Quasi-stationary-states in Hamiltonian mean-field dynamics

Similar documents
Slow dynamics in systems with long-range interactions

Statistical mechanics and Vlasov equation allow for a simplified hamiltonian description of single pass free electron laser saturated dynamics

Recent progress in the study of long-range interactions

Metastability in the Hamiltonian Mean Field model and Kuramoto model

Algebraic Correlation Function and Anomalous Diffusion in the HMF model

Physics Letters A 373 (2009) Contents lists available at ScienceDirect. Physics Letters A.

Dynamics and Statistical Mechanics of (Hamiltonian) many body systems with long-range interactions. A. Rapisarda

1 Notes on the Statistical Mechanics of Systems with Long-Range Interactions

arxiv: v2 [cond-mat.stat-mech] 10 Feb 2012

arxiv: v2 [cond-mat.stat-mech] 31 Dec 2014

arxiv:nucl-th/ v2 26 Feb 2002

Physica A. Thermodynamics and dynamics of systems with long-range interactions

arxiv: v2 [nlin.cd] 14 Jun 2010

arxiv: v1 [cond-mat.stat-mech] 11 Mar 2010

The Hamiltonian Mean Field Model: Effect of Network Structure on Synchronization Dynamics. Yogesh Virkar University of Colorado, Boulder.

Introduction to Classical and Quantum FEL Theory R. Bonifacio University of Milano and INFN LNF

Kuramoto model of synchronization:equilibrium and non equilibrium aspects

On the coarse-grained evolution of collisionless stellar systems

Thermodynamics of violent relaxation

Wave-particle interaction: from plasma physics to the free-electron laser

Perturbation theory for the dynamics of mean-field systems

Statistical mechanics of 1D self-gravitating systems: the core halo distribution

arxiv: v3 [cond-mat.stat-mech] 19 Dec 2017

Long time behavior of solutions of Vlasov-like Equations

Challenges of finite systems stat. phys.

arxiv: v4 [cond-mat.stat-mech] 9 Jun 2017

Large Deviation Techniques Applied to Systems with Long-Range Interactions

Order and Chaos in Hamiltonian Dynamical Systems

Classical Statistical Mechanics: Part 1

Physics 607 Exam 2. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2

and in each case give the range of values of x for which the expansion is valid.

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 1 Feb 2007

Linear stability of MHD configurations

arxiv: v1 [cond-mat.stat-mech] 7 Nov 2017

Turbulent Mixing of Passive Tracers on Small Scales in a Channel Flow

8.333: Statistical Mechanics I Fall 2007 Test 2 Review Problems

Quantum Free Electron Laser From 1D to 3D

caloric curve of King models

Potential Descending Principle, Dynamic Law of Physical Motion and Statistical Theory of Heat

Exact calculation for AB-phase effective potential via supersymmetric localization

Many-body physics 2: Homework 8


arxiv: v1 [cond-mat.stat-mech] 19 Feb 2016

NMR: Formalism & Techniques

( ) Lectures on Hydrodynamics ( ) =Λ Λ = T x T R TR. Jean-Yve. We can always diagonalize point by point. by a Lorentz transformation

Lecture 4: Entropy. Chapter I. Basic Principles of Stat Mechanics. A.G. Petukhov, PHYS 743. September 7, 2017

Non-Linear Plasma Wave Decay to Longer Wavelength

summary of statistical physics

Different types of phase transitions for a simple model of alignment of oriented particles

Kinetic theory of nonequilibrium stochastic long-range systems: Phase transition and bistability

Lecture 5: Temperature, Adiabatic Processes

Random Averaging. Eli Ben-Naim Los Alamos National Laboratory. Paul Krapivsky (Boston University) John Machta (University of Massachusetts)

APPENDIX Z. USEFUL FORMULAS 1. Appendix Z. Useful Formulas. DRAFT 13:41 June 30, 2006 c J.D Callen, Fundamentals of Plasma Physics

Temperature Correlation Functions in the XXO Heisenberg Chain

Non equilibrium thermodynamics: foundations, scope, and extension to the meso scale. Miguel Rubi

Global Optimization, Generalized Canonical Ensembles, and Universal Ensemble Equivalence

Equilibrium, out of equilibrium and consequences

Non-Gaussian equilibrium in a long-range Hamiltonian system

Physics 607 Final Exam

arxiv: v2 [cond-mat.stat-mech] 27 Dec 2012

(Super) Fluid Dynamics. Thomas Schaefer, North Carolina State University

Phase Equilibria and Molecular Solutions Jan G. Korvink and Evgenii Rudnyi IMTEK Albert Ludwig University Freiburg, Germany

PHYS 352 Homework 2 Solutions

Quantum structures of photons and atoms

Introduction Statistical Thermodynamics. Monday, January 6, 14

Microcanonical Ensemble

A model of alignment interaction for oriented particles with phase transition

Statistical mechanics of random billiard systems

Statistical mechanics of systems with long range interactions

1. Thermodynamics 1.1. A macroscopic view of matter

Physics 4022 Notes on Density Matrices

Lattice Boltzmann Method

arxiv:cond-mat/ v3 [cond-mat.stat-mech] 28 Jul 2005

3 a = 3 b c 2 = a 2 + b 2 = 2 2 = 4 c 2 = 3b 2 + b 2 = 4b 2 = 4 b 2 = 1 b = 1 a = 3b = 3. x 2 3 y2 1 = 1.

Large deviations in nonequilibrium systems and phase transitions

Thermodynamics (Lecture Notes) Heat and Thermodynamics (7 th Edition) by Mark W. Zemansky & Richard H. Dittman

An Entropy depending only on the Probability (or the Density Matrix)

MACROSCOPIC VARIABLES, THERMAL EQUILIBRIUM. Contents AND BOLTZMANN ENTROPY. 1 Macroscopic Variables 3. 2 Local quantities and Hydrodynamics fields 4

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or

Clusters in granular flows : elements of a non-local rheology

Onsager theory: overview

(i) T, p, N Gibbs free energy G (ii) T, p, µ no thermodynamic potential, since T, p, µ are not independent of each other (iii) S, p, N Enthalpy H

Chaotic motion. Phys 420/580 Lecture 10

Enhancement of particle trapping in the wave-particle interaction

Non equilibrium thermodynamic transformations. Giovanni Jona-Lasinio

Structure formation. Yvonne Y. Y. Wong Max-Planck-Institut für Physik, München

Action-Angle Variables and KAM-Theory in General Relativity

Today s Lecture: Atmosphere finish primitive equations, mostly thermodynamics

Hamiltonian and Non-Hamiltonian Reductions of Charged Particle Dynamics: Diffusion and Self-Organization

Chapter 4 Phase Transitions. 4.1 Phenomenology Basic ideas. Partition function?!?! Thermodynamic limit Statistical Mechanics 1 Week 4

Anisotropic fluid dynamics. Thomas Schaefer, North Carolina State University

Supplement: Statistical Physics

Introduction. Statistical physics: microscopic foundation of thermodynamics degrees of freedom 2 3 state variables!

Where is the PdV term in the first law of black-hole thermodynamics?

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 24 Jul 2001

Dynamics of interacting vortices on trapped Bose-Einstein condensates. Pedro J. Torres University of Granada

The Microcanonical Approach. (a) The volume of accessible phase space for a given total energy is proportional to. dq 1 dq 2 dq N dp 1 dp 2 dp N,

Low Emittance Machines

Exam TFY4230 Statistical Physics kl Wednesday 01. June 2016

Hydrodynamics, Thermodynamics, and Mathematics

Transcription:

Quasi-stationary-states in Hamiltonian mean-field dynamics STEFANO RUFFO Dipartimento di Energetica S. Stecco, Università di Firenze, and INFN, Italy Statistical Mechanics Day III, The Weizmann Institute of Science, June 16, 2010 Quasi-stationary-states in Hamiltonian mean-field dynamics p.1/35

Plan Hamiltonian Mean Field (HMF) model Quasi-stationary-states (QSS) Klimontovich and Vlasov equations Lynden-Bell theory Non equilibrium phase transition Mean-field equilibria Application to the free electron laser Quasi-stationary-states in Hamiltonian mean-field dynamics p.2/35

HMF model H = N i=1 p 2 i 2 + 1 2N N i,j=1 (1 cos(θ i θ j )) Magnetization M = lim N PNi=1 cos θ i N, Energy U = lim N H N P Ni=1 sin θ i N «= (M x, M y ) Quasi-stationary-states in Hamiltonian mean-field dynamics p.3/35

Equations of motion θ i = H p i = p i ṗ i = H θ i = 1 N N j=1 sin(θ i θ j ) θ i = p i ṗ i = M sin(θ i φ) tan(φ) = M y M x Quasi-stationary-states in Hamiltonian mean-field dynamics p.4/35

Equilibrium phase transition Fig. 1 revised Latora, Rapisarda & Ruffo Lyapunov instability and finite size... T 0.6 0.5 0.4 0.3 1.0 0.8 0.6 0.4 0.2 0.0 0.0 0.4 0.8 1.2 U 0.2 0.1 Theory (c.e.) N=100 N=1000 N=5000 N=20000 N=20000 n.e. 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 U U c = 3/4 = 0.75, T = ( S/ U) 1 = lim N i p2 i /N Quasi-stationary-states in Hamiltonian mean-field dynamics p.5/35

Waterbag p θ 000000 111111 000000 111111 000000 111111 000000 111111 000000 111111 000000 111111 000000 111111 000000 111111 p θ M 0 = sin θ θ U = lim N H N = ( p)2 6 + 1 (M 0) 2 2 Quasi-stationary-states in Hamiltonian mean-field dynamics p.6/35

Equilibrium 1.2 N=10000, U=0.63, a=1.0, t=100, sample=1000 p -1.2-3.14 theta 3.14 PDF 0 0.12 Quasi-stationary-states in Hamiltonian mean-field dynamics p.7/35

Quasi-stationary states 0.35 0.3 (a) 0.25 M(t) 0.2 0.15 0.1 0.05 0 1 0 1 2 3 4 5 6 7 8 log 10 t U = 0.69, from left to right N = 10 2, 10 3, 2 10 3, 5 10 3, 10 4, 2 10 4. Initially θ = π, hence M 0 = 0. Quasi-stationary-states in Hamiltonian mean-field dynamics p.8/35

Power law 7 6 (b) b(n) 5 4 3 2 1 2 3 4 5 logn Power law increase of the lifetime, exponent 1.7 Quasi-stationary-states in Hamiltonian mean-field dynamics p.9/35

Separation of time scales Initial Condition Violent relaxation τ v = O(1) Vlasov s Equilibrium Collisional relaxation τ c = N δ Boltzmann s Equilibrium Quasi-stationary-states in Hamiltonian mean-field dynamics p.10/35

Klimontovich equation H = NX i=1 p 2 i 2 + U(θ i) U(θ 1,.., θ N ) = 1 N NX V (θ i θ j ) i<j Discrete, one-particle, time dependent density function f d (θ, p, t) = 1 N NX δ(θ θ i (t))δ(p p i (t)) i=1 Klimontovich equation where v(θ, t) = f d t + p f d θ v θ Z f d p = 0 dθ dp V (θ θ )f d (θ, p, t) Quasi-stationary-states in Hamiltonian mean-field dynamics p.11/35

From Klimontovich to Vlasov f d = f d (θ, p, t) + 1 N δf(θ, p, t) = f(θ, p, t) + 1 N δf(θ, p, t) where the average is taken over initial conditions. v(θ, t) = v (θ, t) + 1 N δv(θ, t) where v (θ, t) = Z dθ dp V (θ θ )f(θ, p, t) Using Klimontovic equation, one gets f t + p f θ v θ f p = 1 N δv θ δf p Quasi-stationary-states in Hamiltonian mean-field dynamics p.12/35

HMF Vlasov equation f t + p f θ dv dθ f p = 0, V (θ)[f] = 1 M x [f] cos(θ) M y [f] sin(θ), M x [f] = f(θ,p,t) cos θdθdp, M y [f] = f(θ,p,t) sin θdθdp. Specific energy e[f] = (p 2 /2)f(θ,p,t)dθdp + 1/2 (M 2 x + M 2 y)/2 and momentum P[f] = pf(θ,p,t)dθdp are conserved. Quasi-stationary-states in Hamiltonian mean-field dynamics p.13/35

Vlasov fluid-i Quasi-stationary-states in Hamiltonian mean-field dynamics p.14/35

Vlasov fluid-ii Quasi-stationary-states in Hamiltonian mean-field dynamics p.15/35

Stirring Quasi-stationary-states in Hamiltonian mean-field dynamics p.16/35

Allowed moves YES NO!! Quasi-stationary-states in Hamiltonian mean-field dynamics p.17/35

Coarse graining for two-level distr. Macrocell Microcell ν microcells of volume ω in a macrocell. A macroscopic configuration has n i microcells occupied with level f 0 in the i-th macrocell (the remaining are occupied with level 0). The distribution is coarse-grained on a macrocell, f(θ, p). The total number of occupied microcells is N, such that the conserved total mass is mass = R f(θ, p)dθdp = Nωf 0 Quasi-stationary-states in Hamiltonian mean-field dynamics p.18/35

Lynden-Bell entropy S LB ( f) = 1 ω dpdθ [ f f 0 ln f f 0 + ( 1 f ) ( ln 1 f )]. f 0 f 0 f(θ,p) = 2 i=1 ρ(θ,p,η i )η i, η 1 = 0, η 2 = f 0 W({n i }) = N! i n i! i ν! (ν n i )!. ρ i (f 0 ) = n i /ν = f i /f 0 Quasi-stationary-states in Hamiltonian mean-field dynamics p.19/35

Maximal Lynden-Bell entropy states f(θ, p) = f 0 e β(p2 /2 M y [ f] sin θ M x [ f] cos θ)+λp+µ + 1. f 0 f 0 f 0 f 0 Z x β x 2β 3/2 Z x β Z x β dθe βm m F 0 xe βm m = 1 Z dθe βm m F 2 xe βm m = U + M2 1 2 dθ cos θe βm m F 0 xe βm m = M x dθ sin θe βm m F 0 xe βm m = M y M = (M x, M y ), m = (cos θ, sin θ). F 0 (y) = R exp( v 2 /2)/(1 + y exp( v 2 /2))dv, F 2 (y) = R v 2 exp( v 2 /2)/(1 + y exp( v 2 /2))dv. f 0 = 1/(4 θ 0 p 0 ) Quasi-stationary-states in Hamiltonian mean-field dynamics p.20/35

Velocity PDF a) b) 0,1 0,1 f QSS (p) 0,01 0,1-1,5-1 -0,5 0 0,5 1 1,5 c) 0,01-1,5-1 -0,5 0 0,5 1 1,5 0,5 d) 0,4 0,3 0,2 0,1 0,01-1,5-1 -0,5 0 0,5 1 1,5 p 0-1,5-1 -0,5 0 0,5 1 1,5 M 0 = sin( θ 0 )/ θ 0 = 0.3, 0.5, 0.7. U = 0.69. All QSS are homogeneous (M = 0). Quasi-stationary-states in Hamiltonian mean-field dynamics p.21/35

Non equilibrium phase transition 0.7 0.6 0.5 U=0.50 U=0.54 0.7 M(t) 0.4 0.3 0.2 U=0.62 0.1 0 0 5 10 15 20 25 30 35 40 45 50 55 LEFT: N = 10 3 t U=0.58 hfp 0.6 0.5 0.4 0.3 0.2 0.1 (a) 0 0.5 0.55 0.6 0.65 0.7 0.75 0.8 U RIGHT: First peak height as a function of U for increasing values of N (10 2, 10 3, 10 4, 10 5 ). The transition line is at U = 7/12 = 0.583... Quasi-stationary-states in Hamiltonian mean-field dynamics p.22/35

Tricritical point 0.75 0.605 0.7 0.6 0.595 U 0.65 0.04 0.08 0.12 0.16 0.6 1 ST order 2 ND order Tricritical point 0 0.2 0.4 0.6 0.8 1 M 0 Quasi-stationary-states in Hamiltonian mean-field dynamics p.23/35

Magnetization plot 0.6 0.75 0.5 0.7 U 0.4 0.65 0.3 0.6 0.2 0.55 0.1 0.5 0 0.1 0.2 0.3 0.4 0.5 M 0.6 0.7 0.8 0.9 1 0 Quasi-stationary-states in Hamiltonian mean-field dynamics p.24/35

Negative heat capacity 0.38 0.36 temp_1000000_0.05 temp_10000_0.05 temp_1000_0.05 0.4 0.38 temp_1000000_0.3 temp_10000_0.3 temp_10000.3 0.34 0.36 0.32 0.3 0.34 0.28 0.32 0.26 0.3 0.24 0.28 0.22 0.2 0.26 0.18 0.56 0.57 0.58 0.59 0.6 0.61 0.62 0.63 0.24 0.56 0.57 0.58 0.59 0.6 0.61 0.62 0.63 Quasi-stationary-states in Hamiltonian mean-field dynamics p.25/35

Analytical results 1 0.8 0.6 U c =3/4 T 0.4 0.2 Isothermal n= q=1 Polytropic n c =1 q c =3 U c =5/8 Homogeneous branch 0 0 0.2 0.4 0.6 0.8 1 U F. Staniscia et al. arxiv:1003.0631, P. H. Chavanis and A. Campa arxiv:1001.2109v1 Quasi-stationary-states in Hamiltonian mean-field dynamics p.26/35

Mean-field equilibria ǫ = p2 2 H cos θ H constant. P(ǫ; θ, p) = 1 4 θ p Z + θ θ dθ Z + p p dp δ( p2 2 H cos θ ǫ) Then with Q(ǫ, p) a normalization. Self consistency P H (θ, p; θ, p) = 1 4 θ p P(ǫ, p) Q(ǫ, p) m( θ, p) = Z +π π dθdp cos θp m (θ, p; θ, p) Quasi-stationary-states in Hamiltonian mean-field dynamics p.27/35

m m Numerical verification 10 0 =1 10 0 =2 10-1 10-1 10-2 10-3 Rotators th. Rotators sim. HMF sim. 10-1 10 0 10 1 p 10-2 Rotators th. Rotators sim. HMF sim. 10-3 10-1 10 0 10 1 p P. de Buyl, D. Mukamel and SR, in progress Quasi-stationary-states in Hamiltonian mean-field dynamics p.28/35

Free Electron Laser y Colson-Bonifacio model x z dθ j dz dp j dz da dz = p j = Ae iθ j A e iθ j = iδa + 1 N X j e iθ j Quasi-stationary-states in Hamiltonian mean-field dynamics p.29/35

Quasi-stationary states 0.8 Laser intensity (arb. units) 0.6 0.4 0.2 Laser intensity 0.6 0.5 1 2 3 0.4 0 500 1000 1500 2000 - z 0 0 20 40 60 80 100 120 140 160 180 200 N = 5000 (curve 1), N = 400 (curve 2), N = 100 (curve 3) On a first stage the system converges to a quasi-stationary state. Later it relaxes to Boltzmann-Gibbs equilibrium on a time O(N). The quasi-stationary state is a Vlasov equilibrium, sufficiently well described by Lynden-Bell s Fermi-like distributions. - z Quasi-stationary-states in Hamiltonian mean-field dynamics p.30/35

Vlasov equation In the N limit, the single particle distribution function f(θ,p,t) obeys a Vlasov equation. f z A x z A y z = p f θ + 2(A x cos θ A y sin θ) f p = δa y + 1 f cosθ dθdp, 2π = δa x 1 f sin θ dθdp. 2π, with A = A x + ia y = I exp( iϕ) Quasi-stationary-states in Hamiltonian mean-field dynamics p.31/35

Vlasov equilibria Lynden-Bell entropy maximization Z S LB ( f) = dpdθ f ln f + 1 f «ln 1 f ««. f 0 f 0 f 0 f 0 S LB (ε, σ) = Z max [S LB ( f) H( f, A x, A y ) = Nε; f,a x,a y dθdp f = 1; P( f, A x, A y ) = σ]. f = f 0 Non-equilibrium field amplitude e β(p2 /2+2A sin θ) λp µ 1 + e β(p2 /2+2A sin θ) λp µ. A = q A 2 x + A 2 y = β βδ λ Z dpdθ sin θ f(θ, p). Quasi-stationary-states in Hamiltonian mean-field dynamics p.32/35

Results 2 0.7 Intensity 0.6 Laser Intensity, Bunching 1.5 1 0.5 Bunching Intensity Threshold Laser Intensity, Bunching 0.5 0.4 0.3 0.2 Bunching 0.1 0-2 -1.5-1 -0.5 0 0.5 1 1.5 2 2.5 δ 0 0 0.05 0.1 0.15 0.2 0.25 ε Quasi-stationary-states in Hamiltonian mean-field dynamics p.33/35

Conclusions Mean-field Hamiltonian systems with many degrees of freedom display interesting statistical and dynamical properties. Non equilibrium quasi-stationary states arise naturally" from water-bag initial conditions. Their life-time increases with a power of system size. Vlasov (non collisional) equation correctly describes the initial" dynamics. Lynden-Bell maximum entropy principle provides a theoretical approach to quasi-stationary states. The results are derived for mean-field systems, but some of them are expected to be valid also for decaying interactions. Quasi-stationary-states in Hamiltonian mean-field dynamics p.34/35

References M. Antoni and S. Ruffo, Clustering and relaxation in long range Hamiltonian dynamics, Phys. Rev. E, 52, 2361 (1995). Y.Y. Yamaguchi, J. Barré, F. Bouchet, T. Dauxois, S. Ruffo, Stability criteria of the Vlasov equation and quasi-stationary states of the HMF model, Physica A, 337, 36 (2004). A. Antoniazzi, F. Califano, D. Fanelli, S. Ruffo, Exploring the thermodynamic limit of Hamiltonian models, convergence to the Vlasov equation, Phys. Rev. Lett, 98 150602 (2007). A. Antoniazzi, D. Fanelli, S. Ruffo and Y.Y. Yamaguchi, Non equilibrium tricritical point in a system with long-range interactions, Phys. Rev. Lett., 99, 040601 (2007). J. Barré, T. Dauxois, G. De Ninno, D. Fanelli, S. Ruffo:Statistical theory of high-gain free-electron laser saturation, Phys. Rev. E, Rapid Comm., 69, 045501 (R) (2004). A. Campa, T. Dauxois and S. Ruffo : Statistical mechanics and dynamics of solvable models with long-range interactions, Physics Reports, 480, 57 (2009). Quasi-stationary-states in Hamiltonian mean-field dynamics p.35/35