Quantum critical dynamics: CFT, Monte Carlo & holography. William Witczak-Krempa Perimeter Institute

Similar documents
Theory of Quantum Matter: from Quantum Fields to Strings

Quantum matter and gauge-gravity duality

Quantum phase transitions in condensed matter

Complex entangled states of quantum matter, not adiabatically connected to independent particle states. Compressible quantum matter

Quantum critical transport, duality, and M-theory

Theory of the Nernst effect near the superfluid-insulator transition

Introduction to AdS/CFT

The Superfluid-Insulator transition

Quantum phase transitions in condensed matter

arxiv: v3 [cond-mat.str-el] 6 Nov 2012

General relativity and the cuprates

Probing Universality in AdS/CFT

Themodynamics at strong coupling from Holographic QCD

William Witczak-Krempa Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada

Superfluid-insulator transition

10 Interlude: Preview of the AdS/CFT correspondence

Emergent Quantum Criticality

Holography and (Lorentzian) black holes

Quantum Phase Transitions

Quark-gluon plasma from AdS/CFT Correspondence

Non-relativistic AdS/CFT

A Solvable Irrelevant

Entanglement, holography, and strange metals

Exact holography and entanglement entropy from one-point functions

Holography of compressible quantum states

HIGHER SPIN DUALITY from THERMOFIELD DOUBLE QFT. AJ+Kenta Suzuki+Jung-Gi Yoon Workshop on Double Field Theory ITS, ETH Zurich, Jan 20-23,2016

Quantum mechanics without particles

Universal entanglement of non-smooth surfaces

Seminar in Wigner Research Centre for Physics. Minkyoo Kim (Sogang & Ewha University) 10th, May, 2013

Talk online at

AdS/CFT and condensed matter physics

Relativistic magnetotransport in graphene

Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012

Non-relativistic holography

Effective field theory, holography, and non-equilibrium physics. Hong Liu

Entanglement signatures of QED3 in the kagome spin liquid. William Witczak-Krempa

Cold atoms and AdS/CFT

CFTs with O(N) and Sp(N) Symmetry and Higher Spins in (A)dS Space

Quantum critical transport and AdS/CFT

States of quantum matter with long-range entanglement in d spatial dimensions. Gapped quantum matter Spin liquids, quantum Hall states

Floquet Superconductor in Holography

Entanglement Entropy and AdS/CFT

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg

AdS/CFT and Second Order Viscous Hydrodynamics

Holography and the (Exact) Renormalization Group

Holographic Kondo and Fano Resonances

AdS/CFT and holographic superconductors

Holographic construction of CFT excited states. Kostas Skenderis

BPS non-local operators in AdS/CFT correspondence. Satoshi Yamaguchi (Seoul National University) E. Koh, SY, arxiv: to appear in JHEP

Boost-invariant dynamics near and far from equilibrium physics and AdS/CFT.

Quantum matter and gauge-gravity duality

8.821 String Theory Fall 2008

One Loop Tests of Higher Spin AdS/CFT

QGP, Hydrodynamics and the AdS/CFT correspondence

A Holographic Realization of Ferromagnets

Exotic phases of the Kondo lattice, and holography

Metal-insulator Transition by Holographic Charge Density Waves

Large N fermionic tensor models in d = 2

Chapter 3: Duality Toolbox

Holographic renormalization and reconstruction of space-time. Kostas Skenderis Southampton Theory Astrophysics and Gravity research centre

Holographic Cosmology Beyond Inflation? Mark Trodden! University of Pennsylvania

A Brief Introduction to AdS/CFT Correspondence

8.821 F2008 Lecture 05

Holographic superconductors

5. a d*, Entanglement entropy and Beyond

Insight into strong coupling

Asymptotic Symmetries and Holography

Viscosity Correlators in Improved Holographic QCD

Holographic Lattices

Expanding plasmas from Anti de Sitter black holes

Quantum limited spin transport in ultracold atomic gases

How to get a superconductor out of a black hole

TASI lectures: Holography for strongly coupled media

Holographic Second Laws of Black Hole Thermodynamics

Anomalous Strong Coupling

AdS/QCD. K. Kajantie. Helsinki Institute of Physics Helsinki, October 2010

Glueballs at finite temperature from AdS/QCD

Entanglement and the Bekenstein-Hawking entropy

The quantum phases of matter and gauge-gravity duality

21 July 2011, USTC-ICTS. Chiang-Mei Chen 陳江梅 Department of Physics, National Central University

New Compressible Phases From Gravity And Their Entanglement. Sandip Trivedi, TIFR, Mumbai Simons Workshop, Feb 2013

Insight into strong coupling

31st Jerusalem Winter School in Theoretical Physics: Problem Set 2

Strong coupling problems in condensed matter and the AdS/CFT correspondence

Momentum relaxation in holographic massive gravity

Talk based on: arxiv: arxiv: arxiv: arxiv: arxiv:1106.xxxx. In collaboration with:

Holography with Shape Dynamics

D.Blanco, H.C., L.Y.Hung, R. Myers (2013)

Symmetries, Horizons, and Black Hole Entropy. Steve Carlip U.C. Davis

dynamics of broken symmetry

Properties of monopole operators in 3d gauge theories

QUANTUM QUENCH ACROSS A HOLOGRAPHIC CRITICAL POINT

Non-Equilibrium Steady States Beyond Integrability

Boson Vortex duality. Abstract

Recent Developments in Holographic Superconductors. Gary Horowitz UC Santa Barbara

Aspects of integrability in classical and quantum field theories

Holographic signatures of. resolved cosmological singularities

Causality Constraints in Conformal Field Theory

From Path Integral to Tensor Networks for AdS/CFT

Holography for non-relativistic CFTs

Transcription:

Quantum critical dynamics: CFT, Monte Carlo & holography William Witczak-Krempa Perimeter Institute Toronto, HEP seminar, Jan. 12 2015

S. Sachdev @Harvard / PI E. Sorensen @McMaster E. Katz @Boston U. E. Katz, S. Sachdev, E. Sørensen, WWK, PRB 90, 2014 [Ed. Sugg.] WWK, E. Sørensen, S. Sachdev, Nat. Phys. 10, 2014 WWK, S. Sachdev, PRB 87, 2013 [Ed. Sugg.] WWK, S. Sachdev, PRB 86, 2012

Real time finite T response of strongly correlated quantum fluids (quasi)particles: lifetime (poles) If have sharp (quasi)particles, get dynamics from Boltzmann Eq. Systems without quasiparticles: Quantum critical phase transition Strongly coupled gauge theories, etc.

Quantum critical dynamics Field Theory AdS/ CFT Simulations Experiments

Conformal Field Theory Scale + Lorentz invariant QFT Best characterized quantum fluid w/out (quasi)particles Many open questions: dynamics, etc Why care? Experiments! Realistic models: numerics Gravity = CFT? AdS/CFT [Maldacena, etc]

Bosons in 2+1D H = t X hi,ji b i b j + U X i n i (n i 1) µ X i n i T Quantum critical t U Insulator CFT Superfluid têu O(2) universality class: Bose-Hubbard, quantum rotors, XY spins, etc

SSB of O(2) order parameter L =(@ t ~ ) 2 +(r ~ ) 2 + m 2 2 + u 4 Strongly coupled fixed point in 2d (Wilson-Fisher)

Superfluid [Bloch] Insulator 87 Rb [Endres et al]

Break conformal symmetry Characteristic time scale: 1 / T Short times ω >> T: probing near vacuum Long times ω << T: excitations interact strongly with thermal background

Operator Product Expansion A scalar primary op O(x), w/ scaling dim Δ: O(x) O(0) = 1 / x 2Δ OPE: [Wilson; Polyakov; Ferrara et al; etc]

Current correlators @ µ J µ =0 (!) = 1 i! hj x(!)j x (!)i T Quantum critical Universal scaling function:! T Insulator CFT Superfluid têu (!) =

Current OPE J µ (x)j (0) = I µ 1 x 2 2 + C JJO x µ x O(0) T µ (0) x 6 + C JJT x + O(N) CFT: Relevant Stress tensor scalar ~ φ 2 Get OPE coefficients from JJ

Conductivity via OPE lim J O g (p) x(q)j x ( q + p) = q 1 (p) C JJO q p q 1 + C JJT q 2 [T xx T yy 12 (T xx + T yy )] p + Thermal average hoi T = BT (i! n )! n T T = 1 + b 1! n + b 2 T! n 3 +

Dominant op in OPE? For O(N) Wilson-Fisher, it s SCALAR: N = : Δ = 2 N = 2: Δ = 1.5106 O(x) =φ 2 (x) since Δ = 3 1/ν All CFTs have 1/ω 3 term because there s always a stress tensor Sometimes it dominates (Dirac CFT, QED3, N=4 super-y-m, etc)

Quantum Monte Carlo [WWK, Sorensen, Sachdev, Katz] Simulate lattice model for O(2) QCP imaginary frequencies 0.40 Δ = 1.516 Fit: : 0.36038+0.053/n + 0.053/n 1.516-0.01/n 3 QMC Villain Model 2 (i!n)/ Q 0.39 0.38 0.37 (i! n )! n T T = 1 + b 1! n + b 2 T! n 3 + 0.36 0 2 4 6 8 10 12 14 16 18 20 n =! n /(2 T )

Long times & analytic continuation

Use AdS/CFT to generate a family of physically motivated (constrained) variational functions σ(ω/t)

σ via AdS/CFT [Maldacena etc] spacetime: B-Hole in AdS4 BH A m CFT J m u u = r 0 êr 1 0 A µ (t, x, y; u) $ J CFT µ (t, x, y) Solve classical EoM for A get J-correlator in CFT (!/T )= T! @ u A y (!,~0; u) A y (!,~0; u) u=0

1st try S bulk [A µ ]= Z d 4 x p g 1 g 2 4 F 2 + C abcd F ab F cd Derivative expansion C = traceless part of Riemann Asymptotics [WWK]: σ ~ σ + (T/ωn) 3 +... CFT Tµν AdS gµν [Herzog, Kovtun, Sachdev, Son; Ritz, Ward; Myers, Sachdev, Singh]

Holographic fit: take 1 [WWK, Sorensen, Sachdev] 0.500 0.475 shiwlêsq 0.450 0.425 0.400 0.375 0.350 0.325 g = 0.08 [Not rescaled] [Rescaled] 0 2 4 6 8 10 12 14 wê2pt apple! T ;

2nd try S bulk [A µ ]= Z d 4 x 1 g 2 4 [1 + '(x)] F ab F ab Add scalar field (dilaton) CFT O AdS φ Simplest Ansatz: fix profile using OPE of O(2) Wilson-Fisher CFT '(u) =u [Katz, Sachdev, Sorensen, WWK]

Holographic fit: take 2 [Katz, Sachdev, Sorensen, WWK] shiwl 2pêsQ 0.42 0.40 0.38 0.36 Ê Ê =1.5; =0.6 Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê 0 5 10 15 w n ê2pt

Real frequencies Re@sHwLD 2pêsQ 0.60 0.55 0.50 0.45 0.40 0.35 0.30 0 2 4 6 8 wê2pt

Why dabble with black holes? Physical properties: Tailored holographic description to match asymptotics Sum rules Z 1 0 d! Re[ (!/T ) (1)] = 0 Analytic properties in common with field theory results Practical: real-time, small number of params, fast numerics

Sum rules [WWK, Sachdev; Gulotta, Herzog, Kaminski] Re8s< Z 1 0 d! [Re (!/T ) (1)] = 0 1 + - S-dual version: Z 1 0 d! apple Re 1 (!/T ) 1 (1) =0 1 wê4pt N=8 supersymmetric ABJM O(N) CFT @ N= Dirac CFT

Sum rule proof via OPE (i! n )! n T T = 1 + b 1! n + b 2 T! n 3 + σ analytic in upper half-plane Δ > 1 Integrable Close contour in UHP

Conclusions Quantum critical dynamics (CFTs) in 2+1D OPE to constrain short time physics Large ω conductivity (i! n )! n T T = 1 + b 1! n + b 2 T! n 3 + Input OPE data of CFT into simple holographic ansatz Can match Monte Carlo data of O(2) CFT w/out unphysical tweaks

Outlook Apply this program (OPE, sum rules) to other correlators & CFTs [WWK, arxiv:1501.xxxxx] Go beyond simplest holographic Ansatz [in progress with T. Sierens & R. Myers] Unitarity in proof of sum rules?

Thanks! E. Katz, S. Sachdev, E. Sørensen, W.Witczak-Krempa, PRB 90, 2014 [Ed. Sugg.] W.Witczak-Krempa, E. Sørensen, S. Sachdev, Nat. Phys. 10, 2014 W.Witczak-Krempa, S. Sachdev, PRB 87, 2013 [Ed. Sugg.] W.Witczak-Krempa, S. Sachdev, PRB 86, 2012 wkrempa@pitp.ca