Lab training Enzyme Kinetics & Photometry

Similar documents
2. Under what conditions can an enzyme assay be used to determine the relative amounts of an enzyme present?

Enzyme Reactions. Lecture 13: Kinetics II Michaelis-Menten Kinetics. Margaret A. Daugherty Fall v = k 1 [A] E + S ES ES* EP E + P

Michaelis-Menten Kinetics. Lecture 13: Kinetics II. Enzyme Reactions. Margaret A. Daugherty. Fall Substrates bind to the enzyme s active site

Measurement of Enzyme Activity - ALP Activity (ALP: Alkaline phosphatase)

Bioengineering Laboratory I. Enzyme Assays. Part II: Determination of Kinetic Parameters Fall Semester

Enzymes Part III: Enzyme kinetics. Dr. Mamoun Ahram Summer semester,

After lectures by. disappearance of reactants or appearance of. measure a reaction rate we monitor the. Reaction Rates (reaction velocities): To

Techniques in Molecular Genetics Spectroscopy and Enzyme Assays

Lecture 15 (10/20/17) Lecture 15 (10/20/17)

Biochemistry. Lecture 8 Enzyme Kinetics

Chapter 6: Outline-2. Chapter 6: Outline Properties of Enzymes. Introduction. Activation Energy, E act. Activation Energy-2

Lab 3: Soluble Enzyme Kinetics

Abstract and Objectives

ENZYME KINETICS. Medical Biochemistry, Lecture 24

Biochemistry Enzyme kinetics

CHM333 LECTURES 14 & 15: 2/15 17/12 SPRING 2012 Professor Christine Hrycyna

Report on. Starch Hydrolysis. Submitted to. Dr. Stephanie Loveland Chemical and Biological Engineering Department.

Enzymes II. Dr. Mamoun Ahram Summer, 2017

Bioreactor Engineering Laboratory

PowerWaveX Select and KC4 : A Multifunctional System for Today s Laboratory Environment

It is generally believed that the catalytic reactions occur in at least two steps.

Alkaline Phosphatase Colorimetric Assay Kit

Alcohol dehydrogenase Assay Kit

Enzyme Nomenclature Provides a Systematic Way of Naming Metabolic Reactions

BIOCHEMISTRY/MOLECULAR BIOLOGY

Spectrophotometry. Introduction

Previous Class. Today. Reasons for analyzing pre-steady state conditions Methods for pre-steady state measurements

2013 W. H. Freeman and Company. 6 Enzymes

13 Determining the Efficiency of the Enzyme Acetylcholine Esterase Using Steady-State Kinetic Experiment

Prof. Jason D. Kahn Your Signature: Exams written in pencil or erasable ink will not be re-graded under any circumstances.

A First Course on Kinetics and Reaction Engineering. Class 9 on Unit 9

Chapter 6 Active Reading Guide An Introduction to Metabolism

CHAPTER 1: ENZYME KINETICS AND APPLICATIONS

Objectives INTRODUCTION TO METABOLISM. Metabolism. Catabolic Pathways. Anabolic Pathways 3/6/2011. How to Read a Chemical Equation

Lecture 13: Data Analysis for the V versus [S] Experiment and Interpretation of the Michaelis-Menten Parameters

Overview of Kinetics

Introduction and. Properties of Enzymes

Lecture 12: Burst Substrates and the V vs [S] Experiment

CHEM April 10, Exam 3

1 st European Union Science Olympiad in Dublin, Ireland. task B

Part II => PROTEINS and ENZYMES. 2.7 Enzyme Kinetics 2.7a Chemical Kinetics 2.7b Enzyme Inhibition

Biochemistry 462a - Enzyme Kinetics Reading - Chapter 8 Practice problems - Chapter 8: (not yet assigned); Enzymes extra problems

Name Student number. UNIVERSITY OF GUELPH CHEM 4540 ENZYMOLOGY Winter 2002 Quiz #1: February 14, 2002, 11:30 13:00 Instructor: Prof R.

Lecture 11: Enzymes: Kinetics [PDF] Reading: Berg, Tymoczko & Stryer, Chapter 8, pp

Biochemical Kinetics: the science that studies rates of chemical reactions An example is the reaction (A P), The velocity, v, or rate, of the

Lab 3: Protein Determination and Enzyme Assay of Crab and Onion Samples

Chapter 6. Ground Rules Of Metabolism

Enzyme Kinetics. Michaelis-Menten Theory Dehaloperoxidase: Multi-functional Enzyme. NC State University

Lecture 4 STEADY STATE KINETICS

Overview of MM kinetics

Chapter 8: An Introduction to Metabolism

ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI LECTURE 7

Previous Class. Today. Michaelis Menten equation Steady state vs pre-steady state

Chapter 8: An Introduction to Metabolism

Chapter 8. Enzymes: basic concept and kinetics

ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI LECTURE 6

Enzymes and kinetics. Eva Samcová and Petr Tůma

Peroxidase Enzyme Lab

Typical kinetics Time. 1. What happens to the concentration of A over time? a. Increases b. Decreases c.

Effect of Temperature Increasing the temperature increases the energy in the system. Two effects kinetic. denaturing

-Galactosidase enzyme kinetics. Bring a diskette (PC or Mac) for saving your SC115 on-site plots.

Biofuel Enzyme LAB. Name

It can be derived from the Michaelis Menten equation as follows: invert and multiply with V max : Rearrange: Isolate v:

Experiment 13I THE REACTION OF RED FOOD COLOR WITH BLEACH 1

Lecture 11: Enzyme Kinetics, Part I

Class Business. I will have Project I graded by the end of the week. The discussion groups for Project 2 are cancelled

k 3 ) and Κ3 /Κ 2 at 37 C? (d) (4) What will be the ratio of [D]/[C] after 25 min of reaction at 37 C? 1.0E E+07 k 1 /T 1.

To be, or not be (a chemical equilibrium), that is the question:

A. One-Substrate Reactions (1) Kinetic concepts

Enzymes and Enzyme Kinetics I. Dr.Nabil Bashir

SPECTROPHOTOMETRY/BEER S LAW LECTURE HONORS CHEMISTRY NAME

Chapter 8: An Introduction to Metabolism

Biology Slide 1 of 34

Michaelis-Menten Kinetics

Elementary reactions. stoichiometry = mechanism (Cl. + H 2 HCl + H. ) 2 NO 2 ; radioactive decay;

Beer's- Lambert Law and Standard Curves. BCH 312 [Practical]

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot

Michaelis-Menton kinetics

Enzyme Kinetics. Differential Equations Series. Instructor s Guide. Table of Contents

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot

ENZYMES. by: Dr. Hadi Mozafari

Experiment 18 - Absorption Spectroscopy and Beer s Law: Analysis of Cu 2+

Chem Lecture 4 Enzymes Part 2

C a h p a t p e t r e r 6 E z n y z m y e m s

it is assumed that only EH and ESH are catalytically active Michaelis-Menten equation for this model is:

Lecture 13: Data Analysis and Interpretation of the Michaelis-Menten Parameters

Lab 2A: Sub-Cellular Fractionation

Unit 3. Enzymes. Catalysis and enzyme kinetics.

Chemistry 112 Chemical Kinetics. Kinetics of Simple Enzymatic Reactions: The Case of Competitive Inhibition

Chemical kinetics and catalysis

G. GENERAL ACID-BASE CATALYSIS

Catalysis. v 0 no catalyst v c -- catalyst present. v c. dt with no catalyst) (v c = -d[a]/dt dt with a catalyst)

LAB. FACTORS INFLUENCING ENZYME ACTIVITY

Energy Transformation, Cellular Energy & Enzymes (Outline)

Biochemistry and Physiology ID #:

[C] [D] K eq = [A] [B]

KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS Chapter 16 Outline

Lecture 16 (10/23/17) Lecture 16 (10/23/17)

Chemistry 112 Final Exam, Part II February 16, 2005

Transcription:

Lab training Enzyme Kinetics & Photometry Qing Cheng Qing.Cheng@ki.se Biochemistry Division, MBB, KI Lab lecture Introduction on enzyme and kinetics Order of a reaction, first order kinetics Michaelis-Menten kinetics K M, V max and k cat Lineweaver-Burk plot Enzyme inhibition, competitive and non-competitive inhibition Spectrophotometer and Beer-Lambert Law Lab procedure Lab execution Lab report Safety in the lab 1

Introduction Enzyme Enzymes are biological catalysts characterized by Catalytic efficiency Specificity Enzyme Substrate Regulated activity Enzyme-catalyzed reactions are affected by Enzyme concentration Substrate concentration Temperature ph Inhibitors Activators Free energy Transition state, S Product ΔG (without enzyme) ΔG (with enzyme) Substrate ΔG for the reaction Product Reaction progress Introduction Kinetics Kinetics is the study of chemical reaction rate (v, stands for velocity) Enzyme kinetics is the study of enzyme catalyzed reaction Determination of kinetics parameter measurement of enzyme activity First order kinetics vk S Zero order kinetics vk S 2

Introduction Order of reactoin First order reaction Reaction rate is proportional to the substrate s concentration. This is true when the substrate concentration is low during the reaction, and the substrate is the determine factor for the reaction rate. Zero order reaction The reaction rate is independent of the substrate concentration. This is true when the substrate concentration is much higher than the enzyme concentration during the reaction, and the enzyme is the determine factor for the reaction rate. S k P Reaction rate, v Zero order reaction k First order reaction Substrate concentration [S] Michaelis-Menten kinetics To understand how enzyme functions, we need a kinetic description of their activity. The reaction rate rises linearly as substrate concentration increases (first order reaction) and then begins to level off and approach a maximum at higher substrate concentration (zero order reaction) For many enzymes, the reaction rate V 0 is defined as the number of moles of product formed per unit time when [P] is low, that is at times close to zero (hence, V 0 ) V 0 [S 4 ] Reaction rate, v Zero order reaction Reaction rate, v V 0 [S 3 ] V 0 [S 2 ] V 0 [S 1 ] First order reaction Substrate concentration [S] Time 3

Michaelis-Menten kinetics Consider an enzyme that catalyzes the S to P by the following pathway: V 0 is measured when [P] is low, therefore k 4 becomes negligible. V 0 = k 2 [ES] Rate of ES formation =k 1 [E][S] Rate of ES breakdown = (k 2 +k 3 )[ES] Steady state: When [ES] is formed and broken down at the same speed Michaelis-Menten kinetics Simplify the previous equation by define a new constant, K M, called Michaelis constant Solving [ES] K M has the units of concentration K M is independent of either [E] or [S] (because at maximum rate, [ES]=[E tot ]) 4

Michaelis-Menten kinetics Reaction rate The lower the K M value The more efficient the enzyme Substrate concentration [S] At very low substrate concentration ( ): The reaction rate is directly proportional to the substrate concentration At very high substrate concentration ( ): The reaction rate is maximal, independent of substrate concentration. When K M is equal to the substrate concentration ( ): K M is equal to the substrate concentration at which the reaction rate is half its maxim value Lineweaver-Burk plot V max is difficult to estimate because the initial reaction rate approaching V max asymptotically with increasing substrate concentration. In addition, the high concentration of substrate often inhibits reaction rate. To solve this problem, Lineweaver and Burk (1934) had inverted the Michaelis- Menten equation, which is referred as Lineweaver-Burk plot (or Double reciprocal plot): y = ax + b In this equation, 1/V and 1/[S] are variables, while K M /V max and 1/V max are constants. This can be plotted as a linear equation (y = ax + b). Specifically, 1/v is y, 1/[S] is x, K M /V max is a (slope) and 1/V max is b (yintercept). We can accurately calculate K M and V max value from a Lineweaver- Burk plot. 5

Nonlinear regression Indeed, K M and V max values can be calculated directly from the Michaelis-Menten equation through nonlinear regression. y = ax/(b+x) http://www.colby.edu/chemistry/pchem/scripts/lsfitpl.html (in short: http://bit.ly/1re1xu4) Input the data pairs (V and [S]) Choose fit function: ax/(b+x) Leave Parameter guesses as it is. Choose Convergence Mode: Damped or Strongly damped Click Fit or Fit & Plot (Java needed for plotting) Nonlinear regression Indeed, K M and V max values can be calculated directly from the Michaelis-Menten equation through nonlinear regression. y = ax/(b+x) http://www.colby.edu/chemistry/pchem/scripts/lsfitpl.html (in short: http://bit.ly/1re1xu4) Input the data pairs (V and [S]) Choose fit function: ax/(b+x) Leave Parameter guesses as it is. Choose Convergence Mode: Damped or Strongly damped Click Fit or Fit & Plot (Java needed for plotting) 6

Inhibition of enzyme activity Competitive inhibition Noncompetitive inhibition Substrate Competitive inhibitor Noncompetitive inhibitor Enzyme Enzyme Enzyme Inhibition of enzyme activity Competitive inhibition I S E + S ES E + P + I k i Competitive inhibitor Enzyme EI No inhibitor Competitive inhibitor + Competitive inhibitor No inhibitor V max is not affected K M is increased 7

Inhibition of enzyme activity Noncompetitive inhibition S I E + I ES E + P k i S EI EIS Noncompetitive inhibitor Enzyme No inhibitor Noncompetitive inhibitor No inhibitor + Noncompetitive inhibitor V max is decreased K M is not affected Inhibition of enzyme activity Competitive inhibitor Noncompetitive inhibitor Mix inhibition No inhibitor No inhibitor No inhibitor V max is not affected K M is increased V max is decreased K M is not affected V max is decreased K M is increased 8

Photometry - Spectrophotometer How to measure the chemical reactions rate Different molecules have different absorption Some molecules (e.g. proteins) have several absorbance peaks during the wave scan Spectrophotometer Light source Filter Sample Detector Readout Photometry - Beer-Lambert law Beer-Lambert law is a mathematical means of expressing how light is absorbed by matter. The law states that the amount of light emerging from a sample is diminished by three physical phenomena: The concentration of absorbing sample in its pathway (C, in unit of molarity, M) The distance the light travels through the sample (l, in units of centimeters, cm) The probability that the light of that particular wavelength will be absorbed by the material, also known as molar absorption (or extinction) coefficient (ε), in units that are reciprocals of molarity and distance in centimeters, M -1 cm -1 ) T: 0-1 A: - 0 Due to technical limitation, the best reading range of spectrophotometer is normally from 0.1 1, thus: o o If A is too high, dilute the sample If A is too low, concentrate the sample 9

Lab training Enzyme: Alkaline Phosphatase (ALP) Remove phosphate groups from many types of molecules. Function as a dimer, and take effect under alkaline conditions Made in liver, bone, and other tissues. It can be measured in a routine blood test. Abnormally high serum levels of ALP may indicate bone, liver disease, etc. Lab training Outline Determine the following parameters of alkaline phosphatase using p-nitro-phenyl-phosphate (NPP) as substrate Optimal ph K M V max Inhibition p-nitro-phenyl-phosphate (NPP) p-nitrophenol 10

Lab training Maximal absorbance Determine the maximal absorbance (λ max ) for p-nitrophenol Set wavelength scan in the range of 350 500 nm Calculating molar absorption coefficient (ε) using Beer-Lambert law Lab training Incubation time The effect of incubation time on the amount of product formed Incubation at 40⁰C water bath Incubation time (9 different time from 0.5-20 min) Measure absorbance within 15 min at the end of the reaction Plot: amount of product formed (y-axis) against time (x-axis) dh 2 O NFF Buffer with ph 9.5 Testing tubes ( 9) Add enzyme Blank tubes ( 9) Add dh 2 O 11

Lab training Optimal ph The effect of ph on the reaction rate (v) Incubation at 40⁰C water bath Incubation time: 10 min Measure absorbance within 15 min at the end of the reaction Plot: amount of product formed (y-axis) against time (x-axis) dh 2 O NFF Buffer with differnt ph Testing tubes ( 9) Add enzyme Blank tubes ( 9) Add dh 2 O Lab training K M, V max, Inhibition Determine the K M and V max value for alkaline phosphatase, and the inhibition type of the inhibitor provided Incubation at 40⁰C water bath Incubation time: 10 min Measure absorbance within 15 min at the end of the reaction Michaelis-Menten plot: Reaction rate (y-axis) against [S] (a-axis) Lineweaver-Burk plot: 1/V (y-axis) against 1/[S] (a-axis) Determine K M,V max, and inhibition type Each series contains 6 tubes with different substrate concentration [S] a b c d a. With enzyme only b. With enzyme and 1 st inhibitor (0.5 mm phosphate solution) c. With enzyme and 2 nd inhibitor (1 mm phosphate solution) d. Blank (with neither enzyme nor the inhibitor) 12

Lab training Case study (ADH) K M determination for alcohol dehydrogenase Determine K M, V max, of alcohol dehydrogenase using either methanol or ethanol as substrate from the values in the lab compendium. Determine inhibition type of ethanol on ADH when using methanol as substrate. Calculate the blood alcohol content (BAC) in the patient undergone ethanol treatment. Lab note and reports Write lab notes carefully, which should be approved and countersigned by your teaching assistant. A written lab report is needed Brief introduction and aim Brief description of the execution of the lab work Results including all the raw data, calculations including the equation, and all the plots. Don t forget to specify units in calculations and plots Brief conclusions and discussion Answer all the questions in the compendium. 13

Lab safty Lab coat, goggles, gloves No eating or drinking in the lab Mouth pipetting is prohibited Prevent accidents Be well prepared Work calmly When you leave the lab Wash hands Remove lab coat Use your judgment Ask teaching assistant Question? 14