Fundamentals of Biology Valencia College BSC1010C

Similar documents
A.P. Biology Lecture Notes Unit 1A - Themes of Life

1. The basic structural and physiological unit of all living organisms is the A) aggregate. B) organelle. C) organism. D) membrane. E) cell.

An Introduction to the Science of Botany. Chapter 1

Chapter 1. How Do Biologists Study Life?

Chapter 1 Biology: Exploring Life

and just what is science? how about this biology stuff?

BSC 1010C Biology I. Themes in the Study of Life Chapter 1

Name: Class: Date: ID: A

Biology 10 th Grade. Textbook: Biology, Miller and Levine, Pearson (2010) Prerequisite: None

Chapter 19. History of Life on Earth

Biology. Slide 1 of 36. End Show. Copyright Pearson Prentice Hall

Biology 211 (2) Week 1 KEY!

The Science of Biology. Chapter 1

Outline. Classification of Living Things

Chapter Chemical Uniqueness 1/23/2009. The Uses of Principles. Zoology: the Study of Animal Life. Fig. 1.1

Learning Outcome B1 13/10/2012. Student Achievement Indicators. Taxonomy: Scientific Classification. Student Achievement Indicators

Science Online Instructional Materials Correlation to the 2010 Biology Standards of Learning and Curriculum Framework

Origin and Evolution of Life

Characteristics of Life

Rapid Learning Center Chemistry :: Biology :: Physics :: Math

Campbell Essential Biology, 4/e (Simon/Reece/Dickey)

TEST SUMMARY AND FRAMEWORK TEST SUMMARY

I. Molecules and Cells: Cells are the structural and functional units of life; cellular processes are based on physical and chemical changes.

Origins of Life. Fundamental Properties of Life. Conditions on Early Earth. Evolution of Cells. The Tree of Life

Case study: spider mimicry

Chapter 1. An Introduction To Life On Earth

Science Textbook and Instructional Materials Correlation to the 2010 Biology Standards of Learning and Curriculum Framework. Publisher Information

AP Curriculum Framework with Learning Objectives

A A A A B B1

Taxonomy and Biodiversity

Enduring understanding 1.A: Change in the genetic makeup of a population over time is evolution.

Study of Biology. copyright cmassengale

Chapter 1 Biology 103

Chapter 1 - An Introduction to Life on Earth

Chapter 1. Introduction: Biology Today. Lectures by Chris C. Romero, updated by Edward J. Zalisko

Big Idea 1: The process of evolution drives the diversity and unity of life.

Campbell Essential Biology, 5e (Simon/Yeh) Chapter 1 Introduction: Biology Today. Multiple-Choice Questions

AP Biology: Chapter 1: Introduction: Evolution and the Foundations of Biology

BIOLOGY 111. CHAPTER 1: An Introduction to the Science of Life

Evolution Problem Drill 09: The Tree of Life

Biology Assessment. Eligible Texas Essential Knowledge and Skills

STAAR Biology Assessment

COMPETENCY GOAL 1: The learner will develop abilities necessary to do and understand scientific inquiry.

I. Molecules & Cells. A. Unit One: The Nature of Science. B. Unit Two: The Chemistry of Life. C. Unit Three: The Biology of the Cell.

Chapter 18: Classification

Grade Level: AP Biology may be taken in grades 11 or 12.

AP Biology Essential Knowledge Cards BIG IDEA 1

STEMscopedia: CELL STRUCTURES AND HOMEOSTASIS B1A

Day 1. What You ll Learn. 1. Organisms are living things. 2. All organisms are made of one or more cells.

Use evidence of characteristics of life to differentiate between living and nonliving things.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

HA Biology: Practice Quiz 1 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Lecture Series 1. and Molecular Biology 205

Introduction to the Study of Life

FINAL VERSION_ Secondary Preservice Teacher Standards -- Life Science AFK12SE/NGSS Strand Disciplinary Core Idea

The Road to the Six Kingdoms

Evolution and Diversification of Life

ADVANCED PLACEMENT BIOLOGY

Chapter 1. Biology: Exploring Life. Lecture by Richard L. Myers

Phylogeny & Systematics

9/19/2012. Chapter 17 Organizing Life s Diversity. Early Systems of Classification

Evolution & Biodiversity: Origins, Niches, & Adaptation

BIOLOGICAL SCIENCE. Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge. FIFTH EDITION Freeman Quillin Allison

8/23/2014. Phylogeny and the Tree of Life

AP Biology Curriculum Framework

Organizing Diversity Taxonomy is the discipline of biology that identifies, names, and classifies organisms according to certain rules.

Biology II. Evolution

Studying Life. Lesson Overview. Lesson Overview. 1.3 Studying Life

Unsaved Test, Version: 1 1

Map of AP-Aligned Bio-Rad Kits with Learning Objectives

Evolution and Diversification of Life. Origin and Evolution of. Life. OCN 201 Science of the Sea Biology Lecture 2. The Handfish -BBC Blue Planet

Energy Requirement Energy existed in several forms satisfied condition 2 (much more UV than present no ozone layer!)

Kingdoms in Eukarya: Protista, Fungi, Plantae, & Animalia Each Eukarya kingdom has distinguishing characteristics:

Text of objective. Investigate and describe the structure and functions of cells including: Cell organelles

Guided Notes: Evolution. is the change in traits through generations over! Occurs in, NOT individual organisms

Philipsburg-Osceola Area School District Science Department. Standard(s )

RCPS Curriculum Pacing Guide Subject: Biology. Remembering, Understanding, Applying, Analyzing, Evaluating, Creating

Essential knowledge 1.A.2: Natural selection

Fig. 26.7a. Biodiversity. 1. Course Outline Outcomes Instructors Text Grading. 2. Course Syllabus. Fig. 26.7b Table

All living things are made of cells

Biology Science Crosswalk

Grade 7 Science Learning Standards

Range of Competencies

CLASSIFICATION OF LIVING THINGS

The Science of Biology. Chapter 1

Microbial Taxonomy and the Evolution of Diversity

Biology Curriculum Pacing Guide MONTGOMERY COUNTY PUBLIC SCHOOLS

Unit Two: Biodiversity. Chapter 4

AP BIOLOGY SUMMER ASSIGNMENT

General Biology 101 E C O L O G Y A N D B I O D I V E R S I T Y

Performance Indicators: Students who demonstrate this understanding can:

6.12A: You will understand that all organisms are composed of one or more cells.

Classification Notes

Let s get started. So, what is science?

SPRING GROVE AREA SCHOOL DISTRICT. Course Description. Instructional Strategies, Learning Practices, Activities, and Experiences.

Classification Cladistics & The Three Domains of Life. Biology Mrs. Flannery

Cell Biology. What is a cell? What is a cell?

Introduction to Biology

Introduction to Biology

Properties of Life. Levels of Organization. Levels of Organization. Levels of Organization. Levels of Organization. The Science of Biology.

Transcription:

1 Fundamentals of Biology Valencia College BSC1010C

1 Studying Life Chapter objectives: What Is Biology? Is All Life on Earth Related? How Do Biologists Investigate Life? How Does Biology Influence Public Policy?

1.1 What is Biology? Biology: Bios (Greek) meaning life ology means a branch of learning or the study of the scientific study of living things i.e., structure, functioning, growth, origin, evolution, ecology & distribution of living organisms Living things: all the organisms descended from a single-celled ancestor.

1.1 What is Biology? Characteristics of living organisms: Consist of one or more cells Contain genetic information Use genetic information to reproduce themselves Are genetically related and have evolved Can convert molecules from their environment into new biological molecules Extract energy from the environment and use it to do biological work Regulate their internal environment

1.1 What is Biology? Evolution: a central theme of biology. Living systems evolve through differential survival and reproduction. The processes of evolution have generated the enormous diversity of life on Earth.

Levels of Organization Cellular Organization Cells Organelles Molecules Atoms The Cell is the basic unit of life. 6

1.1 What is Biology? Unicellular organisms: a single cell carries out all the functions of life. Multicellular organisms: made of many cells that are specialized for different functions. Viruses are acellular

Figure 1.1 The Many Faces of Life (Part 1) Sulfolobus E. Coli Coccolithophore Archea Domain - Prokaryotes - Bacteria Algae - Protist -

Figure 1.1 The Many Faces of Life (Part 2) (Fungi)

1.1 What is Biology? The study of cells was made possible by the invention of microscopes. Robert Hooke in the 1600s described repeating units of plant material as cells. Antony van Leeuwenhoek discovered single-celled organisms in pond water

Figure 1.2 Cells Are the Building Blocks of Life Cork Leaf Duckweed stem

1.1 What is Biology? Cell Theory: Cells are the basic structural and physiological units of all living organisms. Cells are both distinct entities and building blocks of more complex organisms. (Schleiden and Schwann 1838)

1.1 What is Biology? Cell Theory: All cells come from preexisting cells. All cells are similar in chemical composition. Most of the chemical reactions of life occur within cells. Complete sets of genetic information are replicated and passed on during cell division.

1.1 What is Biology? All of life shares a common evolutionary history Evolution: change in the genetic makeup of biological populations through time. Charles Darwin proposed that all living organisms are descended from a common ancestor by the mechanism of natural selection. Differential survival & reproduction Survival of the fittest

1.1 What is Biology? Darwin proposed that living organisms are descended from common ancestors and therefore related to one another Species: a group of organisms that can produce viable and fertile offspring with one another. Members of one species do not normally interbreed with members of other species in nature.

1.1 What is Biology? Humans can select for desired traits when breeding animals. Traits that increase the probability that the organism will survive and reproduce will become more common in the population. Natural selection and other evolutionary processes (e.g., sexual selection/mating choice and genetic drift) lead to adaptation that enhance an organism s chances of survival & reproduction in its environment. What is the source of information that is passed on parent to offspring?

1.1 What is Biology? Biological information is contained in a genetic language common to all organisms Genome: sum total of all the DNA in a cell. Contains the blue print for existence DNA: the information that is passed from parent to daughter cells. consists of repeating subunits called nucleotides. Gene: a specific segment of DNA that contains information for making a protein. Mutations are alterations in the nucleotide sequence. All cells in a multicellular organism have the same genome.

Figure 1.4 DNA Is Life s Blueprint Four nucleotides are the building blocks of DNA (C, G, A, T) DNA is made up of two strands of linked sequences of nucleotides A gene is a specific sequence of nucleotides The nucleotide sequence in a gene contains the information to build a specific protein

1.1 What is Biology? Organisms require nutrients from their environment. Nutrients are a source of energy and materials for biochemical reactions in cells. Some reactions break nutrient molecules down into smaller units, releasing energy for work. Examples of cellular work requiring energy: Movement of molecules, or the whole organism Synthesis - building new complex molecules from smaller chemical units Electrical work of information processing in nervous systems

Figure 1.5 Energy Can Be Used Immediately or Stored

1.1 What is Biology? Metabolism, or metabolic rate: the sum total of all chemical transformations and other work done in all the cells of an organism. The reactions are integrally linked the products of one are the raw materials of the next. Any break or intruption within these sequential reactions can result in disease

1.1 What is Biology? Multicellular organisms have an internal environment that is not cellular. Their cells are specialized or differentiated, and organized into tissues; tissues are organized into organs. Organ systems are groups of organs with interrelated functions.

Figure 1.6 Biology Is Studied at Many Levels of Organization (Part 1)

1.1 What is Biology? Living organisms also interact: Populations are groups of individuals of the same species that interact with one another. A community consists of populations of all the species that live in the same area and interact. Communities plus their abiotic environment constitute an ecosystem.

Figure 1.6 Biology Is Studied at Many Levels of Organization (Part 2)

1.1 What is Biology? Individuals may compete with each other for resources; Or they may cooperate, e.g., in a termite colony. Plants also compete for light and water, and many form complex partnerships with fungi, bacteria, and animals.

1.1 What is Biology? The interactions of plant and animal species are major evolutionary forces that produce specialized adaptations. Species interactions with one another and with their environment is the subject of ecology.

1.1 What is Biology? Model systems: using one type of organism to understand others. This is possible because all life is related by descent from a common ancestor, shares a genetic code, and consists of similar building blocks cells.

1.2 How Is All Life on Earth Related? All species on Earth share a common ancestry; they are genetically related. The fossil record allows study of evolutionary relationships based on anatomy. Modern molecular methods allow biologists to compare genomes to establish degrees of relationship. The greater the distance between genomes, the more distant the common ancestor.

Figure 1.7 Fossils Give Us a View of Past Life

1.2 How Is All Life on Earth Related? Life arose from non-life via chemical evolution Earth formed 4.6 to 4.5 billion years ago but it was 600 million years or more before life evolved. Life arose by chemical evolution. Molecules that could reproduce themselves were critical. Biological molecules were then enclosed in membranes, forming cells. The history of Earth can be pictured as a 30-day month

Figure 1.8 Life s Calendar Each day represents 150 million years Homo sapiens arose in the last 5 minutes of day 30 (~500,000 years ago)

1.2 How Is All Life on Earth Related? For 2 billion years, life consisted of single cells called prokaryotes. These cells were in the oceans, protected from UV radiation, little or no oxygen (O 2 ) in the atmosphere, no protective ozone (O 3 ) layer. Photosynthesis evolved about 2.5 billion years ago. This process transforms sunlight energy into biological energy. Early photosynthetic cells were probably similar to cyanobacteria.

1.2 How Is All Life on Earth Related? Consequences of photosynthesis: O 2 accumulated in the atmosphere Aerobic metabolism began Ozone layer formed, which allowed organisms to live on land. Eukaryotic cells evolved from prokaryotes. These cells have intracellular compartments called organelles with specialized cellular functions. The nucleus contains the genetic information.

1.2 How Is All Life on Earth Related? Some organelles probably originated by endosymbiosis: when cells ingested smaller cells. Mitochondria (generate cell s energy) and chloroplasts (conduct photosynthesis) could have originated when prokaryotes were ingested by larger eukaryotes. Multicellular organisms arose about 1 billion years ago. Cellular specialization: Cells became specialized to perform certain functions

1.2 How Is All Life on Earth Related? Classification & Phylogeny An evolutionary tree (phylogenetic tree) illustrates the order in which populations split and eventually evolved into new species. Systematists study the evolution and classification of organisms using the fossil record and molecular evidence.

Figure 1.10 The Tree of Life Evolutionary Classification

1.2 How Is All Life on Earth Related? The three domains of life are separated by molecular techniques: Achaea (prokaryotes) Bacteria (prokaryotes) Eukarya (eukaryotes)

Hierarchical Classification Taxonomic Categories Kingdom Phylum Class Order Family Genus Species King Phillip Came Over For Green Soup

1.2 How Is All Life on Earth Related? Each species has a distinct scientific name, a binomial: Genus noun, in Caps, underlined or italicized Species descriptive lower case, underlined or italicized Example: Homo sapiens Evolution results in speciation. Structural & functional changes can evolve within a population, but if the population is separated or isolated, differences can occur in their evolution resulting in divergence.

1.2 How Is All Life on Earth Related? The tree of life is predictive. Placement of a new species on the tree of life immediately informs us about its biology. Understanding relationships among species allows biologists to make predictions about species that have not yet been studied. Today Systematics use comparative sequencing DNA/RNA among organisms (rrna, Chloroplast & mitochondrial DNA) to determine relationships

Making Sense of Science What is science? Science is learning or study concerned with demonstrable truths or observable phenomena, and characterized by the systematic application of the scientific method. Science is a body of knowledge Science is a way of constructing knowledge Science asks questions Science looks for cause and effect Science is tentative Science relies on mathematics and technology

1.3 How Do Biologists Investigate Life? Biologists use many methods to expand our understanding of life how science works 1. Discovery Science / Observation: When scientists seek out and observe living things in nature i.e., Astronomy Development is based on new & improved technologies telescopes, microscopes, etc 2. Experimentation: Hypothesis-based science called the Scientific Method & experimental design 3. Comparative - ecosystems

Figure 1.11 Tuna Tracking

Figure 1.15 Bluefin Tuna Do Not Recognize Boundaries

1.3 How Do Biologists Investigate Life? 2. Experimentation Using the Scientific Method (hypothesis prediction (H P) method): is a methodical & systematic process necessary for scientific investigation, generally using the following principles: Observations asking questions Questions -the why or how do background research Hypotheses Predictions / design experiments Testing - the idea Results Analysis measurable using math & statistics Conclusions support/validation of the hypothesis Communicate your results

Figure 1.12 The Scientific Method

1.3 How Do Biologists Investigate Life? Inductive logic leads to tentative answers or explanations called hypotheses. Piece together clues to try and come up with most likely explanation / hypothesis Deductive logic is used to make predictions. If then statements Experiments are designed to test the predictions.

1.3 How Do Biologists Investigate Life? Controlled experiments manipulate the variable that is predicted to cause differences between groups. The variable is manipulated in an experimental group and the results compared with data from an unmanipulated control group.

Graphing Results: DRY = Dependent variable, Responding variable, y axis y axis X axis MIX = Manipulated variable, Independent variable, x axis

1.3 How Do Biologists Investigate Life? Independent variable: the variable being manipulated. Dependent variable: the response that is measured.

1.3 How Do Biologists Investigate Life? Statistical methods help scientists determine if differences between groups are significant. Statistical tests start with a null hypothesis: that no differences exists.

Figure 1.13 Controlled Experiments Manipulate a Variable (Part 1)

Figure 1.13 Controlled Experiments Manipulate a Variable (Part 2)

1.3 How Do Biologists Investigate Life? 3. Comparative experiments look for differences between samples or groups. The variables can not be controlled; data are gathered from different sample groups and compared.

Figure 1.14 Comparative Experiments Look for Differences among Groups

1.3 How Do Biologists Investigate Life? Statistical methods are applied to data to determine the probability of getting a particular result even if the null hypothesis is true. Statistical methods eliminate the possibility that results are due to random variation. A scientific theory therefore describes a higher level of understanding that ties "facts" together. A scientific theory stands until proven wrong -- it is never proven correct.

1.3 How Do Biologists Investigate Life? Distinguishing science and nonscience: Scientific hypotheses must be testable, and have the potential of being rejected. Science depends on evidence that comes from reproducible and quantifiable observations.

1.4 How Does Biology Influence Public Policy? Biological knowledge allows advances in human pursuits such as medicine and agriculture. These advancements can raise ethical and policy questions.

1.4 How Does Biology Influence Public Policy? Biological knowledge contributes to our understanding of human influences on our environment. Biologists are called on to advise governments making policy decisions.