Quantum Chemical Designing of Novel Organic Non-Linear Optical Compounds

Similar documents
Quantum Chemical Designing of Efficient Sensitizers for Dye Sensitized Solar Cells

First Order Hyperpolarizability and Homo-Lumo Analysis of L-Arginine Maleate (LArM) by Density Functional Theory Methods

CHAPTER 8 REPORT ON HIGHER SHG EFFICIENCY IN BIS (CINNAMIC ACID): HEXAMINE COCRYSTAL

X-Shaped Donor Molecules Based on Benzo[2,1-b:3,4-b ]dithiophene for Organic Solar Cells Devices with PDIs as Acceptors.

Chapter 6. Electronic spectra and HOMO-LUMO studies on Nickel, copper substituted Phthalocyanine for solar cell applications

Quantum chemical studies on the structures of some heterocyclic azo disperse dyes

DFT-TDDFT Computational Study of Three Different Chlorophyllous as Dye sensitized solar cells (DSSCs)

Nonlinear Polarizabilities of Donor-Acceptor Substituted Conjugated Polyenes

Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, P.O. Box 9004, Saudi Arabia b

Among current renewable energy solutions, dye-sensitized

Competition between Alkalide Characteristics and Nonlinear Optical Properties in OLi 3 M Li 3 O (M = Li, Na, and K) Complexes

DENSITY FUNCTION THEORY STUDY OF DIFFERENT DYE MOLECULES AND TIO 2 DOPED BROOKITE SURFACES FOR FOR APPLICATION IN DYE-SENSITIZED SOLAR CELL

Journal of Chemical and Pharmaceutical Research

Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride. Dimer. Philip Straughn

Supporting information for: First hyperpolarizability of collagen using the. point dipole approximation

THEORETICAL INVESTIGATION OF ELECTROSTATIC POTENTIAL AND NON LINEAR OPTICAL PROPERTIES OF M NITROACETANILIDE

Growth and Characterization of an Organic Crystal and DFT Studies of 2-amino 5-methyl Pyridinium Salicylate

Charge and Energy Transfer in the Metal-free Indoline Dyes for Dye-sensitized Solar Cells

Charge separation in molecular donor acceptor heterojunctions

Supplementary information for the paper

First-Principles Study Of The Excited-State Properties Of Coumarin 6 Dye In Dye- Sensitized Solar Cells

Structure stability and magnetic properties of Os n B(n = 11 20) clusters

Computational Study on the Dependence of Electronic Transition Energies of Porphin, Chlorin, Mg-Chlorin and Chlorophyll a on an External Charge

Hong Zhou, Guang-Xiang Liu,* Xiao-Feng Wang and Yan Wang * Supporting Information

NJC Accepted Manuscript

High-power Broadband Organic THz Generator

IR, Raman, First Hyperpolarizability and Computational Study of 1-chloroethyl Benzene

Rational Design of a blue TADF Emitter Family using a Trifluoromethylphenyl Core

Influence of donor substitution at D π A architecture in efficient sensitizers for dye-sensitized solar cells: first-principle study

Spectroscopic, Thermal Behaviour and DFT Calculations of a Trifluoromethyl Substituted Stilbene Imine Derivative as an Organic Semiconductive Material

THEORETICAL SIMULATION OF THE THIRD ORDER NONLINEAR OPTICAL PROPERTIES OF SOME SELECTED ORGANOMETALLICS COMPLEXES.

NWChem: Hartree-Fock, Density Functional Theory, Time-Dependent Density Functional Theory

University of Groningen

Department of Materials Science and Engineering, Research Institute of Advanced

OPV Workshop September 20, Materials for Polymer Solar Cells: Achievements and Challenges. Wei You

Ab-initio modeling of opto-electronic properties of molecules in solvents and in proximity to a semiconductor nanoparticle

Electronic Supplementary Information

Nanotechnology and Solar Energy. Solar Electricity Photovoltaics. Fuel from the Sun Photosynthesis Biofuels Split Water Fuel Cells

Spectroscopic investigation of oxygen and water induced electron trapping and charge transport instabilities in n-type polymer semiconductors

Structure, Electronic and Nonlinear Optical Properties of Furyloxazoles and Thienyloxazoles

Tuning Color Through Substitution

Dresden Center for Computational Materials Science, Technische Universität Dresden, Dresden, Germany

Conjugated Polymers Based on Benzodithiophene for Organic Solar Cells. Wei You

Spectroscopic properties of dipicolinic acid and its dianion

High-efficiency diphenylsulfon derivatives-based organic lightemitting. diode exhibiting thermally activated delayed fluorescence

Evaluation of intramolecular charge transfer state of 4-N, N-dimethylamino cinnamaldehyde using time-dependent density functional theory

Surface Transfer Doping of Diamond by Organic Molecules

Supporting Information

Computer Laboratory DFT and Frequencies

Atomistilor blvd, RO Magurele, Bucharest, Romania b Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202,

Syntheses and Physical Properties of Carbazole- Phthalonitrile-Hybridized Light-Emitting Materials

State-of-the-art ab initio Quantum Chemical Computational Methods for Describing the Challenging Photobehaviour of Cationic Dyes

2x (x 2 + y 2 + 1) 2 2y. (x 2 + y 2 + 1) 4. 4xy. (1, 1)(x 1) + (1, 1)(y + 1) (1, 1)(x 1)(y + 1) 81 x y y + 7.

General Synthesis of Graphene-Supported. Bicomponent Metal Monoxides as Alternative High- Performance Li-Ion Anodes to Binary Spinel Oxides

EJL R Sβ. sum. General objective: Reduce the complexity of the analysis by exploiting symmetry. Garth J. Simpson

Vibrational spectra, nonlinear optical properties, NBO analysis and thermodynamic properties of N-phenylethanolamine by density functional method

AB INITIO MODELING OF THE STRUCTURAL DEFECTS IN AMIDES

2.1 Experimental and theoretical studies

The coupled electronic oscillators vs the sum-over-states pictures for the optical response of octatetraene

1. Transition dipole moment

Triplet state diffusion in organometallic and organic semiconductors

Selected Publications of Prof. Dr. Wenjian Liu

Analysis of second-harmonic generation microscopy under refractive index mismatch

HYPER-RAYLEIGH SCATTERING AND SURFACE-ENHANCED RAMAN SCATTERING STUDIES OF PLATINUM NANOPARTICLE SUSPENSIONS

Semiconductor quantum dots

Poled Thick-film Polymer Electro-optic Modulation Using Rotational Deformation Configuration

M. J. Lundqvist, E. Galoppini, G. J. Meyer, and P. Persson*,,

Поляризационная спектроскопия

Supplementary Information

TDDFT in Chemistry and Biochemistry III

Protein-based Sensitive, Selective and Rapid Fluorescence Detection of Picric Acid in Aqueous Media

Electronic structures of one-dimension carbon nano wires and rings

Supporting Information for. Metallonaphthalocyanines as Triplet Sensitizers for Near-Infrared. Photon Upconversion beyond 850 nm

Coumarin Dyes for Dye-Sensitized Solar Cells A. Long-Range-Corrected Density Functional Study

Review Report on Ionic Conductor with High Conductivity as Single-Component Electrolyte for Efficient Solid-State Dye- Sensitized Solar Cells

Supporting information for: Second-order Nonlinear Optical Properties of. Stenhouse Photoswitches: Insights from. Density Functional Theory

Dynamic second-order hyperpolarizabilities of Si 2 C and Si 3 C clusters. using coupled cluster singles-and-doubles response approach

Ab initio and DFT study of the thermodynamic properties and nuclear magnetic resonance of (4, 4) armchair AlN nanotubes

Supporting Information for

Electronic properties of aluminium and silicon doped (2, 2) graphyne nanotube

STUDIES ON MECHANICAL AND ELECTRICAL PROPERTIES OF NLO ACTIVE L-GLYCINE SINGLE CRYSTAL

The trap states in the Sr 2 MgSi 2 O 7 and (Sr,Ca)MgSi 2 O 7 long afterglow phosphor activated by Eu 2+ and Dy 3+

CHAPTER 7 SUMMARY OF THE PRESENT WORK AND SUGGESTIONS FOR FUTURE WORK

th International Workshop on Computational Physics and Materials Science: Total Energy and Force Methods January 2011

Fluorescent silver nanoparticles via exploding wire technique

Nanosecond, Picosecond, and Femtosecond Nonlinear Optical Properties of a Zinc Phthalocyanine studied using Z-scan and DFWM techniques.

Calculations of Linear and Nonlinear Optical Properties of H-Silsesquioxanes

Flexible Organic Photovoltaics Employ laser produced metal nanoparticles into the absorption layer 1. An Introduction

A Novel Fluorescent Chemosensor Based on Tetra-peptide for Measuring Zinc Ions in Aqueous Solutions and Live Cells

Basic Limitations to Third generation PV performance

Oxygen Vacancy Induced Bismuth Oxyiodide with Remarkably. Increased Visible-light Absorption and Superior Photocatalytic.

Graphene is a single, two-dimensional nanosheet of aromatic sp 2 hybridized carbons that

Study of absorption and re-emission processes in a ternary liquid scintillation system *

Electronic and Optoelectronic Polymers

Quantum Chemical Simulations and Descriptors. Dr. Antonio Chana, Dr. Mosè Casalegno

OPTOELECTRONIC HYBRID INORGANIC-ORGANIC MATERIALS

Supporting Information

Organic Electronic Devices

First Principles Design of Dye Molecules with Ullazine Donor for Dye Sensitized Solar Cells

Supplementary Information

Transcription:

Quantum Chemical Designing of Novel NLO Compounds Bull. Korean Chem. Soc. 2014, Vol. 35, No. 5 1391 http://dx.doi.org/10.5012/bkcs.2014.35.5.1391 Quantum Chemical Designing of Novel Organic Non-Linear Optical Compounds Asif Mahmood, * Muhammad Imran Abdullah, and Muhammad Faizan Nazar Department of Chemistry, University of Sargodha, Sargodha, Pakistan. * E-mail: asifmahmood023@gmail.com Institute of Chemistry, University of the Punjab, Lahore, Pakistan Department of Chemistry, University of Gujrat, Pakistan Received October 13, 2013, Accepted January 18, 2014 In the present study, ten metal free non-linear optical (NLO) compounds have been designed. These compounds have designed by structural modification of (2-cyano-5-(4-(phenyl(4-vinylphenyl)amino)phenyl) penta-2,4-dienoic acid (TC4). Density functional theory was used for structure optimization and determination of photo-physical properties. These compounds contain triphenylamine as electron-donor and cyanoacrylic acid as acceptor. Five π-spacers are used to connect the donor and acceptor. Two auxiliary donors are also used to assist the donor. Results of this study indicate that stronger electron-donating auxiliary groups and longer π- conjugation enhance NLO response. Major absorption peaks of all systems were in the visible region. These absorption peaks are associated with the π-π* transitions of the entire molecule. From calculations it is clear that all system will be good NLO material. The present calculations will provide new ways for experimentalists to synthesize high-performance NLO material. Key Words : Polarizability, Hyperpolarizability, TC4, Density functional theory Introduction During the past two decades, molecular materials have attracted considerable attention due to their potential applications in novel optoelectronic devices for telecommunications, information storage, optical switching and signal processing. 1-3 Nonlinear optical properties of organic compounds have been the subject of intense research activity in the past two decades. The reason for the focus on organic compounds is the many advantages they possess compared to inorganic structures with respect to optoelectronics device applications. Among these are their ultrafast- and broadband-electronic responses, low dielectric constants, and negligible one-photon and two-photon absorptions at wavelengths used for opticalfiber telecommunications. In addition, the structure of organic compounds is relatively easy to modify via synthetic routes to meet specific needs of electro-optic device technologies. 4 The advances made in the design and synthesis of suitable structures with large nonlinear optical coefficients have been, in large part, due to advances in the understanding of the microscopic origins of these phenomena by means of theoretical studies. 5-10 These studies have established that the large nonlinearities observed in conjugated organic structures are due to virtual excitations of π-electron states whose properties are determined primarily by the correlated motions of the π electrons due to repulsive Coulomb interactions. Most NLO compounds of this kind are absorbing in the visible spectrum. For a high-density optical storage, complete transparency in the visible is required. One approach to achieve this property is balancing the electro-active properties of the donor and acceptor substituents. 11 Another approach is the synthesis of molecules with a (σ-π)-conjugated frame. 12 This study was carried out to design high response NLO compounds. We have designed ten new metal free organic NLO compounds by structural modification of TC4. We have studied the effect of modification on electronic and photo-physical properties with the help of DFT. Structural modification of TC4 is achieved by changing auxiliary donor and π-spacer. Two auxiliary donor ( OCH 3, CH=C(CH 3 ) 2 ) and five π-spacers are used. This study will be helpful to design and fast screen other organic sensitizers. Computational Detail. TD-DFT-B3LYP is unsuitable for the estimation of excitation energies. 13,14 For all systems having a strong charge transfer (CT) nature, B3LYP, a global hybrid that does not incorporate long-range coulombic effects will fail. Long-range-corrected CAM-B3LYP functional was used to optimize the geometries of systems. CAM-B3LYP provides reliable results and is widely used to describe the intramolecular charge-transfer states of organic systems. 13 Calculations were performed using 6-311+G** basis set, which has already been proven to be an optimal compromise between accuracy and computational cost. 15,16 Absorption spectra of systems simulate by using TDDFT calculations with CAM-B3LYP/ 6-311+G** level. The 10 lowest singlet singlet excitation energies were computed. Average polarizability (α) is determined by considering only the diagonal elements. 17 α = 1/3 (α xx + α yy + α zz ) (1) Ten components (β xxx, β xxy, β xyy, β yyy, β xxz, β xyz, β yyz, β xzz, β yzz and β zzz ) present in Gaussian 09W output file. First hyperpolarizability (β tot ) is calculated using following formula: 17

1392 Bull. Korean Chem. Soc. 2014, Vol. 35, No. 5 Asif Mahmood et al. β tot = [(β xxx + β xyy + β xzz ) 2 + (β yyy + β xxy + β yzz ) 2 + (β zzz + β xxz + β yyz ) 2 ] 1/2 (2) Results and Discussion Reference System. Metal free organic compounds show the following advantages as compared to metal complexes: (1) They have better light-harvesting properties than metal base complexes (2) They provide opportunity to control the light absorption ranges from visible to near-ir due to their structural versatility (3) Have low manufacturing cost. 18 Triphenylamine is widely used as an electron donor for metal-free sensitizers due to its excellent electron-donating capability. 19 TC4 has TPA as donor and cyanoacrylic acid as acceptor. The fame of triphenylamine (electron-donor) and the cyanoacrylic acid (acceptor) as valuable functional groups, inspired to select TC4 as reference system. 20,21 Theoretical Designing of Systems. Criterion of large hyperpolarizability is being applied in the search of NLO metal complexes. From the sum-overstates (SOS) approach, a two-state model linked between β and a low-lying chargetransfer transition has been recognized. 22 In the static case, the following model expression is employed to estimate v CT : of the transition dipole moments and oscillating strength and is inversely proportional to the cube of the transition energy. These factors (µ ge, f gm, and E gm ) are closely related with each other and are governed by choice/strength of the donor/ acceptor along with the conjugated bridge. The most favourable combination of these factors can provide a larger β value. The fundamental issue in this investigation is to increase the electronic communication between donor and acceptor and hence decrease the HOMO LUMO gap. To fulfill this ambition structural modification is used. New systems have been designed by structural modification of TC4. We can change the auxiliary donor, donor and π-spacer groups. The π-conjugated spacer between the electron-donor and acceptor group, plays an important role in tuning the non-linear optical properties. It also controls the intra-molecular electron-transfer. 23 Auxiliary donor also has significant impact NLO properties. Structures of designed systems are given in Figure 1. We have not changed donor because the presence of TPA in system imparts excellent photophysical properties. We have added auxiliary donors with Triphenylamine unit, because the presence of secondary donor increases the electrondonating ability of the donor moiety. 24,25 Two auxiliary donor dimethyl vinyl -CH=C(CH 3 ) 2 (system 1,3, 5, 7 and 9) and methoxy (system 2, 4, 6, 8 and 10) are used. Modification of π-spacer is one of the approaches to improve the harvest of solar energy. 26 Electronic and NLO properties can be tuned using different π-spacers. 27 According to this clue, five π-spacers are used in designing. These π-spacers are selected to understand the effect of π-conjugation and electron-with drawing atom (fluorine) at the π-spacer. Increase of π-conjugation broadens the absorption specβ ct Δμ gm f ------------------- gm 3 E gm where Δμ gm is the change of dipole moment between the ground and m th excited state, f gm is the oscillator strength of the transition from the ground state (g) to the m th excited state (m), and E gm is transition energy. In the framework of two-state model expression, the second-order polarizability caused by charge transfer (β CT ) is proportional to the product (3) Figure 1. Structures of studied compounds.

Quantum Chemical Designing of Novel NLO Compounds Bull. Korean Chem. Soc. 2014, Vol. 35, No. 5 1393 Table 1. E HOMO, E LUMO and energy gap (E g) of studied systems (ev) System E HOMO E LUMO E gap TC4-5.17-2.62 2.55 1-4.98-2.78 2.20 2-4.95-2.76 2.19 3-4.88-2.85 2.02 4-4.82-2.85 1.96 5-5.02-2.97 2.05 6-4.98-2.95 2.03 7-5.13-3.02 2.11 8-5.04-3.19 1.84 9-4.88-3.11 1.77 10-4.82-3.11 1.71 trum and results in red shift. It also decreases the HOMO and LUMO energy gap and thereby increases the solar cell performance. HOMO-LUMO energy gap of TC 4 and all new systems are given in Table 1. Systems with longer π-conjugated chain have shown a smaller energy gap. 23 HOMO-LUMO energy gap of all new systems was lower than that of TC4. Substitution of fluorine on π-spacer decreased the HOMO-LUMO energy gap. The above results indicate that the longer conjugate bridge and electron withdrawing atoms at the π-spacer result in smaller HOMO-LUMO energy gap. 28 In the ground state, distribution of the HOMO is mainly located on the electron-donor to the π-spacer. When radiations strike the system, electrons move from the HOMOs to the Figure 2. HOMO and LUMO of studied systems.

1394 Bull. Korean Chem. Soc. 2014, Vol. 35, No. 5 Asif Mahmood et al. Figure 2. Continued.

Quantum Chemical Designing of Novel NLO Compounds Bull. Korean Chem. Soc. 2014, Vol. 35, No. 5 1395 Table 2. Dipole polarizabilities and major contributing tensors (1 10 24 esu) System α xx α yy α zz α TC4 108.41 38.59 116.64 87.88 1 196.58 166.05 73.24 145.29 2 265.88 176.00 79.76 173.88 3 298.13 171.71 101.55 190.46 4 293.67 170.34 106.35 190.12 5 260.22 177.54 84.39 174.05 6 184.92 137.91 80.79 134.54 7 193.67 157.64 68.78 140.03 8 190.41 128.99 79.93 133.11 9 276.69 206.36 81.99 188.35 10 274.98 209.62 86.11 190.23 LUMOs and reach the anchoring groups. From Figure 2 it is clear that for most of the systems HOMOs are present on the auxiliary donor, donor and some parts of the π-spacer near to donor, while LUMOs are present on acceptor and some parts of π-spacer near to acceptor. Such electron density distributions are beneficial for efficient charge separation and electron injection. This indicates the charge transfer from donor to acceptor through π-spacer. Non-Linear Optical Properties. Polarizability of studied systems is given in Table 2. Polarizability of newly designed systems is very large as compared TC4. Longer conjugation is responsible for higher polarizability. Values α xx tensor was very large as compared to other tensor. Hyperpolarizability of studied systems is given in Table 3. From table it is clear that newly design systems have remarkable high β values as compared to TC4. This is due to the increase of π-conjugation. Longer conjugation results better charge transfer from donor to acceptor via π-spacer. From table it is also clear that systems with stronger electron-donating auxiliary group (-OCH 3 ) (systems 2, 4, 6, 8 and 10) have shown relatively high β values as compared to systems which contain -CH=C(CH 3 ) 2. Comparison of β values of TC4 and newly design systems is given Figure 3. Higher NLO response of newly design compounds is due to a smaller energy gap between HOMO and LUMO as compared to TC4. These newly designed compounds would be ideal candidates to obtain materials with enhanced non Figure 3. Comparison of β values of TC4 and newly design systems. Table 3. Second-order polarizabilities β tot and major contributing tensors (β xxx, β xxy, β yyy and β zzz) (1 10 30 esu) System β xxx β xxy β yyy β xxz β tot TC4-361.79 11.28 1.05-317.16 804.89 1-1829.70 1267.13 559.02-584.68 3544.24 2-1630.26 1400.10 1111.04-286.01 3962.50 3-2031.18 1704.41 1197.40-331.59 4638.95 4-2278.09 1950.44 1554.86-376.28 5518.83 5-1484.57 1333.04 1058.83-288.82 3711.41 6-1895.88 1494.68 895.74-465.83 4096.06 7-1480.20 1140.10 648.29-395.43 3143.18 8-1580.43 1313.05 867.96-423.56 3646.83 9-2799.15 2372.00 1699.40-438.49 6456.69 10-3045.74 2725.78 2346.64-473.77 7765.79 Table 4. Excitation energy (E) Oscillator strength ( f ) and Transition character of studied systems (H = HOMO, L = LUMO, L+1 = LUMO+1, etc.) System E/eV λ/nm (f) Major contribution assignment TC4 2.96 417 1.6630 H L (89%) π π* 4.27 273 0.3554 H L+1 (71%) π π* 1 2.91 424 1.8461 H L (77%) π π* 3.84 295 0.6918 H L+2 (86%) π π* 2 2.90 426 1.7670 H L (81%) π π* 3.92 316 0.3617 H-1 L (72%) π π* 3 2.92 423 3.8470 H-1 L (84%) π π* 3.60 344 0.7230 H L (71%) π π* 4 2.91 425 3.6550 H-1 L (78%) π π* 3.59 345 0.5484 H L (58%) π π* 5 2.78 445 1.6404 H L (82%) π π* 3.75 330 0.5495 H-1 L (66%) π π* 6 2.77 447 1.6121 H L (84%) π π* 3.82 333 0.4737 H-1 L (74%) π π* 7 2.72 454 1.3863 H L (83%) π π* 3.70 334 0.7538 H-2 L (58%) π π* 8 2.71 456 1.3568 H L (85%) π π* 3.78 327 0.6374 H-1 L (62%) π π* 9 2.86 432 3.1400 H L (88%) π π* 3.43 360 0.5070 H L+1 (61%) π π* 10 2.84 435 2.9229 H L (88%) π π* 3.34 370 0.6590 H-1 L (73%) π π* linear optical properties. Absorption Spectra. TDDFT calculations have been performed to understand electronic transitions of all the studied systems. Energy, maximum wavelengths, oscillator strength, main configurations, and transition character are presented in Table 4. Simulated absorption spectra of systems are shown in Figures 4 and 5. All the systems have shown absorbance in visible region. Spectra of all newly designed systems were red shifted as compared to TC4 due to the small energy gap resulting from better conjugation and an electron withdrawing atom on the π-spacer. 29,30 Major absorption peaks of new systems exist between 423 and 456 nm. HOMO to LUMO transition is the most probable and lowest energy transition of all systems except system 3 and 4, for which HOMO-1 to LUMO is

1396 Bull. Korean Chem. Soc. 2014, Vol. 35, No. 5 Asif Mahmood et al. All the design systems were better than TC4. Among designed systems, system 10 was highest non-linear optical properties. Effective π-conjugation between the donor and acceptor group of the system is more important than the electron donating ability of auxiliary donor to enhance the NLO properties. This study will pave way for experimentalists to design and synthesize efficient NLO materials. Figure 4. Absorption spectrum of studied systems (TC4, 1-5). Figure 5. Absorption spectrum of studied systems (6-10). transition is most probable transition. Systems with a stronger electron-donating auxiliary group (-OCH 3 ) (systems 2, 4, 6, 8 and 10) showed slight redshifted absorption relative to other systems which contain -CH=C(CH 3 ) 2. Auxiliary donors concentrate electron density on the electron-donor, which is the main chromophore responsible for the sensitization of photo-to-current conversion processes. Systems 1, 3, 5, 7 and 9 have identical auxiliary electrondonor (-CH=C(CH 3 ) 2 ) but different π-spacer. System 5 and 9 with electron withdrawing fluorine has red-shifted absorption relative to system 1. Electron withdrawing fluorine decreases the energy of the LUMO and reduces HOMO- LUMO energy gap. Red-shift is due to a low HOMO- LUMO energy gap, which results in a low energy transition. Similarly system 6 and 10 have red-shifted absorption relative to systems 2 due to the presence of electron withdrawing fluorine. Systems 2, 6 and 10 also have identical auxiliary electron-donor (-OCH 3 ) but different π-conjugated spacer. System 3 with longer π-conjugation has red-shifted absorption wavelength relative to system 1. Longer conjugation raises the HOMO energy level and reduces HOMO-LUMO energy gap. Red-shift is due to low HOMO-LUMO energy gap, which results low energy transition. Similarly system 4 has red-shifted absorption relative to systems 2 due to longer conjugation. Oscillating strength ( f ) is directly related to length of conjugation. 24 Conclusion In this study we have reported theoretical designing of NLO compounds. All systems might be good NLO material. Acknowledgments. Publication cost of this paper was supported by the Korean Chemical Society. References 1. Costes, J. P.; Lamère, J. F.; Lepetit, C.; Lacroix, P. G.; Dahan, F. Inorg. Chem. 2005, 44, 1973-1982. 2. Di Bella, S.; Fragalà, I. Synth. Met. 2000, 115, 191-196. 3. Lacroix, P. G. Eur. J. Inorg. Chem. 2001, 339-348. 4. Cai, Y. M.; Yamada, S.; Zamani-Khamiri, O.; Garito, A. F. Phys. Rev. B 1997, 55, 12982-12988. 5. Lalama, S. J.; Garito, A. F. Phys. Rev. A 1979, 20, 1179. 6. Heflin, J. R.; Wong, K. Y.; Zamani-Khamiri, O.; Garito, A. F. Phys. Rev. B 1988, 38, 1573. 7. Ramasesha, S.; Soos, Z. G. Chem. Phys. Lett. 1988, 153, 171. 8. Shi, R. F., Wu, M. H.; Yamada, S.; Cai, Y. M.; Garito, A. F. Appl. Phys. Lett. 1993, 63, 1173. 9. Garito, A.F.; Shi, R.F.; Wu, M.H. Phys. Today 1994, 47, 51. 10. Hendrickx, E.; Clays, K.; Persoons, A.; Dehu, C.; Bredas, J. L. J. Am. Chem. Soc. 1995, 117, 3547. 11. Mignani, G.; Krämer, A.; Puccetti, G.; Ledoux, I.; Soula, G.; Zyss, J.; Meyrueix, R. Organometallics 1990, 9, 2640. 12. Mignani, G.; Krämer, A.; Puccetti, G.; Ledoux, I.; Soula, G. Organometallics 1991, 10, 3656. 13. Casida, M. E. J. Mol. Struct.: THEOCHEM 2009, 914, 914. 14. Zhang, J.; Kan, Y.; Li, H.; Geng, Y.; Wu, Y.; Su, Z. M. Dyes Pigm. 2012, 95, 313. 15. Baggioli, A.; Crescenzi, O.; Field, M. J.; Castiglione, F.; Raos, G. Phys. Chem. Chem. Phys. 2013, 15, 1130. 16. Wang, Y.; Cheng, X.; Yang, X.; Yang, X. J. Solution Chem. 2006, 35, 869. 17. Karakas, A.; Elmali, A.; Unver, H. Spectrochimica Acta Part A 2007, 68, 567. 18. Ma, X.; Wu, W.; Zhang, Q.; Guo, F.; Meng, F.; Hua, J. Dyes Pigm. 2009, 82, 353. 19. Ning, Z.; Tian, H. Chem. Comm. 2009, 5483. 20. Zhang, C. R.; Liu, Z. J.; Chen, Y. H.; Wu, Y. Z.; Yuan, L. H. J. Mol. Struct.: THEOCHEM 2009, 899, 86. 21. Hagberg, D. P.; Edvinsson, T.; Marinado, T.; Boschloo, G.; Hagfeldt, A.; Sun, L. Chem. Commun. 2006, 2245. 22. Oudar, J. L.; Chemla, D. S. J. Chem. Phys. 1977, 66, 2664. 23. Tai, C. K.; Chen, Y. J.; Chang, H. W.; Yeh, P. L.; Wang, B. C. Comp. Theor. Chem. 2011, 971, 42. 24. Li, G.; Zhou, Y.; Cao, X.; Bao, P.; Jiang, K.; Lin, Y.; Yang, L. M. Chem. Comm. 2009, 2201, 2203. 25. Tian, H. N.; Yang, X. H.; Pan, J. G.; Chen, R. K.; Liu, M.; Zhang, Q. Y.; Hagfeldt, A.; Sun, L. C. Adv. Funct. Mater. 2008, 18, 3461. 26. Hara, K.; Sayama, K.; Ohga, Y.; Shinpo, A.; Suga, S.; Arakawa, H. Chem. Comm. 2001, 569. 27. Hara, K.; Sato, T.; Katoh, R.; Furube, A.; Ohga, Y.; Shinpo, A.; Suga, S.; Sayama, K.; Sugihara, H.; Arakawa, H. J. Phys. Chem. B 2003, 107, 597. 28. Zhanga, C. R.; Liua, L.; Liuc, Z. J.; Shene, Y. L.; Sune, Y. T.; Wu, Y. Z.; Chena, Y. H.; Yuana, L. H.; Wanga, W.; Chen, H. S. J. Mol. Graphics Model 2012, 38, 419. 29. Xu, J.; Wang, L.; Liang, G. Bai, Z.; Wang, L.; Xu, W.; Shen, X. Bull. Korean Chem. Soc. 2010, 31(9), 2531. 30. Lina, Y. D.; Chiena, C. T.; Lina, S. Y.; Chang, H. H.; Liu, C. Y.; Tahsin, J. J. Photochem. Photobiol. A 2011, 222, 192.