Universal quantum transport in ultracold Fermi gases

Similar documents
Quantum limited spin transport in ultracold atomic gases

Equilibrium and nonequilibrium properties of unitary Fermi gas from Quantum Monte Carlo

Two-dimensional atomic Fermi gases. Michael Köhl Universität Bonn

Scale invariant fluid dynamics for the dilute Fermi gas at unitarity

Fermi gases in an optical lattice. Michael Köhl

Dynamic Density and Spin Responses in the BCS-BEC Crossover: Toward a Theory beyond RPA

Path Integral (Auxiliary Field) Monte Carlo approach to ultracold atomic gases. Piotr Magierski Warsaw University of Technology

Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC FERMI GASES

BCS to BEC Crossover and the Unitarity Fermi Gas. Mohit Randeria Ohio State University Boulder School on Modern aspects of Superconductivity

Broad and Narrow Fano-Feshbach Resonances: Condensate Fraction in the BCS-BEC Crossover

Anisotropic fluid dynamics. Thomas Schaefer, North Carolina State University

Low- and High-Energy Excitations in the Unitary Fermi Gas

Equilibrium and nonequilibrium properties of unitary Fermi gas. Piotr Magierski Warsaw University of Technology

(Super) Fluid Dynamics. Thomas Schaefer, North Carolina State University

Towards the shear viscosity of a cold unitary fermi gas

Thermodynamics of the unitary Fermi gas

Intersections of nuclear physics and cold atom physics

Dimensional BCS-BEC crossover

Quantum Quantum Optics Optics VII, VII, Zakopane Zakopane, 11 June 09, 11

Universal Quantum Viscosity in a Unitary Fermi Gas

Pairing properties, pseudogap phase and dynamics of vortices in a unitary Fermi gas

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

EQUATION OF STATE OF THE UNITARY GAS

Shock waves in the unitary Fermi gas

(Nearly) Scale invariant fluid dynamics for the dilute Fermi gas in two and three dimensions. Thomas Schaefer North Carolina State University

Thermodynamics, pairing properties of a unitary Fermi gas

Pomiędzy nadprzewodnictwem a kondensacją Bosego-Einsteina. Piotr Magierski (Wydział Fizyki Politechniki Warszawskiej)

Thermodynamics of the polarized unitary Fermi gas from complex Langevin. Joaquín E. Drut University of North Carolina at Chapel Hill

Nuclear structure III: Nuclear and neutron matter. National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016

BCS-BEC BEC Crossover at Finite Temperature in Cold Gases and Condensed Matter KITP

F. Chevy Seattle May 2011

Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks. Thomas Schaefer, North Carolina State University

Thermodynamic Measurements in a Strongly Interacting Fermi Gas

(Nearly) perfect fluidity in cold atomic gases: Recent results. Thomas Schaefer North Carolina State University

Ultracold Fermi Gases with unbalanced spin populations

Strongly Interacting Fermi Gases: Universal Thermodynamics, Spin Transport, and Dimensional Crossover

The nature of superfluidity in the cold atomic unitary Fermi gas

From laser cooling to BEC First experiments of superfluid hydrodynamics

Equation of State of Strongly Interacting Fermi Gas

Exact relations for two-component Fermi gases with contact interactions

The BCS-BEC Crossover and the Unitary Fermi Gas

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES

Superfluidity of a 2D Bose gas (arxiv: v1)

The Superfluid-Insulator transition

Cold atoms and AdS/CFT

Sarma phase in relativistic and non-relativistic systems

High-Temperature Superfluidity

Transport coefficients from Kinetic Theory: Bulk viscosity, Diffusion, Thermal conductivity. Debarati Chatterjee

Anisotropic Spin Diffusion in Trapped Boltzmann Gases

K two systems. fermionic species mixture of two spin states. K 6 Li mass imbalance! cold atoms: superfluidity in Fermi gases

Fermions in the unitary regime at finite temperatures from path integral auxiliary field Monte Carlo simulations

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles

A Mixture of Bose and Fermi Superfluids. C. Salomon

Equation of state of the unitary Fermi gas

Condensate fraction for a polarized three-dimensional Fermi gas

Second sound and the superfluid fraction in a resonantly interacting Fermi gas

New approaches to strongly interacting Fermi gases

A Mixture of Bose and Fermi Superfluids. C. Salomon

Simulation of neutron-rich dilute nuclear matter using ultracold Fermi gases

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas

3D Hydrodynamics and Quasi-2D Thermodynamics in Strongly Correlated Fermi Gases. John E. Thomas NC State University

Is a system of fermions in the crossover BCS-BEC. BEC regime a new type of superfluid?

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics

Towards a quantitative FRG approach for the BCS-BEC crossover

SUPPLEMENTARY INFORMATION

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Lecture 3 : ultracold Fermi Gases

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas

Is an Ultra-Cold Strongly Interacting Fermi Gas a Perfect Fluid?

Introduction to cold atoms and Bose-Einstein condensation (II)

Cold fermions, Feshbach resonance, and molecular condensates (II)

BCS-BEC Crossover and the Unitary Fermi Gas

Part A - Comments on the papers of Burovski et al. Part B - On Superfluid Properties of Asymmetric Dilute Fermi Systems

Quantum gases in the unitary limit and...

Superfluidity and superconductivity. IHP, Paris, May 7 and 9, 2007

Publications. Articles:

Superfluidity in bosonic systems

The Big Picture. Thomas Schaefer. North Carolina State University

Preface Introduction to the electron liquid

A study of the BEC-BCS crossover region with Lithium 6

Experiments with an Ultracold Three-Component Fermi Gas

Theory of Quantum Matter: from Quantum Fields to Strings

arxiv:cond-mat/ v1 [cond-mat.other] 19 Dec 2005

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9

Numerical observation of Hawking radiation from acoustic black holes in atomic Bose-Einstein condensates

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover

The Superfluid Phase s of Helium 3

Anomalous hydrodynamics and gravity. Dam T. Son (INT, University of Washington)

Fluid dynamics for the unitary Fermi gas. Thomas Schaefer, North Carolina State University

Strongly paired fermions

Non equilibrium Ferromagnetism and Stoner transition in an ultracold Fermi gas

New states of quantum matter created in the past decade

Landau Theory of Fermi Liquids : Equilibrium Properties

Probing Universality in AdS/CFT

Strongly correlated Cooper pair insulators and superfluids

Non-relativistic AdS/CFT

Superfluidity in interacting Fermi gases

Density Waves and Supersolidity in Rapidly Rotating Atomic Fermi Gases

Transcription:

Universal quantum transport in ultracold Fermi gases How slowly can spins diffuse? Tilman Enss (U Heidelberg) Rudolf Haussmann (U Konstanz) Wilhelm Zwerger (TU München) Aarhus, 26 June 24

Transport in quantum fluids Schäfer & Teaney 29 can mass flow without friction? F = A @v x @y shear viscosity to entropy ratio: expt minimum values /s.4...8 ~/k B kinetic theory: s `mfp ` ~ & O() ~ k B k B s = ~ extrapolated from weak coupling gauge-gravity duality: perfect fluidity Kovtun, Son & Starinets 25 4 k B conjectured as universal lower bound transport near quantum critical point (QCP): incoherent relaxation

Strongly interacting Fermi gas Giorgini, Pitaevskii & Stringari 28 Bloch, Dalibard & Zwerger 28 dilute gas of and fermions, r ` Z H = dx X ~ 2 r 2 µ 2m =",# contact interaction: universal + g " # # " strong s-wave scattering, a ` (Feshbach resonance); scale invariance superfluid of fermion pairs below.2 T c /T F =.67(3) Ku et al. Science 22 Condensation T c Normal Fermi liquid Superfluid Unitarity 2 BCS /(k F a s ) BEC Attraction Randeria, Zwerger & Zwierlein 22

Quantum critical point resonant fixed point is Quantum Critical Point (QCP) at T=, μ=, /a= Nikolic & Sachdev 27 at unitarity /a= Enss PRA 22 abrupt change of ground state at QCP density n is order parameter: vacuum for T=, μ< gapless excitations above QCP: affect measurements in quantum critical regime

2 4 x (µm) 2 ρ (µm) 4 Universal properties at unitarity /a= scale invariance: properties depend only on μ/t ( angle ) Zhang+ Science 22 Figure 3 Constructing the EOS from in situ imaging. The atom cloud shown contains E F = 37 nk at the centre. a, Absorption image of the atomic cloud after quadrant ave averaging produces a low-noise density profile, n versus V. Thermometry is performed EOS (solid blue line), starting with the virial expansion for µ<.25 (green dashed the density profile yields T = 3 nk, and µ =.63. d, Given µ and T, the density profi a 3. b e.g. equation of state n = 3 T f n(µ/t ) measured by Zwierlein group (22), computed using Bold Diagrammatic MC quantum critical regime above QCP: T n /3 (T c. T. T F ) quantum and thermal fluctuations equally important, interplay challenging temperature only available scale for incoherent relaxation: Sachdev 999 n( µ,t) / n ( µ,t) 2.5 2..5. van Houcke+ 22 µ /k B T Figure 4 Equation of state of the unitary Fermi gas in the normal phase. Density n ( density n and the pressure P of a non-interacting Fermi gas, versus the ratio of chem work), red filled circles: experiment (this work). The BDMC error bars are estimated u deviation systematic plus statistical errors, with the additional uncertainty from the Fe red solid lines. Black dashed line and red triangles: Theory and experiment (this work) error. Green solid line: third order virial expansion. Open squares: first order bold diag superfluid transition point from Determinental Diagrammatic Monte Carlo 3. Filled di pressure EOS (ref. 23). ~ = O() k B T ) s = 2 5 T.7 ~ (µ = ) k B NATURE PHYSICS ADVANCE ONLINE PUBLICATION www.nature.com/naturephysics 2 large-n exp n Enss 22

Luttinger-Ward approach repeated particle-particle scattering dominant in dilute gas: self-consistent T-matrix Haussmann 993, 994; Haussmann et al. 27 self-consistent fermion propagator (3 momenta / 3 Matsubara frequencies) spectral function A(k,ε) at Tc works above and below Tc; directly in continuum limit Tc=.6() and ξ=.36() agree with experiment Haussmann et al. 29 conserving: exactly fulfills scale invariance and Tan relations Enss PRA 22

Transport in linear response shear viscosity from stress correlations (cf. hydrodynamics), (!) =! Re Z ˆ xy = X p, dt e i!t Z p x p y @v m c p c x p @y with stress tensor (cf. Newton ) correlation function (Kubo formula): Enss, Haussmann & Zwerger, Annals Physics 2 d 3 x D ˆ xy (x,t), ˆ xy (, ) E η(ω) = (resummed to infinite order) transport via fermions and bosonic molecules: very efficient description, satisfies conservation laws, scale invariance and Tan relations Enss PRA 22 assumes no quasiparticles: beyond Boltzmann kinetic theory, works near Tc; includes pseudogap and vertex corrections

High-energy tails in stress correlation (shear viscosity) exact viscosity sum rule (nonperturbative check): 2 Z η(ω) [ h n] d! [ (!) tail] = P hydrodynamics... C 4 ma P +(! ) 2 C 5 p m!. ω [E F / h] T= T= 5 T= 2 T= T=.5 T=.6 Enss, Haussmann & Zwerger 2 Taylor & Randeria 2; Enss, Haussmann & Zwerger 2; Enss 23

η/s [ h/k B ] superfluid phonon contrib. Luttinger-Ward theory kinetic theory phonon classical limit contribution T 8 agrees with large-n transport calculation Enss PRA 22 T 3/2 lowest friction of any nonrelativistic quantum fluid T c. T/T F cf. theory: Bruun, Massignan, Schäfer, Smith,... experiment: Cao+ Science 2 Shear viscosity/entropy of the unitary Fermi gas Enss, Haussmann & Zwerger 2

Spin transport with ultracold gases experiment: spin-polarized clouds in harmonic trap bounce! picture: J. Thomas 2 strongly interacting gas [movie courtesy Martin Zwierlein]: A.T. Sommer, M.J.H. Ku, G. Roati, M.W. Zwierlein, Nature 472, 2 (2)

Spin diffusion scattering conserves total + momentum: mass current preserved but changes relative - momentum: spin current decays c Position (mm).3.2....2.3 Sommer et al. 2 spin diffusion 4 8 2 6 4 8 Time (ms)

Spin conductivity and spin susceptibility use Einstein relation D s = s s spin conductivity: spin susceptibility: σ s me F / hn superfluid Luttinger-Ward theory classical gas kinetic theory w/o medium χ n,s / χ. superfluid χ n Sommer et al. (2) χ s Sommer et al. (2) χ n Luttinger-Ward χ s Luttinger-Ward free Fermi gas T c. T/T F T c. T/T F Enss & Haussmann PRL 22 medium effects important: large-n transport calculation Enss PRA 22 in two dimensions Enss, Küppersbusch, Fritz PRA 22 related work on spin transp.: Bruun 2; Duine et al. 2; Mink et al. 22, 23

Spin diffusivity obtain diffusivity from Einstein relation, D s = s s superfluid Sommer et al. (2) Luttinger-Ward theory kinetic theory (experiment rescaled from trap to infinite homogeneous box) md s / h minimum D s '.3 ~ m. T c T/T F Enss & Haussmann PRL 22 Quantum Monte Carlo simulation for finite range interaction: Wlazlowski et al. PRL 23 D s &.8 ~ m

Longitudinal vs transverse spin diffusion ' : J I ' ' ' ' ' ' ' ' I ' spin polarized x @ x+dx M M - dm r b / x x+dx J : i i I i i i i : i i i I lo T(mK) Mullin & Jeon 992 M(x) M(x+dx)

Spin-echo experiment (Thywissen group, Toronto) M? (t) = i exp[ t 3 /24 3 ]. A (ms) 2.5.5 M.8.6.4.2 2 3 4 Hold time t (ms) B 5 5 2 25 3 B-field gradient B (G/cm) Bardon+ Science 334, 722 (24) 8 D s ( /m) 6 4 2 2D: Koschorreck et al. Nature Physics 23.2.4.6.8 Temperature (T/T F ) i

Spin diffusion in kinetic theory ( ) local magnetization vector and gradient M(r,t) =M(r,t) ê(r,t) Boltzmann equation for spin distribution function Dσ p Dt + i σ p t transverse i v pi M r i ê σ v pi ê r i (n p+ n p )+Ω σ p = M r i = M r i ê + M ê r i longitudinal n pσ t σ ε p ( ) σp t spin rotation coll Landau 956, Silin 957; Leggett & Rice 968-7; Lhuillier & Laloë 982; Meyerovich 985; Jeon & Mullin 988, 992 many-body T-matrix in collision integral and spin rotation Enss 23 derived as leading order in large-n expansion Enss 22

Spin-rotation effect diffusion equation: Leggett 97; Jeon & Mullin 988; Enss 23 M + (r,t)=m x + im y : @M + @t ' i (r)m + + D? ( + iµm z )r 2 M + Leggett-Rice spin-rotation effect: complex diffusion constant, spin waves; spin current precesses around effective molecular field: spin-rotation parameter µ = Ω mf τ Enss PRA 23

Transverse spin diffusivity (3D) r b ' : J I ' ' ' ' ' ' ' ' I ' B D s ( /m) 8 6 4 2 md / h (3D) J : i i I i i i i : i i i I lo T(mK) long/trans M= trans M=. trans M=.3 trans M=.6 trans M=.9.. T/T F md / h (3D) at M=.999 5 2.5.2.2.4.6.8 Temperature (T/T F ) i Bardon+ Science 334, 722 (24) no medium with medium medium & spin rotation... T/T F using vacuum (two-body) scattering cross section: similar to helium case medium (finite density) scattering and spin-rotation effect: diffusivity much smaller! Enss PRA 23

. Transverse spin diffusivity (2D) md / h (2D) at ln(k F a)= long/trans M= trans M=. trans M=.3 trans M=.6 trans M=.9.. T/T F md / h (2D) at M=.999 5 2. ln(k F a 2D ) Koschorreck et al. 23.5 T=. T=., med.2 T=.5 T=.5, med. -2 - ln(k F a) 2 vacuum scattering Enss PRA 23 dependence on interaction and importance of medium effects cf. η: Enss, Küppersbusch & Fritz PRA 22 trap: Chiacchiera, Davesne, Enss & Urban, PRA 23

Conclusion and outlook lowest friction at strong interaction: almost perfect fluidity near QCP Luttinger-Ward: Enss, Haussmann & Zwerger, Ann. Phys. 326, 77 (2) large-n: Enss, PRA 86, 366 (22) quantitative understanding of spin diffusion: Luttinger-Ward transport calculation (tail, near Tc) slowest longitudinal spin diffusivity Enss & Haussmann, PRL 9, 9533 (22) transverse spin diffusion: D can be much lower than D in degenerate, polarized gas; Leggett-Rice spin-rotation effect Enss, PRA 88, 3363 (23) on c D s &.3 ~/m outlook: spin-rotation effect (Thywissen group) 2D Fermi gas: EoS and pseudogap Bauer, Parish & Enss, PRL 2, 3532 (24) md s / h md / h (2D) at M=.999 5 2 superfluid T c Sommer et al. (2) Luttinger-Ward theory kinetic theory. T/T F.5 T=. T=., med.2 T=.5 T=.5, med. -2 - ln(k F a) 2 @

BKT-BCS crossover in 2D Fermi gas Bauer, Parish & Enss, PRL 2, 3532 (24) Pressure EoS (vs Turlapov data): P/P..9.8.7.6.5 T =.2 T F T =.5 T F.4 T =.T F.3 Data from Ref. [] QMC T=.2 2 3 ln(k F a 2D ) 4 5 Phase diagram (Tc, T*): T/TF.4.2..8.6.4 T from Luttinger-Ward T c from Luttinger-Ward mean-field BCS.2 BCS+GMB from Ref. [2] BKT from Ref. [2]. 4 2 ln(k F a 2D ) 2 4 Tan contact density (vs Köhl data): C/k 4 F 2 Luttinger-Ward weak coupling limit Data from Ref. [3] T =QMC.5 5 x =/ ln(k F a 2D ) Spectral function/pseudogap: ρ(ω)/ρ..8.6.4.2. ω/εf 4 2 2 log (A(k, ω)) -.5 -. -.5 2 k/k F T/T F =.45 T/T F =.2 T/T F =. T/T F =.7 5 4 3 2 2 ω/ε F