitation as SWE and therefore did not represent a winter flooding risk. There is however a very large area that is not adequately represented by any measurement network in the 1500-to-1830 meter range that had a significant snowpack before this event, and lost most if not all of it in addition to very high rain accumulation (Figure 7).

Stream Response: The stream response to the rain, rain on snow, and snowmelt event of January 8th to 11th 2005 was enormous, but very difficult to quantify. Runoff conditions were greatly enhanced by wet soil moisture conditions left behind by the October event, leading to unusually high runoff efficiency (Figure 8). Additionally, the loss of significant low elevation snowpack was a major contributor. Most of the USGS stream gages in the heaviest hit drainages of the Virgin, Santa Clara, and their tributaries were significantly compromised. The USGS has estimated flows and return intervals for the stations in the area, but only stations in less severely impacted areas have continuous real time records that include the peak flow. Many stations had estimated recurrence intervals near and in excess of 100 years (USGS 2005a, USGS 2005b). Stream channels were very significantly altered and had an enormous impact on adjacent property and infrastructure (Figures 9).

Data Quality Assurance Standard methods for data quality insurance include but are not limited to, ground verification, and comparison with neighboring sites, redundant instrumentation, and additional land and satellite data networks. The nature of an extreme event causes difficulty with remote stations, and requires greater data scrutiny. The relatively warm temperatures of the October event allowed precipitation measurements work accurately with very few exceptions. Ground verification of eight high accumulation sites shortly after this event revealed very close agreement with telemetered values. The much colder temps and greater snow component of the January event caused significant problems with precipitation measurements. Snow plugs formed in many gages preventing the real time measurements. In these cases, real-time estimates were made based on changes in SWE, snow depth, and neighboring sites. A more accurate post event estimate was made after the plug is naturally of manually removed. Six high accumulation sites were visited shortly after the January event. Precipitation plugs, if present were removed and ground verification taken. Post plug ground verification was consistent with telemetred values. These problems made frequency analysis impossible for the January event, but accurate estimates of storm totals were obtained. SUMMARY The Storms of October 17th - 23rd, 2004 and January 8th - 11th, 2005 had a very significant impact on immediate hydrologic conditions in the state of Utah as well as on the water year as a whole. While the January event was of similar magnitude to the October event, impacts of high flows far exceeded the October event. The October event set the stage for the extreme run-off generated in January. Estimates for damages caused by the January event exceed 150 million dollars (Utah Flood Relief, 2005). Combined precipitation totals from these two events were near the average water year total for several sites in the Southwestern region of the state. The extreme nature of these events will draw additional interest in hydrometeorlogical data from these time periods. In the near future data users will have access to an event summary report for these and future extreme events through the Utah Data Collection Office or its web page (NRCS 2005).

Acknowledgements: Thanks to Mike Bricco for his assistance in producing the GIS graphics, and Ray Wilson for valuable input. Photos: USGS and NRCS, top right photo source unknown References: Losleben, M., N. Pepin, S. Pedrick. 2000. "Relationships of precipitation chemistry, atmospheric circulation, and elevation at two sites on the Colorado Front Range", Atmospheric Environment, 34, pp 1723-1737. NRCS 2005. Utah Snow Survey Program (Web page); http://www.ut.nrcs.usda.gov/snow/index.html. (Accessed November 30, 2005) NOAA Frequency. 2005. NOAA s National Weather Service Hydrometeorlogical Design Studies Center, Precipitation Frequency Data Server. (Web page); http://hdsc.nws.noaa.gov/hdsc/pfds/sa/ut_pfds.html. (Accessed November 30, 2005) USGS. 2005a. USGS, Flood in the Virgin River Basin, Southwestern Utah, January 9-11, 2005. (Web page); http://ut.water.usgs.gov/flooding/virgin_flood.html. (Accessed November 30, 2005) USGS. 2005b. USGS Daily Water Data for Utah. (Web page); http://waterdata.usgs.gov/ut/nwis/dv. (Accessed November 30, 2005) Utah Flood Relief. 2005. Virgin River/Santa Clara River Flood Relief Inc, Foundation. (web page); http://www.utahfloodrelief.com/need.html. (Accessed November 30, 2005)