Section 2.1 Special Right Triangles

Similar documents
Section 1.3 Triangles

Pythagorean Theorem and Trigonometry

Proportions: A ratio is the quotient of two numbers. For example, 2 3

Precalculus Notes: Unit 6 Law of Sines & Cosines, Vectors, & Complex Numbers. A can be rewritten as

Intermediate Math Circles Wednesday 17 October 2012 Geometry II: Side Lengths

Trigonometry and Constructive Geometry

4.3 The Sine Law and the Cosine Law

MAT 1275: Introduction to Mathematical Analysis

Trigonometry. cosθ. sinθ tanθ. Mathletics Instant Workbooks. Copyright

Comparing the Pre-image and Image of a Dilation

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

STRAND I: Geometry and Trigonometry. UNIT 32 Angles, Circles and Tangents: Student Text Contents. Section Compass Bearings

Similar Right Triangles

GM1 Consolidation Worksheet

MCH T 111 Handout Triangle Review Page 1 of 3

12.4 Similarity in Right Triangles

Trigonometry Revision Sheet Q5 of Paper 2

Maintaining Mathematical Proficiency

The angle sum of a triangle is 180, as one angle is 90 the other two angles must add to 90. α + β = 90. Angles can be labelled;

Factorising FACTORISING.

Geometry of the Circle - Chords and Angles. Geometry of the Circle. Chord and Angles. Curriculum Ready ACMMG: 272.

Lecture 6: Coding theory

A P P E N D I X POWERS OF TEN AND SCIENTIFIC NOTATION A P P E N D I X SIGNIFICANT FIGURES

Pythagoras Theorem. The area of the square on the hypotenuse is equal to the sum of the squares on the other two sides

Surds and Indices. Surds and Indices. Curriculum Ready ACMNA: 233,

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point

10.3 The Quadratic Formula

Chapter 5 Worked Solutions to the Problems

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3

Part I: Study the theorem statement.

Introduction to Differentiation

PYTHAGORAS THEOREM WHAT S IN CHAPTER 1? IN THIS CHAPTER YOU WILL:

1 ELEMENTARY ALGEBRA and GEOMETRY READINESS DIAGNOSTIC TEST PRACTICE

GEOMETRY OF THE CIRCLE TANGENTS & SECANTS

Use of Trigonometric Functions

Pythagoras Theorem PYTHAGORAS THEOREM.

THE PYTHAGOREAN THEOREM

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then.

Proving the Pythagorean Theorem

Pythagoras Theorem. Pythagoras Theorem. Curriculum Ready ACMMG: 222, 245.

Lesson 4.1 Triangle Sum Conjecture

Find the value of x. Give answers as simplified radicals.

10. AREAS BETWEEN CURVES

MATHEMATICS AND STATISTICS 1.6

Counting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs

Similarity and Congruence

Math Lesson 4-5 The Law of Cosines

ART LESSONS & EXERCISES

Mathematics 10 Page 1 of 5 Properties of Triangle s and Quadrilaterals. Isosceles Triangle. - 2 sides and 2 corresponding.

Section 4.7 Inverse Trigonometric Functions

INTRODUCTION AND MATHEMATICAL CONCEPTS

Lesson 5.1 Polygon Sum Conjecture

Lesson 2.1 Inductive Reasoning

3.1 Review of Sine, Cosine and Tangent for Right Angles

Identifying and Classifying 2-D Shapes

Lesson 2: The Pythagorean Theorem and Similar Triangles. A Brief Review of the Pythagorean Theorem.

Lesson 2.1 Inductive Reasoning

5: The Definite Integral

Fundamental Theorem of Calculus

HYPERBOLA. AIEEE Syllabus. Total No. of questions in Ellipse are: Solved examples Level # Level # Level # 3..

Algebra: Function Tables - One Step

Non Right Angled Triangles

Triangles The following examples explore aspects of triangles:

3 Angle Geometry. 3.1 Measuring Angles. 1. Using a protractor, measure the marked angles.

2.4 Linear Inequalities and Interval Notation

2.4 Theoretical Foundations

STRAND J: TRANSFORMATIONS, VECTORS and MATRICES

PYTHAGORAS THEOREM,TRIGONOMETRY,BEARINGS AND THREE DIMENSIONAL PROBLEMS

Plotting Ordered Pairs Using Integers

m m m m m m m m P m P m ( ) m m P( ) ( ). The o-ordinte of the point P( ) dividing the line segment joining the two points ( ) nd ( ) eternll in the r

6.5 Improper integrals

MATH STUDENT BOOK. 10th Grade Unit 5

UNIT 31 Angles and Symmetry: Data Sheets

6.2 The Pythagorean Theorems

Sect 10.2 Trigonometric Ratios

In right-angled triangles the square on the side subtending the right angle is equal to the squares on the sides containing the right angle.

QUADRATIC EQUATION. Contents

A Study on the Properties of Rational Triangles

Topics Covered: Pythagoras Theorem Definition of sin, cos and tan Solving right-angle triangles Sine and cosine rule

Bridging the gap: GCSE AS Level

Math 20C Multivariable Calculus Lecture 5 1. Lines and planes. Equations of lines (Vector, parametric, and symmetric eqs.). Equations of lines

*GMT62* *20GMT6201* Mathematics. Unit T6 Paper 2 (With calculator) Higher Tier [GMT62] MONDAY 11 JUNE 3.00 pm 4.15 pm. 1 hour 15 minutes.

I 3 2 = I I 4 = 2A

8Similarity UNCORRECTED PAGE PROOFS. 8.1 Kick off with CAS 8.2 Similar objects 8.3 Linear scale factors. 8.4 Area and volume scale factors 8.

12 Basic Integration in R

Mid-Term Examination - Spring 2014 Mathematical Programming with Applications to Economics Total Score: 45; Time: 3 hours

Minimal DFA. minimal DFA for L starting from any other

ILLUSTRATING THE EXTENSION OF A SPECIAL PROPERTY OF CUBIC POLYNOMIALS TO NTH DEGREE POLYNOMIALS

Mathematics Number: Logarithms

2.1 ANGLES AND THEIR MEASURE. y I

Calculating Tank Wetted Area Saving time, increasing accuracy

CHENG Chun Chor Litwin The Hong Kong Institute of Education

LESSON 11: TRIANGLE FORMULAE

HS Pre-Algebra Notes Unit 9: Roots, Real Numbers and The Pythagorean Theorem

Mathematical Proofs Table of Contents

MTH 4-16a Trigonometry

Intermediate Math Circles Wednesday, November 14, 2018 Finite Automata II. Nickolas Rollick a b b. a b 4

CS 491G Combinatorial Optimization Lecture Notes

Lecture 2: Cayley Graphs

INTRODUCTION AND MATHEMATICAL CONCEPTS

Transcription:

Se..1 Speil Rigt Tringles 49 Te --90 Tringle Setion.1 Speil Rigt Tringles Te --90 tringle (or just 0-60-90) is so nme euse of its ngle mesures. Te lengts of te sies, toug, ve very speifi pttern to tem wi we will fin useful in te stuy of trigonometry. Equilterl = Equingulr n equilterl (equl-sie-mesure) tringle is lso known s n equingulr (equl-ngle-mesure) tringle euse ll tree ngles ve te sme mesure:. Wy?* To rete 0-60-90 tringle from n equilterl tringle, follow tese steps on : 1. In, mrk,, n s.. In, rw n ngle isetor from te top vertex,, to, n lel te point of intersetion D.. euse of symmetry in te equilterl tringle, D is ot n ltitue n segment isetor: ) D n D re rigt ngles, n ) D isets. 4. Ientify te lengts of D n D. 5. t rigt, rw D n lel te sie n ngle mesures; lel D wit. *euse no one sie is longer tn noter, none of te opposite ngles n e lrger tn noter, so tey must ll e te sme mesure: 180 = Se..1 Speil Rigt Tringles 49 Roert H. Prior, 018 opying is proiite.

50 Se..1 Speil Rigt Tringles Wt you soul ve isovere on te previous pge is tt we n estlis te 0-60-90 tringle y iseting n equilterl tringle. We n o tis on our own if we ever forget te reltionsips of te sies of 0-60-90 tringle. D D Te Rtio of te Sorter Leg to te Hypotenuse Te se,, of te equilterl tringle s te sme lengt,, s te ypotenuse of e of te 0-60-90 tringles. euse te se of te equilterl tringle ws isete, te new ses of e of te two rigt tringles is lf of te originl se, 1, or. In 0-60-90 tringle, te sortest sie wi is lf of te ypotenuse is lwys opposite te smllest ngle, te ngle. D Exmple 1: In te tringle t rigt, given te vlue of, fin. ) = 8 ) = 5 ) = 4 nswer: is lf of. ) = 8 = 4 ) = 5 ) = 4 = Exmple : In te tringle t rigt, given te vlue of, fin. ) = 5 ) = 7 ) = 6 nswer: is twie : = ) = 5 = 10 ) = 7 = 7 ) = 6 = 1 Se..1 Speil Rigt Tringles 50 Roert H. Prior, 018 opying is proiite.

Se..1 Speil Rigt Tringles 51 Te Rtio of te Longer Leg to te Sorter Leg Te longer leg of te 0-60-90 tringle is opposite te ngle. It is te seon longest of te tree sies, so it must e less tn te ypotenuse,, n more tn te sortest leg,. We n fin te lengt of tis longer leg using te Pytgoren Teorem. onsier, for exmple, 0-60-90 tringle wit ypotenuse of lengt ines. Tis mens te sorter leg is 1 in long, n te oter leg must ve lengt, x, etween 1 in n ines. (Te sme is true if we use feet, meters or miles inste of ines.) Tis mens tt 1 < x <. Let s put te Pytgoren Teorem to work: x 1 + x = x = seems resonle euse: 1 + x = 4 1 < < 4 1 x = 1 < < 4 x = ± 1 < < x = only y te wy, 1.7 From tis exmple, we see tt te longer leg is times s long s te sorter leg. Exmple : In te tringle t rigt, given te vlue of, fin. ) = 5 ) = 7 ) = 6 nswer: Multiply te sorter leg y. = ) = 5 ) = 7 or 7 ) = 6 = 6 9 = 6 = 18 Se..1 Speil Rigt Tringles 51 Roert H. Prior, 018 opying is proiite.

5 Se..1 Speil Rigt Tringles Exmple 4: In te tringle t rigt, given te vlue of, fin. Rtionlize te enomintor if neessry. ) = 4 ) = 6 ) = nswer: Divie te longer leg y ; = ) = 4 = 4 ) = 6 = 6 = ) = = Fining ll of te Sies of --90 Tringle In 0-60-90 tringle, if you know one sie ten we n use te reltionsips esrie in tis setion to fin te oter two sies. Te reltionsips inlue: ) ftor of etween te ypotenuse n te sortest leg, n ) ftor of etween te two legs. Note: Wen fining te sie lengt of 0-60-90- tringle, o not go iretly etween te longer leg n te ypotenuse; lwys use te sortest leg s go-etween; Strting t te ypotenuse: Strting t te longer leg: x x Se..1 Speil Rigt Tringles 5 Roert H. Prior, 018 opying is proiite.

Se..1 Speil Rigt Tringles 5 Exmple 5: In te tringle t rigt, given te vlue of, fin n. ) = 10 ) = 7 nswer: Fin te sorter leg,, first; ten fin. ) = 10 = 5 ) = 7 = 5 = 5 = 7 = 7 Exmple 6: In te tringle t rigt, given te vlue of, fin n. ) = 4 ) = 6 nswer: Fin te sorter leg,, first; ten fin. ) = 4 = 4 ) = 6 = 6 = = 4 = 8 = = 4 Te --90 Tringle Just like te --90 tringle, te --90 is very importnt in te stuy of trigonometry. n, no mtter te size, every 45-45-90 tringle is similr* to every oter 45-45-90 tringle. Te 45-45-90 tringle is not only rigt tringle, it is n isoseles tringle. euse te tringle is isoseles, te legs re ongruent to e oter. Tis mens tt knowing te lengt of one of te legs utomtilly tells you te lengt of te oter leg. Te ypotenuse n e foun y pplying te Pytgoren Teorem. *Similr tringles ve te sme ngle mesures n te sme proportion etween onseutive sies. In oter wors, no mtter te size of 45-45-90 tringle, te proportion etween ny pir of sies is te sme witin e 45-45-90 tringle. Se..1 Speil Rigt Tringles 5 Roert H. Prior, 018 opying is proiite.

54 Se..1 Speil Rigt Tringles Te Rtio of te Hypotenuse to Leg To emonstrte te reltionsip etween te lengts of te ypotenuse n one of te legs, let s ritrrily oose to ve te lengt of one of te legs e ines. Of ourse, te oter leg is lso ines, so let s fin te ypotenuse. + = 9 + 9 = 18 = ± 18 = = Tis suggests tt te ypotenuse is times te lengt of leg, eiter leg. Tis is true for every 45-45-90 tringle. To emonstrte tis onsisteny, let s oose te lengt of e leg to e mu more ritrry n let its vlue just e. Tis les to te following: + = = ± = = = or gin, te ypotenuse is times s long s eiter leg. Tis is onsistent wit wt we foun efore. Se..1 Speil Rigt Tringles 54 Roert H. Prior, 018 opying is proiite.

Se..1 Speil Rigt Tringles 55 Fining ll of te Sies of --90 Tringle In 45-45-90 tringle, if you know one sie ten we n use te reltionsips esrie ove to fin te oter two sies. Te reltionsips inlue: ) Te two legs re ongruent, n x ) ftor of etween te ypotenuse n eiter leg. Exmple 7: In te tringle t rigt, given te vlue of, fin n. ) = 4 ) = 5 nswer: Fin te oter leg, ; ten fin. ) = 4 ) = 5 = 4 = 4 = 5 = 5 = 10 Exmple 8: In te tringle t rigt, given te vlue of, fin n. ) = ) = 8 nswer: Fin eiter leg, let s sy, first; ten fin te oter leg,. ) = = ) = 8 = 8 = 4 = = 4 Se..1 Speil Rigt Tringles 55 Roert H. Prior, 018 opying is proiite.

56 Se..1 Speil Rigt Tringles Seprting Tringles Sometimes igrm will inlue more tn one tringle, s emonstrte in Exmple 9. One ppro to fining te sies of te tringle to re-rw te igrm s two seprte tringles. Wen oing so, it is importnt to lel te tringles orretly. (We sw te seprtion of tringles t te eginning of te setion wen we split prt te two 0-60-90 tringles.) Exmple 9: Given te lengt of one sie, fin te oter four sie mesures in tese tringles. Simplify ompletely. y x = 8 Proeure: First seprte te two tringles n orient tem in fmilir wy, s sown elow. Lel e tringles oring to te originl igrm. Note: Te ypotenuse of te 0-60-90 tringle is lele x, n te ypotenuse of te 45-45-90 tringle is lele m. x m p m x m y p euse we re given te vlue of x, we must strt in te 0-60-90 tringle n fin ot y n m, in tt orer: y = 1 x n m = y One we know te vlue of m, we n fin te vlues of p n. = m n p =. nswer: y = 1 8 = 4 so m = 4... n = 4 = 4 6 = 6 so p = 6 Se..1 Speil Rigt Tringles 56 Roert H. Prior, 018 opying is proiite.

Se..1 Speil Rigt Tringles 57 Setion.1 Fous Exerises For #1-1, e 0-60-90 tringle is lele seprtely, so oul e te smller ngle or te lrger ngle; in e se, is te rigt ngle. Given te lengt of, fin te lengts of n. 1. = 9. = 7. = 4 4. = 5 Given te lengt of, fin te lengts of n. 5. = 1 6. = 7. = 10 8. = Se..1 Speil Rigt Tringles 57 Roert H. Prior, 018 opying is proiite.

58 Se..1 Speil Rigt Tringles Given te lengt of, fin te lengts of n. 9. = 9 10. = 1 11. = 1. = 5 For #1-0, in e 45-45-90 tringle, is te rigt ngle. Given te lengt of, fin te lengts of n. 1. = 5 14. = 9 15. = 4 16. = 7 6 Se..1 Speil Rigt Tringles 58 Roert H. Prior, 018 opying is proiite.

Se..1 Speil Rigt Tringles 59 Given te lengt of, fin te lengts of n. 17. = 6 18. = 14 19. = 11 0. = 5 Given one of te vlues of, m, p, x, n y, fin te oter four vlues sown in te igrm. Simplify ompletely. Use te igrm t rigt for #1-4. p 1. m = 8 x y m. y = 6. p = 0 4. = 9 Se..1 Speil Rigt Tringles 59 Roert H. Prior, 018 opying is proiite.

60 Se..1 Speil Rigt Tringles Use te igrm t rigt for #5-8. m 5. m = y x p 6. p = 14 7. y = 6 8. x = 15 Use te igrm t rigt for #9-. 9. p = 6 x y m p 0. y = 1. m = 1. x = 1 Se..1 Speil Rigt Tringles 60 Roert H. Prior, 018 opying is proiite.