Electronic electrical conductivity in n-type silicon

Similar documents
Semiconductor Physics

Semiconductor Devices and Circuits Fall Midterm Exam. Instructor: Dr. Dietmar Knipp, Professor of Electrical Engineering. Name: Mat. -Nr.

Sheng S. Li. Semiconductor Physical Electronics. Second Edition. With 230 Figures. 4) Springer

Lecture 1. OUTLINE Basic Semiconductor Physics. Reading: Chapter 2.1. Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations

Semiconductor Physics fall 2012 problems

Semiconductor Physical Electronics

16EC401 BASIC ELECTRONIC DEVICES UNIT I PN JUNCTION DIODE. Energy Band Diagram of Conductor, Insulator and Semiconductor:

Density of states for electrons and holes. Distribution function. Conduction and valence bands

HALL EFFECT IN SEMICONDUCTORS

Minimal Update of Solid State Physics

Chapter 1 Overview of Semiconductor Materials and Physics

smal band gap Saturday, April 9, 2011

Carriers Concentration and Current in Semiconductors

Introduction to Engineering Materials ENGR2000. Dr.Coates

Session 5: Solid State Physics. Charge Mobility Drift Diffusion Recombination-Generation

Micron School of Materials Science and Engineering. Problem Set 9 Solutions

CLASS 12th. Semiconductors

David J. Starling Penn State Hazleton PHYS 214

ANEXO AL TEMA 4 FÍSICA DEL ESTADO SÓLIDO II

Key Words Student Paper, Electrical Engineering

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006

Charge Carriers in Semiconductor

UNIT - IV SEMICONDUCTORS AND MAGNETIC MATERIALS

EE 346: Semiconductor Devices

CME 300 Properties of Materials. ANSWERS: Homework 9 November 26, As atoms approach each other in the solid state the quantized energy states:

Unit IV Semiconductors Engineering Physics

ESE 372 / Spring 2013 / Lecture 5 Metal Oxide Semiconductor Field Effect Transistor

Classification of Solids

This is the 15th lecture of this course in which we begin a new topic, Excess Carriers. This topic will be covered in two lectures.

Lecture 15: Optoelectronic devices: Introduction

NUMERICAL CALCULATION OF THE ELECTRON MOBILITY IN GaAs SEMICONDUCTOR UNDER WEAK ELECTRIC FIELD APPLICATION

3. Consider a semiconductor. The concentration of electrons, n, in the conduction band is given by

Lecture 22: Ionized Impurity Scattering

collisions of electrons. In semiconductor, in certain temperature ranges the conductivity increases rapidly by increasing temperature

Transport Properties of Semiconductors

Semiconductor device structures are traditionally divided into homojunction devices

Semiconductor Physics fall 2012 problems

Course overview. Me: Dr Luke Wilson. The course: Physics and applications of semiconductors. Office: E17 open door policy

Local and regular plasma oscillations in bulk donor type semiconductors

ECE 442. Spring, Lecture -2

Numerical calculation of the electron mobility in ZnS and ZnSe semiconductors using the iterative method

Junction Diodes. Tim Sumner, Imperial College, Rm: 1009, x /18/2006

Engineering 2000 Chapter 8 Semiconductors. ENG2000: R.I. Hornsey Semi: 1

Physics 169. Luis anchordoqui. Kitt Peak National Observatory. Wednesday, March 8, 17

CLASS 1 & 2 REVISION ON SEMICONDUCTOR PHYSICS. Reference: Electronic Devices by Floyd

The German University in Cairo. Faculty of Information Engineering & Technology Semiconductors (Elct 503) Electronics Department Fall 2014

Electrical Transport. Ref. Ihn Ch. 10 YC, Ch 5; BW, Chs 4 & 8

Calculating Band Structure

The Semiconductor in Equilibrium

EE 346: Semiconductor Devices. 02/08/2017 Tewodros A. Zewde 1

ECE 440 Lecture 20 : PN Junction Electrostatics II Class Outline:

From Last Time Important new Quantum Mechanical Concepts. Atoms and Molecules. Today. Symmetry. Simple molecules.

Semiconductors 1. Explain different types of semiconductors in detail with necessary bond diagrams. Intrinsic semiconductors:

Journal of Atoms and Molecules

Consider a uniformly doped PN junction, in which one region of the semiconductor is uniformly doped with acceptor atoms and the adjacent region is

Semiconductor Physics. Lecture 3

Midterm I - Solutions

Section 12: Intro to Devices

KATIHAL FİZİĞİ MNT-510

PN Junction

Crystal Properties. MS415 Lec. 2. High performance, high current. ZnO. GaN

Most matter is electrically neutral; its atoms and molecules have the same number of electrons as protons.

EE143 Fall 2016 Microfabrication Technologies. Evolution of Devices

Semiconductor Physical Electronics

Chapter 12: Semiconductors

Semiconductor Module

Higher Physics. Electricity. Summary Notes. Monitoring and measuring a.c. Current, potential difference, power and resistance

Molecules and Condensed Matter

Unit III Free Electron Theory Engineering Physics

Processing of Semiconducting Materials Prof. Pallab Banerji Department of Material Science Indian Institute of Technology, Kharagpur

MTLE-6120: Advanced Electronic Properties of Materials. Intrinsic and extrinsic semiconductors. Reading: Kasap:

Electronic Circuits for Mechatronics ELCT 609 Lecture 2: PN Junctions (1)

Electronic Devices & Circuits

Free Electron Model for Metals

Detectors of the Cryogenic Dark Matter Search: Charge Transport and Phonon Emission in Ge 100 Crystals at 40 mk

EECS130 Integrated Circuit Devices

Free Electron Model for Metals

Semiconductor Physics Problems 2015

LECTURE 23. MOS transistor. 1 We need a smart switch, i.e., an electronically controlled switch. Lecture Digital Circuits, Logic

First-Hand Investigation: Modeling of Semiconductors

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester

EXTRINSIC SEMICONDUCTOR

Summary lecture VI. with the reduced mass and the dielectric background constant

Mark Lundstrom 2/10/2013. SOLUTIONS: ECE 606 Homework Week 5 Mark Lundstrom Purdue University (corrected 3/26/13)

THE UNIVERSITY OF NEW SOUTH WALES SCHOOL OF PHYSICS FINAL EXAMINATION JUNE/JULY PHYS3080 Solid State Physics

Electronic and Optoelectronic Properties of Semiconductor Structures

Review of Semiconductor Fundamentals

Semiclassical Electron Transport

Direct and Indirect Semiconductor

Surfaces, Interfaces, and Layered Devices

Section 12: Intro to Devices

Semiconductor Physics and Devices

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination

4. I-V characteristics of electric

Lecture 2. Semiconductor Physics. Sunday 4/10/2015 Semiconductor Physics 1-1

Due to the quantum nature of electrons, one energy state can be occupied only by one electron.

Module - 01 Assignment - 02 Intrinsic Semiconductors. In today's assignment class, we will be looking fully at intrinsic semiconductors.

SEMICONDUCTOR BEHAVIOR AND THE HALL EFFECT

QUANTUM WELLS, WIRES AND DOTS

Lecture 2 Electrons and Holes in Semiconductors

Transcription:

Electronic electrical conductivity in n-type silicon Abebaw Abun Amanu Haramaya University, college of natural and computational science, Department of physics, P. O. Box 138 Dire Dawa, Ethiopia E-mail: meseret.abun@gmail.com (Received 30 September 2014, accepted 26 May 2015). Abstract The electrical conductivity of n-type silicon depends on the doping concentration which varies from10 22-10 26 /m 3 at a given temperature 300 0 K where ionized impurity scattering is the dominant scattering mechanism. This work founds that the electrical conductivity of n-type silicon increases as the electron concentration increases as the result of doping. When the electron concentration increases, the Fermi energy increases from the result of the Fermi level increment. Keywords: Doping concentration, Fermi energy, Electrical conductivity. Resumen La conductividad eléctrica del silicio de tipo n depende de la concentración de dopaje, la cual varía de 10 22-10 26 /m 3 a una temperatura de 300 K, donde la dispersión de impurezas ionizadas es el mecanismo de dispersión dominante. Este trabajo demuestra que la conductividad eléctrica del silicio de tipo n, aumenta conforme la concentración de electrones aumenta como resultado de dopaje. Cuando aumenta la concentración de electrones, la energía Fermi aumenta como resultado del incremento del nivel Fermi. Palabras clave: Concentración de dopaje, Energía de Fermi, Conductividad eléctrica. PACS: 01.40.-d, 03.75.Lm, ISSN 1870-9095 I. INTRODUCTION To derive the mathematical expression for electrical conductivity and to calculate the numerical values in n-type Semiconductors are materials at the heart of many silicon for different doping concentrations in the range electronic devices, such as transistors, switches, diodes, 10 16 /cm 3-10 18 /cm 3. photovoltaic cells, etc. Silicon is widely used now a day The physical significance of this research is to with several applications in light emitting diodes, understand the electrical conductivity of the n-type silicon semiconductor lasers, microwaves lasers, and others that has so many applications in the electronic world. specialized areas [1]. Semiconductor is a material that has a conductance value between that of an insulators and conductors. In II. CONSTANT ENERGY SURFACES OF addition, their resistance between them. They are only CONDUCTION ENERGY BAND STRUCTURE different from insulators because of conduction brought AND THE QUANTUM DENSITY OF STATES about by thermally generated charge carries (extrinsic OF N-TYPE SILICON conduction) called dopants in semiconductor devices only extrinsic conduction is desirable, the charge carries are The system under consideration is n-type silicon. There are electrons and holes [1]. six equivalent constant energy ellipsoids for electron in By adding the right kind of dopants it is possible to silicon. These are six equivalents energy minimum along make semiconductor materials, n-type materials and p-type the six {100} directions [3]. The constant energy surfaces materials. If such impurities contribute a significant fraction as seen by the {100} plane through the center of the first of the conduction band electrons and /or valance band Brillion zone in p-space with axis of symmetry in the x-axis holes, one speaks of an extrinsic semiconductors [3]. will have energy given by an expression of the form: The objective of this research is: To show the relationship between Fermi energy the electron concentration. (1) To show the relationship between the electrical conductivity and the electron concentration Lat. Am. J. Phys. Educ. Vol. 9, No. 2, June 2015 2701-1 http://www.lajpe.org

Abebaw Abun Amanu Where m * 1 =m l =0.92m 0 is the longitudinal effective mass and m * 2 =m * 3 =m T =0.91m 0 is the transverse effective mass. By adding appropriate transformation to anew P coordinate system in which the constant energy surface because spherical. The energy can be expressed in the form:. (2) Where is the density of the states effective mass and M v =6 number of equivalent energy valleys. The number of quantum states in P-space in the energy range E+dE is:. (3) If we measure energy from the bottom of conduction Ec=0, then can be expressed as:. (4) III. FERMI DIRAC STATISTICS FOR N-TYPE SILICON The number of states per unit volume between and in allowed band can be calculated from the volume between and in an allowed band, can be calculated from the volume between and in k- space divided by the volume of a single state in k-space. If the shape of the energy surface in the k-space is known for a given material, therefore, can be calculated. If is the probability that a state with energy will be occupied states is given by an expression of the form:. (5) Where is the number of electrons in the conduction band, now the function, the profanity that a state with energy will be occupied, is just the Fermi distribution function. For electron occupation of the conduction band, can be expressed as:. (6) Where is the Fermi energy: To derive the number of electrons in the conduction band, use the above equations. Substitute Eq. (4) and Eq. (6) into Eq. (5), i.e.. (7) In addition, the normalized electron concentration. (8) is:. (9) We assume that the total mobile electron concentration in the conduction band is equal to donor concentration N d that varies from 10 22-10 26 /m 3 in our calculation. IV. BOLTZMANN TRANSPORT EQUATIONS The conductivity of a substance is determined by the concentration and mobility of charge carriers. The probability of electrons occupying a unit volume of phase space with the center at point(x, k) at the moment of time t is That is to say is the distribution function for no equilibrium state the distribution function will change with time, the nature of change being dependent on which process predominates; the change due to the action of the electric field (F), and as a result of charge carrier collision(c). Where: Or. (10). (11). (12) =. (13) For the present, we want to avoid excessive complications by means of relaxation time approximations for. The effect of collisions is always to restore a local equilibrium situation described by the distribution function. Let us further assume that if the electron distribution is distributed from the local equilibrium value, then the effect of the collision is simply to restore to the local equilibrium value exponentially with a relaxation time τ which is the order of the time between electron collisions with ion, i.e.: From the relations:. (14). (15) Lat. Am. J. Phys. Educ. Vol. 9, No. 2, June 2015 2701-2 http://www.lajpe.org

Substitute Eq. (3.6) into Eq. (3.5):. (16) Electronic electrical conductivity in n-type silicon Is the Rutherford scattering cross-section and v is the relative velocity between electron and ion and can be taken as electron velocity. The Conwell and Weisskopf formula for ionized impurity relaxation time is: Where is the effective mass of an electron. From the general relation of the electrical force and the electric field, we get the below equation. Where e=1.6x10-19 C, electric charge and E x is the electric field in the x-direction.. (17) For the steady state condition, the electron distribution is independent of time, i.e., Eq. (17) becomes: Where in the relaxation time approximation: And. (18). (19). (20) V. ELECTRON SCATTERING MECHANISM There are different scattering mechanisms like acoustic phonon scattering, ionized impurity scattering, carriercarrier scattering among others responsible for the resistivity of the material. Conwell and Weisskopf have calculated the rate of change of distribution function due to ionized impurity scattering by using the following assumptions: i. In the electron ionized impurity scattering only the direction of electrons changes ii. An electron gets scattered by a single ion at a time i. e. by the one which is closest to it at that particular instant of time. Therefore one can express the number of electrons per unit volume per second into a solid angle at, as:. (21) Where is the number of electron per unit volume. is the number of electrons per unit volume with solid angle.. (22). (23) Where ε is the dimensionless kinetic energy. Among varies scattering mechanisms responsible for resistivity in the temperature range 77-300 0 K and for electron concentration, the ionized impurity scattering is the dominant scattering mechanism. We shall use the above expression of relaxation time for ionized impurity scattering in subsequent sections to obtain the explicit expression for thermal conductivity. VI. ELECTRICAL CONDUCTIVITY Electrical conduction is transport processes resulting from the motion of charge carriers under the action of internal or external field. Conductivity of n-type silicon in which the conductivity is due to the excess electrons. Current is defined as the time rate at which charge is transported across a given surface in a direction normal to it, the current will depend on both number of charges free to move and the speeds at which they move. Electrical conduction takes place as a result of the motion of the free electrons under the action of an applied electric field [6]. VII. DERIVATION OF ELECTRICAL CONDUCTIVITY Current is defined as the time rate at which charge is transported across a given surface in a direction normal to it, the current will depend on both the number of charges free to move and the speeds at which they move. The electrical current density is given by:. (24). (25) Where can be expanded as to the first order approximation for weak/normal dc electric field.. (26), since no current flows in equilibrium, does not contribute to the electric field current. Thus:. (27) Lat. Am. J. Phys. Educ. Vol. 9, No. 2, June 2015 2701-3 http://www.lajpe.org

Abebaw Abun Amanu The Boltzmann transport equation in the presence of a d. c electric field in the x direction is calculated by:. (28), leaving the higher order terms in the expansion of. From the above Eq. (28) relations: Then: Thus: By using solid angle relations: Substitute this Eq. (32) into Eq. (30):. (29). (30). (31). (32) (33) Using integration by substitution, we can integrate the above equation, i.e. let, then. Replacing the first thing in u, then: Then: i.e. Substitute Eq. (23) into Eq. (39), then: From the relation of v and energy E: Substitute Eq. (42) into Eq. (40):... (39). (40). (41). (42). (43) From the vector v and angle relations: (34) (35) Substitute Eq. (44) into Eq. (43): (44). (45) Substitute Eq. (35) into Eq. (34):. (46). (36) By using the relations of the above equations, we can drive the below equation. Change all the energies that are the equation becomes dimensionless kinetic energy of an electron. Substitute Eq. (47) into Eq. (46):. (47). (37) (38) (48) (49) Lat. Am. J. Phys. Educ. Vol. 9, No. 2, June 2015 2701-4 http://www.lajpe.org

By using integration by parts we can solve the above complex mathematical equation. So: (50). (51) (52) Electronic electrical conductivity in n-type silicon. (61) This Eq. (61) is known as the normalized electrical conductivity. VIII. NUMERICAL CALCULATION OF ELECTRICAL CONDUCTIVITY To calculate numerical values of the normalized Fermi energy and the dimensionless electrical conductivity for the given electron concentration, use the formula for electron concentration.. (62) By substituting: Where. (53) Whit Finally:. (54) kinetic energy. is the dimensionless. (63). (55) From the general relation of. (56). (64) By substituting the numerical values of the constants, will got:. (57) Substitute Eq. (8) into Eq. (58), i.e.:. (58). (59). (60). (65) This integral is known as Fermi integral. To get the dimensionless Fermi energy using the given value of normalized electron concentration those are shown in Table I. Using Equation (9) for normalized doping concentration and the integral Equation (64). The integral Equation (64) for electron concentration is difficult to evaluate because the normalized Fermi energy is unknown. By using iteration method in such a way that for a given arbitrary value of the left side of the integral Equation (64) can be evaluated by using a Mathematica 5.1 software program. The value of the normalized electron concentration obtained by this numerical calculation will be compared with the known initial value =0.04628. I Lat. Am. J. Phys. Educ. Vol. 9, No. 2, June 2015 2701-5 http://www.lajpe.org

Abebaw Abun Amanu continue my calculation until I get the precise value of the normalized Fermi energy corresponding to the given normalized electron concentration =0.04626. Therefore, I get the value on the right side of Eq. (64) which must be approximately equals to the value of on the left side of Eq. (64) with an error in the order of 10-3. This iteration method is used again to get the other values of the normalized Fermi energy corresponding to the given electron concentration in the table. These values are used to calculate dimensionless electrical conductivity corresponding to the given value of the normalized electron concentration as shown in the below table. When we see the first graph, the normalized Fermi energy increases as the doping concentration or the normalized electron concentration n n increases. When we increase the normalized electron concentration, by doping it from time to time, the Fermi energy level increases with it. We get negative Fermi energy when the location of the Fermi level is below the bottom of the conduction band and a positive Fermi energy when the location of the Fermi level is above the bottom of the conduction band. TABLE I. Normalized electron Dimensionless Normalized electrical concentration (n n ) Fermi energy conductivity 0.0462845-4.23354 4.528399 0.12039-3.26945 4.55227 0.1605-2.97748 4.565182 0.240398-2.56469 4.590962 0.5095-1.80185 4.675266 0.750925-1.36966 4.756477 1.0009-1.05497 4.837995 1.50085-0.59533 5.002002 2.0008-0.25354 5.167141 2.50075 0.023557 5.333409 3.0007 0.259635 5.500866 3.50065 0.46734 5.669359 4.0006 0.65422 5.838826 4.50055 0.825143 6.009266 5.0005 0.983438 6.180707 5.50045 1.131475 6.352981 6.0004 1.27101 6.526144 6.50035 1.403375 6.700136 7.0003 1.529607 6.874981 7.50025 1.65025 7.050141 8.0002 1.766795 7.226896 8.50015 1.878955 7.407064 9.0001 1.987462 7.581702 9.50005 2.092687 7.760182 10 2.19496 7.939213 IX. ANALYSIS AND DISCUSSION ON THE RESULT The numerical values are used to draw the graph of normalized Fermi energy vs. normalized electron concentration n n. Again, the numerical values are used to draw the graph of dimensionless electrical conductivity ( ) vs. normalized electron concentration n n. Normalized electron concentration FIGURE 1. Dimensionless Fermi energy vs. normalized electron concentration. 10 8 6 4 2 0 0 5 10 15 Normalized electron concentration FIGURE 2. Normalized electrical conductivity vs. normalized electron concentration. The graph of normalized electrical conductivity ( ) vs. normalized electron concentration n n shows that the electrical conductivity of the semiconductor increases by increasing the electron concentration in the conduction band as a result of doping. Lat. Am. J. Phys. Educ. Vol. 9, No. 2, June 2015 2701-6 http://www.lajpe.org

X. CONCLUSION In this research, investigation of how the electrical conductivity of n-type silicon depends on the doping concentration which varies from 10 22-10 26 /m 3 at a given temperature 300 0 K where ionized impurity scattering is the dominant scattering mechanism. The paper found that the electrical conductivity of n- type silicon increases as the electron concentration increases, the Fermi energy increases from the result of the Fermi level increases. Electronic electrical conductivity in n-type silicon REFERENCES [1] Warnes, L., Electronic and electrical engineering: Principles and practice, (Palgrave Macmillan, New York, 1995. [2] Maheshwari, L. K. & Anand, M. M. S., Laboratory manual for introductory electronic experiments, (New Age International, New Delhi, 2000). [3] Ascfroft, N. W. & Mermin, D., Solid state physics, (Brooks Cole, Boston, 1976). [4] Floyd, T. L. & Buchla, D. M., Electronics fundamentals: Circuits, devices & applications, 4 th Ed. (Pearson education limited, Harlow, 1998). [5] Reif, F., Foundamental of statistical and thermal physics, (Mac Graw Hills, Boston, 1985). [6] Adler, R. B., Smith, A. C. & Longini, R. L., Introduction to semiconductor physics, (John Wiley & Sons, New York, 1964). Lat. Am. J. Phys. Educ. Vol. 9, No. 2, June 2015 2701-7 http://www.lajpe.org