Geology 1023 Lab #6, Winter Introduction to fossils and fossilisation

Similar documents
Chapter 6. Life on Earth: What do Fossils Reveal?

Paleo Lab #5 - Fossilization and Fossil Identification

Chapter: Clues to Earth s Past

Body Fossils are preserved remains where an organism's body tissue, or parts thereof, become fossilized in an altered or actual state.

Fossils. Presented by Kesler Science

Ecology and Paleoecology. A brief review

Hard Parts of Organisms: Bones Shells Hard Parts of Insects Woody Material (trunks) Fossils provide evidence of how life has changed over time.

Shield was above sea-level during the Cambrian and provided the sediment for the basins.

Name Class Date. What are fossils? How are fossils formed? What can fossils tell us about the history of life on earth?

1 Looking at Fossils. What are fossils? How are fossils formed? What can fossils tell us about the history of life on earth?

THE PRESERVATION OF FOSSILS

Looking at Fossils. Fossilized Organisms. Fossils in Rocks. Fossils in Amber

LECTURE 2: Taphonomy and Time

Objectives: Define Relative Age, Absolute Age

Geo 302D: Age of Dinosaurs. LAB 3: Fossils and Fossilization

7.1 Life in the past. Fossil formation

Lecture Title ( Fossils ) & Date. Main Ideas/Lecture Topics/Questions. Big Ideas or Chunking the Lecture

Tales of the Past. Source: Sci-ber Text with the Utah State Office of Education

FoSSil Puzzler (1 Hour)

Studying The Past. II. Why Do We Study Fossils Found in Rocks?

Directed Reading. Section: The Fossil Record. Skills Worksheet

Classification of Living Things. Unit II pp 98

Ch 9 Section 1: Classification: Sorting It All Out

FOSSILS Uncovering Clues to the Earth s Past

Fossils and Evolution 870:125

Fossils. Who studies fossils? How do fossils form? Fossils are the preserved remains or traces of living things.

Earth s Changing Surface Chapter 4

11/5/2015. Creating a Time Scale - Relative Dating Principles. Creating a Time Scale - Relative Dating Principles. The Geologic Time Scale

Studying The Past. Why Do We Study Fossils Found in Rocks?

2010 National Science Olympiad Fossil Test Final Qs & A s

Rock cycle diagram. Relative dating. Placing rocks and events in proper sequence of formation Deciphering Earth s history from clues in the rocks

Module 9: Earth s History Topic 4 Content: Formation of Fossils Notes

Studying The Past. II. Why Do We Study Fossils Found in Rocks?

FOSSIL "FUN"DAMENTALS

Final Revision G8 Biology ( ) Multiple Choice Identify the choice that best completes the statement or answers the question.

Chapter 6. Life on Earth: What do Fossils Reveal?

Clues to Earth s Past. Fossils and Geologic Time

A Trip Through Geologic Time

NOTES 1. Fossils. The BIG Idea Rocks, fossils, and other types of natural evidence tell Earth s story.

Objectives. Vocabulary. Describe the geologic time scale. Distinguish among the following geologic time scale divisions: eon, era, period, and epoch.

Hot Sync. Materials Needed Today

Geologic Time Test Study Guide

FOSSILS. Book G Chapter 4 Section 1

Program Objectives. Fossil Casting 1. Science: Building with a Variety of Materials

What makes things alive? CRITERIA FOR LIFE

Characteristics of Life

Earth Science 105 Geologic Time Chapter 11

Earth Science 105. Geologic Time Chapter 11. Earth Science 11 th ed. Tarbuck & Lutgens

7 th Grade SCIENCE FINAL REVIEW Ecology, Evolution, Classification

Fossils: evidence of past life

The History of Life. Section 3-2. The Fossil Record

Chapter 9C PALEONTOLOGY, PART C TRACE FOSSILS

Unit 2 Lesson 1 Geologic Change over Time. Copyright Houghton Mifflin Harcourt Publishing Company

Evolution and Taxonomy Laboratory

Rock cycle diagram. Principle of Original Horizontality. Sediment is deposited horizontally

Concept Modern Taxonomy reflects evolutionary history.

Classification of Living Things

Remains or traces of prehistoric life

Classification. 18a. Lab Exercise. Contents. Introduction. Objectives. 18a

Radiolaria and the Rock Record

Station 1. Explain how scientists use each item below to determine the evolutionary relationships among organisms. 1. Structural similarities:

Do Now HW due Friday 9/30

Sediments and Sedimentary Rocks

Phylogeny 9/8/2014. Evolutionary Relationships. Data Supporting Phylogeny. Chapter 26

Directed Reading. Section: Determining Relative Age. conclusions? UNIFORMITARIANISM. geology? of Earth? Skills Worksheet

Lecture 10 Constructing the geological timescale

Clues to the Past. Grades 6-8 Educational Program Guide

NOTES: The Fossil Record and Geologic Time

Topic 7: Historical Geology

Answers to Section G: Time and the Fossil Record (Relative Dating)

The Significance of the Fossil Record ( Susan Matthews and Graeme Lindbeck)

Fossils and EH LT 1 and 2

The Road to the Six Kingdoms

Science in Motion Ursinus College

Clues to Earth s Past

Lecture Outline Friday Feb. 21 Wednesday Feb. 28, 2018

Wisconsin Science Olympiad 2015 West Regional Fossils. Team Name:

What we will learn about Fossils?

Fossils & The Geologic Time Scale

Tuesday 10 June 2014 Afternoon

UNIT 4: EVOLUTION Chapter 12: The History of Life. I. The Fossil Record (12.1) A. Fossils can form in several ways

Common Fossils in Pennsylvania

GY 112L Lab Assignment 5 Modes of Fossil Preservation

5 total items = 10 points

Fossils. Name Date Class. A Trip Through Geologic Time Section Summary

PALEONTOLOGY - the study of the history of life as reflected in the fossil record

Chapter 12. Life of the Paleozoic

Fun with Fossils. Ask a Fossil

Marine Invertebrates in the Paleozoic Seas

Earth s History. The principle of states that geologic processes that happened in the past can be explained by current geologic processes.

LS CH 7 practice. Multiple Choice Identify the choice that best completes the statement or answers the question.

Why do we classify things? Supermarket aisles Libraries Classes Teams/sports Members of a family Roads Cities Money

Classification of Organisms

Chapter 6. Life on Earth: What do Fossils Reveal?

The Environment and Change Over Time

1.1 Characteristics of Life Block: Date:

Lab 4 Identifying metazoan phyla and plant groups

There are actually 5 processes

Classification & History of Life

1. Identify this organism (it is 1mm in diameter) 2. The shell or of this organism is made of 3. How do these one-celled organism feed? 4.

Transcription:

Name: Answers Geology 1023 Lab #6, Winter 2014 Introduction to fossils and fossilisation What is a fossil? A fossil is any evidence of ancient life preserved in sediments or rocks. Why are fossils important? Fossils are important for several different reasons: Reg. lab day: Tu W Th 1. They are used to trace the evolution of life from its beginnings to the present time. 2. They are used to determine the (relative) age of sedimentary rocks. 3. They are used to correlate sedimentary rocks. 4. They indicate environment of deposition of the rocks in which they occur. 5. They can be the main constituent of rock (limestones). Kinds of fossils There are trace and body fossils. A trace fossil is evidence of life activity such as tracks, trails, burrows, borings, coprolites, gastroliths, etc. A body fossil tells us something of the shape (morphology) of the organism itself (usually shows only a part of the organism). A body fossil may be preserved unchanged, or replaced to varying degrees, or as a mold or cast. A mold is an impression of a body part (reversed symmetry to original organism). A cast is formed when a mold is filled by new material (same symmetry as original). Organic tissue ( soft parts ) is rarely preserved because of microbial decay, predation, scavengers, and oxidation. Most body fossils are hard parts altered shells, teeth, bones, scales, etc. Fossilisation The likelihood of fossilisation is increased by: 1. Presence of hard parts. Likelihood increased if the organism moults its skeleton. 2. Abundance of individuals (influencing factors: size, geographic and temporal range). 3. Rapid burial following death (i.e., burial protects the organism). 4. Life (and death) in a depositional environment. The above criteria mean that small, shelly, marine invertebrates have a much greater likelihood of fossilisation than do terrestrial or airborne organisms. Also, life originated in the oceans and only recently (in geological terms) moved onto the land and into the air, which also biases the fossil record towards marine organisms.

Introduction to fossils & fossilization Winter 2014 Page 2 of 7 Types of preservation Organisms are preserved in a variety of ways. Mode of preservation Example 1 Unaltered (almost) remains a) soft parts mammoths frozen in tundra, mummification, pickled or bog people, organisms in tar pits b) hard parts shells, bones, teeth, scales 2 Carbonisation distillation from organic tissues, most commonly in plant material 3 Replacement substitution of organic material (soft tissue and hard parts) by inorganic chemicals not normally part of the organism 4 Permineralisation precipitation within pores and cavities 5 Recrystallisation crystal growth without change in composition 6 Solution inorganic dissolution of material leaving a cavity with the shape of the fossil (mold) 7 Casting mold fills with material to form a replica of the original organism (or part of organism) coal, black leaf impressions in shales, graptolites, graphitic worm in shale. silicification (now SiO 2 ) pyritisation (now FeS 2 ) solid corals petrified wood difficult to determine, particularly in hand sample, probably less common than was once thought shell molds are most common shell casts log casts trace fossil casts 8 Trace fossils tracks, trails, footprints, borings, etc. Naming and classifying fossils (taxonomy) All organisms (living and fossil) are classified using the Linnean hierarchical system shown below. Four examples are given to show evolutionary relatedness. You can see that humans are more closely related to chimps than they are to wolves than they are to dinosaurs. Example 1 Example 2 Example 3 Example 4 Kingdom Animalia Animalia Animalia Animalia Phylum Chordata Chordata Chordata Chordata Class Reptilia Mammalia Mammalia Mammalia Order Saurischia Carnivora Primates Primates Family Tyrannosauridae Canidae Pongidae Hominidae Genus Tyrannosaurus Canis Pan Homo Species Tyrannosaurus Canis lupus Pan troglodytes Homo sapiens rex troglodytes sapiens Common name T. rex Wolf Chimpanzee Human

Introduction to fossils & fossilization Winter 2014 Page 3 of 7 Note that when giving the specific (i.e., species) name of an organism, the generic name is often abbreviated to its initial letter, e.g., T. rex or H. sapiens sapiens. Paleoecology The paleoecology of a set of fossils is the environment in which the organisms lived as well as their relationships to each other. We can interpret some of this from the lithology (e.g., shale implies relatively quiet conditions). We can determine the ecology by understanding the morphology (shape) of the organisms, by the species associations, and by comparing fossil forms with living organisms. Fossils can help determine such features as the nature of the substrate, the clarity, turbulence, salinity, and temperature of the water as well as sedimentation rate. E.g., fossil corals (like modern ones) preferred clear, shallow, warm, water of normal salinity. Organisms that live in the water column are pelagic and are either planktic (float/drift) or nektic (actively swim). Bottom dwellers are benthic. Benthic organisms that are attached to their substrate (encrusted, cemented, rooted) or that bore into it are sessile. If they just recline on the substrate they are sedentary. If they crawl on or burrow actively into the substrate they are mobile. Epifauna live on the seafloor, infauna live beneath it. Most of the fossil record consists of benthic marine invertebrate organisms that filtered food particles from the water (filter, or suspension feeders) or ingested sediment and extracted the food from it (detritus feeders). Biostratigraphy Individual species tend to evolve and die out in geologically short time spans (a few millions of years at most). And once they ve died out they NEVER came back. So fossils tell us age (at least in relative terms) of the rocks that enclose them. An index fossil is one that has a wide geographic distribution and a short time range. Good index fossils are those that are readily identifiable (even by non-experts) and abundant. Most fossils, however, have a relatively wide age-range and time zones are usually established using the overlapping time ranges of two or more species. 1. Look at the taxonomic (naming classification) table above. a) Are both the generic and specific names of an organism capitalised? Y N b) Are both the generic and specific names underlined? Y N c) Tyrannosaurus is to genus as Tyrannosaurus rex is to species d) Tyrannosaurus is to genus as saurischia is to order.

Introduction to fossils & fossilization Winter 2014 Page 4 of 7 2. Circle all the correct choice(s). a) Each order contains one or more: classes families genera kingdoms orders phyla species b) Each phylum contains one or more: classes families genera kingdoms orders phyla species c) A particular genus will belong to a particular: class family genus kingdom order phylum species d) A particular phylum will belong to a particular: class family genus kingdom order phylum species 3. Rank the following organisms by numbering them 1 to 4 in order of increasing likelihood of preservation in the fossil record (# 1 is least, #4 is most likely). a) jellyfish 1/2 fish 3 clam 4* human 2/1 b) fox 3/2 moth 1/2 spider 2/3 coral 4* c) plankton 4* mammoth 3/2 T. Rex 2/3 eagle 1 4. Rank the following environments (locations) in order of increasing likelihood of preserving fossils. a) alluvial fan 1* reef 3/2 beach 2/3 lagoon 4 A wide range of fossils is on display at the back of the lab (collection #1). Examine them before and during the following exercises to help you answer the questions. 5. Determine the type of preservation in collection #2 (specimens 227 235) by comparing with the samples in collection #1. Note that two sets of collection #2 are provided. #227 unaltered #228 #229 carbonized #230 #231 replacement #232 #233 molds #234 #235 trace unaltered replacement permineralized unaltered cast

Introduction to fossils & fossilization Winter 2014 Page 5 of 7 6. Collection #3 (specimens 244 247) is a set of fossils from the Horton Bluff Formation (HBF), collection #4 (specimens 248 255) is from the Windsor Group (WG). a) What is the likely environment of deposition of each (marine/non-marine)? HBF non-marine WG marine b) Why? HBF Land plant fossils WG Marine fossils (shells) The following exercise uses a modern analogy to help you think about fossil assemblages. Fossil assemblages in a rock can be thought of as photographs. If you know enough about the things in the photo you can tell when it was taken. Similarly if you know enough about the various fossil species in a rock you can tell how old the rock is. 7. The diagram below show a photograph taken of a particular location. Here are some facts. 1. Tree A (of unknown age) was cut down in 1994. 2. Person B is a member of a family that lived in the area between 1987 and 1998. 3. Building C was built in 1991 (and is still standing). Fill in the following chart by putting x in each year possible for each item. Pre 86 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 Post 99 A B C X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

Introduction to fossils & fossilization Winter 2014 Page 6 of 7 a) In what time period was the photo taken? b) What item or items bracket the possible time best? 91 94 A and C (tree, house) Note there is a period of several years when the photo could have been taken. That does not mean that the photo took that length of time to take. This is an important point of comparison with rocks. A Devonian (for example) fossil age for a rock does not mean that the rock took the entire Devonian to be deposited. The photo represents an instant within its potential range and the rock represents a geological instant sometime within its potential depositional time. Now let s try some fossils. 8. Examine the fossils (from the fossil set in the drawers) listed in the table below. a) Using the identification sheets, identify each genus and enter it in the following table. Genus Camb. Ord Sil. Dev. Miss. Penn. Perm. Trias. Juras. Cret. Tert. Quat. F2 F10 F19 Mucrospirifer Favosites Bellerophon X X X X X X X X X X X b) Using the identification sheets enter the age range of each genus in the above table by marking an X in the appropriate boxes. c) Is there an excellent index fossil in this assemblage? d) Which genus cannot be used as an index fossil? yes Bellerophon or Favosites e) Why? Too long time range f) Assuming that these specimens came from a single rock unit (Layer A), what genus or genera constrain the age of that rock unit best? F2, Mucrospirifer g) What would be the age of that rock layer A? h) Is this a marine or non-marine assemblage? Devonian marine

Introduction to fossils & fossilization Winter 2014 Page 7 of 7 9. Examine the fossils (from the fossil set in the drawers) listed in the table below. a) Use the identification sheets to identify each genus and enter the genus name and age range in the table. Genus Camb. Ord Sil. Dev. Miss. Penn. Perm. Trias. Juras. Cret. Tert. Quat. F1 F3 F7 F14 F21 Athyris Chonetes Archimedes Pentremites Girtyocoelia X X X X X X X X X X X X X X X X X b) Assuming that these specimens came from a single rock unit (Layer C ), what genus or genera constrain the age of layer C best? F21, Girtyocoelia and F14, Pentremites c) What is the age of this assemblage? d) Is this a marine or non-marine assemblage? Pennsylvanian marine 10. Given the fossil age of Layer A (from Q. 8, above) and the fossil age of layer C (from Q. 9, above). What is the possible age of a layer B that is sandwiched between layers A and C? It will help to enter all the ages (age ranges) in the spaces below. Layer C (Q. 9) Layer B Layer A (Q. 8) Pennsylvanian Devonian Pennsylvanian Devonian