Student Exploration: Air Track

Similar documents
Student Exploration: Sled Wars

Student Exploration: Energy of a Pendulum

Student Exploration: Roller Coaster Physics

Student Exploration: 2D Collisions

Student Exploration: Diffusion

Student Exploration: Free-Fall Laboratory

Student Exploration: Inclined Plane Sliding Objects

Student Exploration: Collision Theory

Student Exploration: Energy Conversion in a System

Student Exploration: Uniform Circular Motion

Student Exploration: Bohr Model of Hydrogen

Key Performance Task

Newton s Third Law KEY IDEAS READING TOOLBOX. As you read this section keep these questions in mind: Name Class Date

Conservation of Linear Momentum

Section 1 Momentum and Impulse. Chapter 6. Preview. Objectives Linear Momentum. Houghton Mifflin Harcourt Publishing Company

Announcements - 9 Oct 2014

ONE-DIMENSIONAL COLLISIONS

Student Exploration: 2D Eclipse

When this bumper car collides with another car, two forces are exerted. Each car in the collision exerts a force on the other.

PHYS 1405 Conceptual Physics 1 Laboratory #5 Momentum and Collisions. Investigation: Is the total momentum of two objects conserved during collisions?

Gravitational Energy using Gizmos

Inelastic Collisions

Equilibrium and Concentration

Constant vs Conserved

When this bumper car collides with another car, two forces are exerted. Each car in the collision exerts a force on the other.

Student Exploration: Calorimetry Lab

Standard(s): 2.5 TA: Independence Level: % Assistance, coaching, prompting:

Student Exploration: Period of a Pendulum

Lab 8 Impulse and Momentum

The SI units of mass are kilograms (kg) and of velocity are meters / second (m/s). Therefore, the units of momentum are kg m/s.

Momentum ~ Lab Name:

Lab 9 CONSERVATION OF LINEAR MOMENTUM

Chapter 9 Linear Momentum and Collisions

4.) A baseball that weighs 1.6 N leaves a bat with a speed of 40.0 m/s. Calculate the kinetic energy of the ball. 130 J

Inelastic Collisions

Momentum & Energy Review Checklist

Lab 8 Impulse and Momentum

Student Exploration: Inclined Plane Rolling Objects

Compare the momentum of the same object moving with different velocities. Identify examples of change in the momentum of an object.

SPH4U UNIVERSITY PHYSICS

Momentum and Collisions

Momentum & Collisions

FM: WARM-UP. Students gather evidence about the velocity change of objects in a collision. (10 min)

Student Exploration: 3D Eclipse

Exploring Potential Energy, Kinetic energy and Conservation of Energy: Part 1:

STUDENT PACKET # 9 Student Exploration: Roller Coaster Physics

Conservation of Momentum: Marble Collisions Student Version

Student Exploration: Vectors

Collisions, Momentum, and Energy Conservation

Collision Theory Gizmo ExploreLearning.com

Date Period Name. Write the term that correctly completes the statement. Use each term once. elastic collision

Algebra Based Physics

Solving Momentum Problems

Gravity: How fast do objects fall? Student Advanced Version

Student Exploration: Temperature and Particle Motion

All moving objects have what Newton called a quantity of motion.

Standard(s): 2.5 TA: Independence Level: % Assistance, coaching, prompting:

1/9/2017. Newton s 2 nd Law of Motion, revisited

(D) Based on Ft = m v, doubling the mass would require twice the time for same momentum change

Student Exploration: Seasons in 3D

Momentum & Energy Review Checklist

Per 9 10 Momentum_Presentation.notebook. January 20, Momentum.

PSI AP Physics I Momentum

Energy Analysis of a Mass Oscillating on a Spring Masses and Springs Simulation

Name: Date: Period: Momentum, Work, Power, Energy Study Guide

Notes Momentum. Momentum and Impulse. - The product (multiplication) of an objects mass and velocity is called momentum.

Conservation of Momentum and Energy

Momentum and Impulse Concept Tests

Motion *All matter in the universe is constantly at motion Motion an object is in motion if its position is changing

Physics 10 Lecture 6A. "And in knowing that you know nothing, that makes you the smartest of all. --Socrates

Unit 5: Momentum. Vocabulary: momentum, impulse, center of mass, conservation of momentum, elastic collision, inelastic collision.

PHYS 1401 General Physics I EXPERIMENT 7 CONSERVATION OF LINEAR MOMENTUM

Per 3 4 Momentum_Presentation.notebook. January 23, Momentum.

Since the change in momentum must be zero, this also means that the total momentum that exists before an interaction will be equal to the total

Momentum Mass in Motion

Experiment: Momentum & Impulse in Collisions (Video)

F = ma W = mg v = D t

Student Exploration: Bohr Model: Introduction

Introduction to Energy Study Guide (also use your notes!!!!)

Unit: Planetary Science

Lab 12 - Conservation of Momentum And Energy in Collisions

Student Exploration: Hurricane Motion

Student Exploration: Food Chain

Conservation of Momentum. Last modified: 08/05/2018

KEY NNHS Introductory Physics: MCAS Review Packet #2

Conservation of Momentum in One Dimension

PROJECTILE MOTION: CONSERVATION OF MOMENTUM 19 FEBRUARY 2013

10/11/11. Physics 101 Tuesday 10/11/11 Class 14" Chapter " Inelastic collisions" Elastic collisions" Center of mass"

_CH01_p qxd 1/20/10 8:35 PM Page 1 PURPOSE

Advanced Collisions Teacher s Guide

Unit 8. Unit 8 - MTM. Outcomes. Momentum. Solve this problem. What does the word momentum mean to you?

Student Exploration: Magnetic Induction

(A) 0 (B) mv (C) 2mv (D) 2mv sin θ (E) 2mv cos θ

Impulse/Momentum And Its Conservation

PHYSICS LAB Experiment 7 Fall 2004 CONSERVATION OF MOMENTUM & COLLISIONS

Momentum Conceptual Questions. 1. Which variable has more impact on an object s motion? Its mass or its velocity?

Slide 1 / 40. Multiple Choice AP Physics 1 Momentum

5.3: Calculate kinetic energy, gravitational potential energy, and elastic potential energy. Do Now: 1. Hand in your Forms of Energy Wheel

Momentum and impulse Book page 73-79

Thinking about collisions (L8)

Transcription:

Name: Date: Student Exploration: Air Track Vocabulary: air track, approach velocity, conservation of energy, conservation of momentum, elasticity, kinetic energy, momentum, separation velocity, velocity Prior Knowledge Questions (Do these BEFORE using the Gizmo.) Imagine going to a bowling alley with a bowling ball and a ping pong ball. 1. Why is a bowling ball better for knocking down pins than a ping pong ball? 2. Which do you think would knock down more pins, a bowling ball moving 10 meters per second or a bowling ball moving 10 centimeters per second? 3. What two factors seem to most affect the amount of damage that occurs in a collision? Gizmo Warm-up An air track is a device that helps scientists study motion. Air comes out of holes in the track, allowing the gliders to move with minimal friction. 1. On the Air Track Gizmo, click Play ( ) to view a collision between the two gliders. What do you see? 2. Click Reset ( ). The velocity (v) of an object describes its speed and direction. The velocity of each glider is indicated next to the v 1 and v 2 sliders. Click Play, and then click Pause ( ) just before the collision. A. What is the velocity of Glider 1? B. In which direction does Glider 1 move? C. What is the velocity of Glider 2? D. In which direction does Glider 2 move?

Activity A: Momentum Get the Gizmo ready: Click Reset. Question: How does an object s momentum change when it collides with another object? 1. Explore: The Gizmo allows you to adjust the mass and initial velocity of each glider. Set up each of the following scenarios, and describe what happens when the gliders collide. A. The gliders have the same mass but different velocities. B. The gliders have the same mass and one glider is stationary. C. The gliders have the same velocity (but in opposite directions) and different masses. 2. Calculate: An object s momentum (p) describes how hard it is to stop. Momentum is equal to the product of mass and velocity: p = mv. If mass is measured in kilograms and velocity in meters per second, the unit of momentum is kilograms-meters per second, or kg m/s. A. What is the momentum if the mass is 1.5 kg and the velocity is 4 m/s? Turn on Show numerical data and use the Gizmo to check your answer. B. How could you use the Gizmo to increase a glider s momentum? 3. Gather data: Click Reset. Set m 1 to 3.0 kg and v 1 to 2.0 m/s. Set m 2 to 2.0 kg and v 2 to -4.0 m/s. Fill in the left table, run the collision, and then fill in the right table. Glider Glider 1 Glider 2 Mass 3.0 kg 2.0 kg Velocity 2.0 m/s -4.0 m/s Momentum Glider Glider 1 Glider 2 Mass Velocity Momentum (Activity A continued on next page)

Activity A (continued from previous page) 4. Calculate: To find the total momentum, add up the momentum of each glider. (Note: Pay attention to signs.) A. What was the total momentum of the two gliders before the collision? B. What was the total momentum of the two gliders after the collision? Turn on Show total momentum to check your answers. 5. Experiment: Click Reset. Set up three collisions using any combination of masses and velocities you like. (The only rule is that the gliders must collide.) Record the mass, velocity, and momentum of each glider before and after the collision. Then, find the total momentum. Remember to include units. Glider 1 Glider 2 Total m v p m v p momentum 6. Analyze: What do you notice about the total momentum of the two gliders? 7. Draw conclusions: The principle of conservation of momentum states that, in a closed system, the total momentum of all of the objects will remain constant. How do your experiments demonstrate conservation of momentum?

Activity B: Velocity Get the Gizmo ready: Click Reset. Check that the Elasticity is set to 1.0. Introduction: When two gliders are moving toward each other, the relative speed they are moving together before the collision is called the approach velocity. Similarly, the speed at which the gliders are moving apart after the collision is described by the separation velocity. Each is equal to the difference in the gliders velocities: v (approach) = v 1 v 2 v (separation) = v 2 v 1 Question: What rule governs the velocities of two colliding objects? 1. Calculate: Set m 1 to 3.0 kg and m 2 to 1.5 kg. Set v 1 to 4.0 m/s and v 2 to -6.0 m/s. Pay attention to the signs of the velocities as you calculate them. A. What is the approach velocity of the two gliders? B. Click Play and then Pause after the collision. What is the velocity of each glider? Glider 1 velocity: Glider 2 velocity: C. What is the separation velocity of the two gliders? D. What do you notice? 2. Experiment: Click Reset. Set up two collisions using any combination of masses and velocities you like. Calculate the approach velocity and separation velocity for each collision. Remember to include units. Glider 1 Glider 2 m v m v v (approach) v (separation) 3. Analyze: So far, you have found that momentum is conserved in a collision. What else appears to be conserved? Explain your answer. (Activity B continued on next page)

Activity B (continued from previous page) [Note: The following extension is designed as a challenge.] 4. Challenge: So far, you have found two rules that govern the behavior of the gliders before and after a collision. These two rules are expressed by the equations below. (Note: In each equation, a prime symbol ( ) indicates after the collision. ) Conservation of momentum: m 1v 1 + m 2v 2 = m 1v 1 + m 2v 2 Approach velocity = separation velocity: v 1 v 2 = v 2 v 1 If you are given the initial masses and velocities of the objects, you can use these two equations to solve for the two unknowns: v 1 and v 2. Try this in the space below. (Hint: Solve the second equation for v 2, and then substitute this expression into the first equation.) 5. Solve: For each of the situations given below, determine the final velocity of each glider. Use the Gizmo to check your answers. (The Gizmo cannot be used to solve the last problem.) A. Glider 1 has a mass of 2.0 kg and a velocity of 2.6 m/s. Glider 2 has a mass of 3.0 kg and an initial velocity of -4.4 m/s. v 1 v 2 B. Glider 1 has a mass of 0.5 kg and a velocity of 9.0 m/s. Glider 2 has a mass of 1.0 kg and an initial velocity of -9.0 m/s. v 1 v 2 C. Glider 1 has a mass of 5.0 kg and a velocity of 15.0 m/s. Glider 2 has a mass of 6.0 kg and a velocity of -12.0 m/s. v 1 v 2

Activity C: Kinetic energy and elasticity Get the Gizmo ready: Click Reset. Check that the Elasticity is set to 1.0. Turn off Show numerical data for both gliders. Introduction: The kinetic energy (KE) of an object is a measure of its energy of motion, measured in joules (J). Kinetic energy depends on both the mass and velocity of the object: KE = mv 2 / 2 Question: What happens to the kinetic energy of a system during a collision? 1. Calculate: Set m 1 to 3.0 kg and v 1 to 2.0 m/s. Set m 2 to 1.5 kg and v 2 to -6.0 m/s. A. What is the kinetic energy of Glider 1? Glider 2? B. What is the total kinetic energy of both gliders? 2. Run Gizmo: Turn on Show numerical data. Click Play and then Pause after the collision. A. What is the kinetic energy of Glider 1? Glider 2? B. What is the total kinetic energy now? 3. Experiment: Click Reset. Set up two collisions using any combination of masses and velocities. Calculate the kinetic energy of each glider and the total kinetic energy. Remember to include units. Glider 1 Glider 2 Total m v KE m v KE KE 4. Summarize: The principle of conservation of energy states that in a closed system the total energy remains constant. How do your experiments demonstrate this principle? (Activity C continued on next page)

Activity C (continued from previous page) 5. Experiment: If the colliding objects are deformed in the collision, some of the kinetic energy is converted to heat and/or sound. The elasticity of a collision is related to the kinetic energy that is preserved in a collision. Set the Elasticity to a value less than 1.00 and run an experiment with any combination of masses and velocities. Record the results below. Remember to include units. Glider 1 Glider 2 Total m v KE m v KE KE 6. Calculate: Elasticity is also related to the approach velocity and the separation velocity. A. What is the approach velocity in the example above? B. What is the separation velocity in the example above? C. What is the ratio of the separation velocity to the approach velocity? D. How does the elasticity of the collision relate to this ratio? 7. Gather data: Repeat your experiment with several different values of Elasticity. In each experiment, record the approach velocity, separation velocity, and the ratio of the separation velocity to the approach velocity. Remember to include units. Trial Elasticity v (approach) v (separation) 1 0.2 2 0.8 3 0.6 v (separation) v (approach) 8. Make a rule: Based on your table, how could you calculate the elasticity of a collision if you know the approach velocity and separation velocity of the colliding objects?