Nilpotent Elements in Skew Polynomial Rings

Similar documents
Analysis of a Stochastic Lotka-Volterra Competitive System with Distributed Delays

A Remark on Generalized Free Subgroups. of Generalized HNN Groups

ELEC 6041 LECTURE NOTES WEEK 3 Dr. Amir G. Aghdam Concordia University

Efficient Estimators for Population Variance using Auxiliary Information

The MacWilliams Identity of the Linear Codes over the Ring F p +uf p +vf p +uvf p

Asymptotic Behavior of Solutions of Nonlinear Delay Differential Equations With Impulse

On the energy of complement of regular line graphs

Solution of Impulsive Differential Equations with Boundary Conditions in Terms of Integral Equations

Types Ideals on IS-Algebras

Competitive Facility Location Problem with Demands Depending on the Facilities

Solution to Some Open Problems on E-super Vertex Magic Total Labeling of Graphs

The Signal, Variable System, and Transformation: A Personal Perspective

Cyclically Interval Total Colorings of Cycles and Middle Graphs of Cycles

The Theory of Membership Degree of Γ-Conclusion in Several n-valued Logic Systems *

Laplace Transform. Definition of Laplace Transform: f(t) that satisfies The Laplace transform of f(t) is defined as.

8. Queueing systems lect08.ppt S Introduction to Teletraffic Theory - Fall

The Properties of Probability of Normal Chain

Calibration Approach Based Estimators of Finite Population Mean in Two - Stage Stratified Random Sampling

Lecture 3 Topic 2: Distributions, hypothesis testing, and sample size determination

The Poisson Process Properties of the Poisson Process

Complementary Tree Paired Domination in Graphs

Key words: Fractional difference equation, oscillatory solutions,

(1) Cov(, ) E[( E( ))( E( ))]

New approach for numerical solution of Fredholm integral equations system of the second kind by using an expansion method

Some Improved Estimators for Population Variance Using Two Auxiliary Variables in Double Sampling

Random Generalized Bi-linear Mixed Variational-like Inequality for Random Fuzzy Mappings Hongxia Dai

A L A BA M A L A W R E V IE W

14. Poisson Processes

Meromorphic Functions Sharing Three Values *

ROOT-LOCUS ANALYSIS. Lecture 11: Root Locus Plot. Consider a general feedback control system with a variable gain K. Y ( s ) ( ) K

Some Probability Inequalities for Quadratic Forms of Negatively Dependent Subgaussian Random Variables

Linear Approximating to Integer Addition

Collapsing to Sample and Remainder Means. Ed Stanek. In order to collapse the expanded random variables to weighted sample and remainder

CS344: Introduction to Artificial Intelligence

A Second Kind Chebyshev Polynomial Approach for the Wave Equation Subject to an Integral Conservation Condition

THE TRUNCATED RANDIĆ-TYPE INDICES

QR factorization. Let P 1, P 2, P n-1, be matrices such that Pn 1Pn 2... PPA

National Conference on Recent Trends in Synthesis and Characterization of Futuristic Material in Science for the Development of Society

Continuous Time Markov Chains

Reliability Analysis. Basic Reliability Measures

On the Quasi-Hyperbolic Kac-Moody Algebra QHA7 (2)

The Lattice of Fully Invariant Subgroups of the Cotorsion Hull

ClassificationofNonOscillatorySolutionsofNonlinearNeutralDelayImpulsiveDifferentialEquations

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables

P a g e 3 6 of R e p o r t P B 4 / 0 9

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi FACTORIZATION PROPERTIES IN POLYNOMIAL EXTENSION OF UFR S

Determination of Antoine Equation Parameters. December 4, 2012 PreFEED Corporation Yoshio Kumagae. Introduction

On Metric Dimension of Two Constructed Families from Antiprism Graph

The conditional density p(x s ) Bayes rule explained. Bayes rule for a classification problem INF

On Probability Density Function of the Quotient of Generalized Order Statistics from the Weibull Distribution

The algebraic immunity of a class of correlation immune H Boolean functions

Reliability Equivalence of a Parallel System with Non-Identical Components

The Lucas congruence for Stirling numbers of the second kind

Midterm Exam. Tuesday, September hour, 15 minutes

On cartesian product of fuzzy primary -ideals in -LAsemigroups

Continuous Indexed Variable Systems

T h e C S E T I P r o j e c t

Fully Fuzzy Linear Systems Solving Using MOLP

Some probability inequalities for multivariate gamma and normal distributions. Abstract

A note on Turán number Tk ( 1, kn, )

Solution set Stat 471/Spring 06. Homework 2

Partial Molar Properties of solutions

The Non-Truncated Bulk Arrival Queue M x /M/1 with Reneging, Balking, State-Dependent and an Additional Server for Longer Queues

FORCED VIBRATION of MDOF SYSTEMS

4. THE DENSITY MATRIX

PRIMARY DECOMPOSITION, ASSOCIATED PRIME IDEALS AND GABRIEL TOPOLOGY

The ray paths and travel times for multiple layers can be computed using ray-tracing, as demonstrated in Lab 3.

Numerical Methods using the Successive Approximations for the Solution of a Fredholm Integral Equation

Unique Common Fixed Point of Sequences of Mappings in G-Metric Space M. Akram *, Nosheen

Debabrata Dey and Atanu Lahiri

Interval Estimation. Consider a random variable X with a mean of X. Let X be distributed as X X

Speech, NLP and the Web

Chapter 1 - Free Vibration of Multi-Degree-of-Freedom Systems - I

A Family of Non-Self Maps Satisfying i -Contractive Condition and Having Unique Common Fixed Point in Metrically Convex Spaces *

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

P a g e 5 1 of R e p o r t P B 4 / 0 9

Probability Bracket Notation and Probability Modeling. Xing M. Wang Sherman Visual Lab, Sunnyvale, CA 94087, USA. Abstract

Some Different Perspectives on Linear Least Squares

4 5 = So 2. No, as = ± and invariant factor 6. Solution 3 Each of (1, 0),(1, 2),(0, 2) has order 2 and generates a C

General Complex Fuzzy Transformation Semigroups in Automata

The Solutions of Initial Value Problems for Nonlinear Fourth-Order Impulsive Integro-Differential Equations in Banach Spaces

Integral Form of Popoviciu Inequality for Convex Function

Least Squares Fitting (LSQF) with a complicated function Theexampleswehavelookedatsofarhavebeenlinearintheparameters

Parameters Estimation in a General Failure Rate Semi-Markov Reliability Model

Nonsynchronous covariation process and limit theorems

for each of its columns. A quick calculation will verify that: thus m < dim(v). Then a basis of V with respect to which T has the form: A

Parts Manual. EPIC II Critical Care Bed REF 2031

Brownian Motion and Stochastic Calculus. Brownian Motion and Stochastic Calculus

The Mean Residual Lifetime of (n k + 1)-out-of-n Systems in Discrete Setting

AML710 CAD LECTURE 12 CUBIC SPLINE CURVES. Cubic Splines Matrix formulation Normalised cubic splines Alternate end conditions Parabolic blending

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY

-HYBRID LAPLACE TRANSFORM AND APPLICATIONS TO MULTIDIMENSIONAL HYBRID SYSTEMS. PART II: DETERMINING THE ORIGINAL

ANSWERS TO ODD NUMBERED EXERCISES IN CHAPTER 2

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

Practice Final Exam (corrected formulas, 12/10 11AM)

Physics 240: Worksheet 16 Name

PTAS for Bin-Packing

ONE APPROACH FOR THE OPTIMIZATION OF ESTIMATES CALCULATING ALGORITHMS A.A. Dokukin

Theory study about quarter-wave-stack dielectric mirrors

Fault Tolerant Computing. Fault Tolerant Computing CS 530 Reliability Analysis

Transcription:

Joural of Scece, Ilac epublc of Ira 8(): 59-74 (07) Uvery of Tehra, ISSN 06-04 hp://cece.u.ac.r Nlpoe Elee Sew Polyoal g M. Az ad A. Mouav * Depare of Pure Maheac, Faculy of Maheacal Scece, Tarba Modare Uvery, P.O. Bo 45-34, Tehra, Ilac epublc of Ira eceved: 4 Deceber 05 / eved: 3 May 06 / Acceped: 5 February 06 Abrac Le be a rg wh a edoorph ad a -dervao. Aoe uded he rucure of he e of lpoe elee Aredarz rg ad roduced l- Aredarz rg. I h paper we roduce ad vegae he oo of l- (,) - copable rg. The cla of l- (,) -copable rg are eeded hrough varou rg eeo ad ay clae of l- (,) -copable rg are coruced. We alo prove ha, f l- -copable ad l-aredarz rg of power ere ype wh l lpoe, he l( [[ ; ]])()[[ l; ]]. We how ha, f a l- Aredarz rg of power ere ype, wh rg, he l ;, l lpoe ad l- (,) -copable l ;,. A a coequece, everal ow reul are ufed ad eeded o he ore geeral eg. Alo eaple are provded o llurae our reul. Keyword: (,) copable rg; Sew polyoal rg; Sew power ere rg. Iroduco Throughou h arcle, all rg are aocave wh dey. Le be a rg, be a edoorph ad a -dervao of, ha a addve ap uch ha ab ab a b, for all a, b. We deoe ;, he Ore eeo whoe elee are he polyoal over, he addo defed a uual ad he ulplcao ubec o he relao a a a for ay a. We alo deoe he ew power ere rg [[ ; ]], whoe elee are he power ere over, he addo defed a uual ad he ulplcao ubec o he relao a a for ay a. ecall ha a rg reduced f ha o ozero lpoe elee. Aoher geeralzao of a reduced rg a Aredarz rg. A rg ad o be Aredarz f he produc of wo polyoal zero ple ha he produc of her coeffce are zero. Th defo wa coed by ege ad Chhawchhara [6] recogo of Aredarz proof [4, Lea ] ha reduced rg afy h codo. Accordg o Aoe [3], a rg called lf g l ple Aredarz, f ab l (), for all * Correpodg auhor: Tel: +988883446; Fa: +988883493; Eal: ouav.a@gal.co 59

Vol. 8 No. WINTE 07 M. Az ad A. Mouav. J. Sc. I.. Ira. 0 0 f () a,() g b [] Whe a -pral rg, he he polyoal rg [ ] ad he Laure polyoal rg [, ] are -pral ad l-aredarz, ad l ( [ ]) l ()[ ]. Th codo rogly coeced o he queo of wheher or o a polyoal rg [ ] over a l rg l, whch relaed o a queo of Aur []. Th rue for ay -pral rg (.e. he lower l radcal Nl () * cocde wh l () ). I [3], M. Habb ad A. Mouav, ay, a rg wh a edoorph α l-aredarz of ew f. g l( ) [[ ; ]] power ere ype, f a b l, for all, ad for ple ha all 0 0 f () a,() g b [[ ; ]]. I h paper, we are cocered wh l-aredarz rg of ew power ere ype, whch a geeralzao of l-aredarz rg. Accordg o Krepa [5], a edoorph of a rg called rgd f a () a 0 ple a 0 for each a. A rg called -rgd f here e a rgd edoorph of. I [9], E. Hahe ad A. Mouav, ay a rg -copable f for each a, b, ab 0 f ad oly f a b 0. Moreover, ad o be - copable f for each a, b, ab 0 ple a b 0. If boh copable ad - copable, ad o be (,) -copable. By [], called wea copable, f ab l f ad oly f a b l for each a, b, ad ad o be wea copable f for each a, b, ab l ple a b l. Ufyg ad eedg he above oo, we ay a l- -copable rg f for each a, b, ab l f ad oly f a b l. Moreover, we ay l- -copable f for each a, b, ab l a b l. ple If boh l- -copable ad l- - copable, we ay ha l- (,) -copable. We eed he cla of l-(,) -copable rg hrough varou rg eeo. We how ha a l-(,) -copable rg f ad oly f he rg of ragular ar T l- (,) -copable, where a -dervao of T. If a l- Aredarz rg of power ere ype ad l-(,) - copable he ; a l- (,) -copable rg, where a -dervao of ;. A a coequece, everal propere of (,) - copable rg are geeralzed o a ore geeral eg. We how ha f a l--copable ad ll Aredarz rg of power ere ype wh lpoe, he l l [[ ; ]] [[ ; ]]. We alo how ha, f l-aredarz rg of power ere ype ad l-(,) -copable, wh l lpoe, he l ;, l ;,. Moreover we how ha, whe l-(,) - copable, -pral, ad eher a rgh Golde rg or ha he acedg cha codo (a.c.c.) o deal or ha he a.c.c. o rgh ad lef ahlaor or a rg wh rgh Krull deo, he ( ;, ) l ;,. l eul ad Dcuo We fr roduce he cocep of a l-(,) - copable rg ad udy propere. Defo.. For a edoorph ad a - dervao, we ay ha l- -copable f for each a, b, ab l f ad oly f a b l. Moreover, ad o be l- - copable f for each a, b, ab l ple a b l. If boh l- - copable ad l- -copable, we ay ha l- (,) -copable. By [9], -rgd rg are (,) -copable. Clearly every (,) -copable rg ad hece every -rgd 60

Nlpoe Elee Sew Polyoal g rg alo l-(,) -copable. Alhough he e of (,) -copable rg arrow, we how ha l- (,) -copable rg are ubquou. By [], a rg l-aredarz of power ere f. g l a b ype f [[ ]] l, for all, ad f () a, () g b ple [[ ]]. 0 0 Lea.. Le be a l-(,) -copable rg. The () ab l () f ad oly f a ()() b l, for each pove eger uber. () ab l() ple a ()(), b l for each pove eger uber. (3) If a l-aredarz of power ere ype ad a b l () he ()()(), a b l p q ()()() a b l whe,, p, q are pove eger uber. Proof. () Sce l-(,) -copable, we have he followg plcao: ab l ()()() a b l a () b a ()() b l. Coverely we have a () b l () a (())() b l a () b l () ab l (). () Th lar o (). (3) ab()l ple ba()l becaue for u ba ple ha u bra, for each r, u ()()() bra bra br ab ra. Bu ab l() he ab l () ce l- Aredarz of power ere ype, hu o u l () ad ba l (). We have u l () ab l (), o a ()() b l by (). The we have ()() b a l o ()()() b a l ad ha ()() a b l (). The we coclude ha ()() a b coaed l (). We do he ae for p q ()() b a l () wh pove eger p, q. Lea.3. Each wea (,) copable rg l-(,) -copable. Proof. Suppoe ha ab l (). So arb l () for each r. The ()() ar b l ad o we have ()() ar b l (), by wea (,) copably. So a ()() b l. Slarly, ()() ar b l for all r ad by wea (,) copably we have ()()() ar b l ad o a ()() b l. Ne aue, a ()() b l. The ()()() ar b l ad by wea (,) - copably, we have ()() ar b l for all r, o ab l (). I he followg, we wll ee ha he covere o rue. Ideed, here e a rg, whch l-(,) -copable bu o wea (,) -copable. Thu a l-(,) -copable rg a rue geeralzao of a wea (,) -copable rg (ad hece (,) - copable rg). We he ca fd varou clae of l- (,) -copable rg whch are o wea (,) -copable ad hece are o (,) -copable. Eaple.4. Le K be a feld, ad S K, y, z. Le S K, y, z. y Alo aue ha a edoorph of S ad be a edoorph of, gve by: (),(),() z. z f (),(),() z. z We fr how ha well defed. To ee h, le g for oe f, g, o here e h, f, f S uch ha f g f yf. ()() f g ()()()() f y f Thu ()()() g f yz f. So ()() f g, ad well defed. Now, we deere he e of lpoe elee of. Fr, we fd zero devor ooal. Le 0 f be a zero devor ooal. 6

Vol. 8 No. WINTE 07 M. Az ad A. Mouav. J. Sc. I.. Ira We have f uf u,g v gv, wh u, u, v, v, y, z, f, g uch ha fg 0, o uf u. v gv 0. If u v y oe of uf or y, he here e f or f u or v g or g or gv. Bu f oe of hee cae occur, f 0 or g 0. u v So y, ad u y, v. Hece 0 f lef (rgh) zero dvor f ad oly f f f, g g y. If f a lpoe ooal of, he f f y. Moreover () f y0. So f a lpoe ooal, f ad oly f f f y, for oe ooal f. Now we cla ha, f f a lpoe polyoal ad f f where f ooal for oe, he f lpoe (.e. f f y polyoal f for oe ). Before provg he cla we have he followg propery: The deg(f) z, where f a ooal he fro r r y z y z y z r r, Slarly, deg(f), deg(f) y are defed by r r repecvely. Alo deg()() f. r. ad Proof of he cla: A f deg(f) aal ad f o lpoe. Le Aue ha f, f, f A are he ooal uch ha deg, deg y, degz hey have he large. Oe ca ee ha a lea oe of deg,deg y,degz ozero. Whou lo of geeraly, le deg 0. Sce f o lpoe f o zero devor, hece () f o zero. Alo, worh o ay ha he ooal wh large deg f () f. So ca o be plfed ad h ea ha f o lpoe. Th coradco how ha deg() f deg() deg() f 0 f. So f y z lpoe ad coa whch ea ha f 0. Hece f eher zero or he for f y for oe f. Now, le fg l (). Suppoe ha f uf, g gv ad u, v, y, z. If u, v y, he fzg l (). So we have f f, g g y, hece f ()()(). g f g y l I obvou ha f ()() g l. Coverely le f ()() g l, wh f uf, g gv ad u, v, y, z. Sce f ()() g l, u,() v v y, o v y. Hece fg f g y, whch obvouly a ube of l (), whch how ha a l- -copable rg. Bu eay o ee ha y z l (), whle y () z yz 0(). l Thu o wea - copable. Noe ha l () o a deal of. Th becaue y z l (), z, bu z y z l (), y z z l (). Le be a -dervao of. The edoorph of eeded o he : edoorph T ()() T defed by (())(()) a a, alo he -dervao eeded o he -dervao T ()() T : defed by (())(()) a a, for each a T (). The we have he followg. () Theore.5. A rg l-(,) -copable f ad oly f he ragular rg T () l- (,) - copable. Proof. Suppoe ha a l-(,) -copable A a B b T(). rg ad (),() We how ha AT ()(()) B l T AT ()()(()) B l T. We oberve ha l (()) T l () 0() l. 0 0 0() l f ad oly f The for C (r) T (), we have AC(()) B l T 6

Nlpoe Elee Sew Polyoal g ar b 0(()) ar b l T 0 0 ar b a r b l() for a r ()() b l, for, by l- (,) copably - ar () b 0()(()) ar b l T 0 0() ar b AC() B l (()) T AT ()()(()) B l T. The cae l- -copably lar. Ne uppoe ha T() a l-(,) -copable rg ad ha a, b, r, A () a,() B, b C(c) are dagoal arce T (). The we have a b l () arb 0 0 0 arb 0 0 l(()) T 0 0 arb AC(()) B l T AC()(()) B l T, for all r, by l- (,) -copably ar () b 0 0 0() 0 ar0 b l(()) T 0 0() ar b ar ()() b l for all r a ()() b l. The cae l- -copable lar. Le be a rg ad le a a a 0 a a S () ad, a a 0 0 a a a a 0 a a wh 0 0 a, ad le T (, ) be he rval eeo of by. Ay edoorph of ca be eeded o a edoorph of S () or T (, ) or T (,) a T (, ) defed by (())(()) a a, ad ay - dervao ca be eeded o a -dervao of S() (or T(,) or T(,) ) defed by (())(()). a a Theore.6. Le be a edoorph ad a -dervao of. The he followg codo are equvale: () l-(,) -copable. () S () l- (,) -copable. (3) T(,) l- (,) -copable. (4) T (,) l- (,) -copable. Proof. Ug he ae ehod a he proof of Theore.5, he reul follow. By [, Lea.9], proved ha, f - l l. A edoorph pral he ad -dervao of a rg [ ], gve by : [ ] [ ] are eeded o defed by ( a )= a, ad [ ] 0 0 defed by ( a )= a 0 0 : [ ]. We ca ealy ee ha a -dervao of he polyoal rg [ ]. Lea.7 Le be a l-aredarz rg of power ere ype, l- -copable ad a ()() b l, a, b, uch 63

Vol. 8 No. WINTE 07 M. Az ad A. Mouav. J. Sc. I.. Ira ha 0,,,,. The a ()() b l for all. Proof. We have he followg ye of equao: a b l (); 0 0 0 a b a ()(); b l 0 0 a b a ()()()(). b a b (*) a b l 0 0 We wll how ha a ()() b l by duco o. If 0, he a 0 b 0 l (), () b 0 a 0 l. Now, uppoe ha a pove eger uch ha a ()() b l, whe. We wll how, whe. Mulplyg ha a ()() b l equao (*) by b0 fro lef, we have b a ()()()() b b b a b b a b b a b b a b 0 0 0 0 0 0 0 0 0 By he duco hypohe a ()() b0 l, for each,0. So a ()() b0 l by [, Lea 3], hece a b0 l (), by lcopably. The a b0 l (), b0 a l (), for each,0. Thu b0a ()() b0 l ad o b a ()() b l, o b0a b0 l (), ad 0 0 hece a ()() b0 l. Mulplyg equao (*) by b, b,, b fro he lef de repecvely, yeld a ()(),()(), b l,() a b l a b l, 0 ur. Th ea ha a ()() b l, whe. Theore.8. If a -pral ad l-(,) - copable rg, he he polyoal rg [ ] l- (,) -copable. Proof. Le f g l f () a, 0 p 0 r r [ ], we have 0, wh g ( ) b [ ]. The for all f r g l. Hece p () arb l = 0 a r b () l for 0,,,, p. Bu -pral, o a rb l (), by ehod of Lea.7, ad by l-(,) -copably we have a r () b l () for all,,. Thu a r() b l (). So we ca coclude ha p f r ( g ) (() 0 a r b l f () g l how ha f g l. Hece we ge. Slarly, we ca. The covere lar. Thu [ ] a l-(,) - copable rg. Le be a -dervao of, ad for eger, wh 0 f Ed,, wll deoe, he ap whch he u of all poble word, bul wh leer ad leer. For ace f, f, f ad 0 0 0 f appear [6].. The e lea Lea.9. For ay pove eger ad r we have ab a, b r f () r he rg ;,. 0 By [7], a rg l-ecouave f l ple ab l., for all Lea.0. Le be a l-, -copable rg ad l-aredarz of power ere ype. If a b l af () b l for all 0. he Proof. Ug Lea., he proof rval. By [, Lea 3], f a l-aredarz rg of power ere ype he a l-ecouave rg. 64

Nlpoe Elee Sew Polyoal g Now we have: Propoo.. Le be a l-(,) -copable rg ad l-aredarz of power ere ype. The we l ( ;,() ) ; l,. have Proof. Le f () a ( [) ;, ]. 0 l There e a pove eger uch ha 0. 0. So l. Thu we have... f The we have a a a a lower er a α a α a α a 0 aα a α a α a α a l, by [, Lea 3]. So we have a α a α a α a α a l, by l-(,) -copably. I ple ha a α a α a α a.. α a l, 3 he aα a α a α a, by [, Lea 3], o 3... α a a l a α a α a α a a a l By followg h ehod, we have a l. Alo a. aò l, he a l have f a l f l for 0. 0 a. We, by Lea.0. So Now we f A a a a f A a A wh, - 0 -. The ;. Noe ha he coeffce of ca be wre a u of ooal a ad f ( a ), where a, a a, a,, a ad 0, are 0 oegave eger ad each ooal ha a f ( a ). Becaue l-aredarz of power ere ype, we ge ha l () ;, he er A a a a or. Now coder 0, o we have A l ; α, δ, he A a α a α a +lower er l ; α, δ () a α a α a l () (). Hece. A he argue above, he we have a l (). By followg h ehod we have a l 0. Hece f l ( ) [ ;, ]. for Corollary.. If 0, he l ( [ ; ]) l ;. Lea.3. Le be a l-(,) -copable ad l-aredarz rg of power ere ype rg. The l l a. Proof. Le u l o u a wh l (). Hece a a l(), ad by δ- copably we have a ()(). a l So a l (), he a l(). Theore.4. Le be a l-(,) -copable, l-aredarz rg of power ere ype ad l lpoe. The ;, Proof. Le f () l [ ]( [ l ]);,. a l ;, 0 [ ]. For a ay arbrary coeffce of f, δ a l. A α a edoorph, α a l. The here e aural uch ha ( l ) zero. Now we coder f v v ()...(). a f u a f u a All coeffce 0... of v v f are he for of ()...() u u whch he produc of eber of he a f a f a, l by Lea.0, o hould be equal o zero. Thu f l ; α, δ ). 0 f ad hece ( [ ] 65

Vol. 8 No. WINTE 07 M. Az ad A. Mouav. J. Sc. I.. Ira Corollary.5. Le be a l-(,) -copable, l-aredarz rg of power ere ype ad l lpoe. The we have l( [ ;, ]) l [ ;, ]. Corollary.6. Le be a l-(,) -copable ad -pral rg. Aue ha eher a rgh Golde rg or ha he acedg cha codo (a.c.c.) o deal or ha he a.c.c. o rgh ad lef ahlaor or a rg wh rgh Krull deo. l ( [ ;, ]) l [ ;, ]. The Proof. If ha ay of hee cha codo, he upper lradcal Nl () of lpoe. If ha he a.c.c. o deal, Nl () ca be characerzed a he aal lpoe deal of. If ha he a.c.c. o boh lef ad rgh ahlaor, Nl () lpoe by a reul of Here ad Sall [0, Theore.34], whle lpoe by a reul of f rgh Golde, Nl () La [8, Theore ]. Alo, f a rg wh rgh Krull deo, he by [7], Nl () lpoe. Corollary.7. If a l-aredarz rg of l lpoe ad l- - power ere ype ad copable rg, he l( [ ]) l ; ;. Proof. By Corollary.5, f 0 l( [ ; ]) l ;., he Theore.8. If a l-aredarz rg of power ere ype ad l-(,) -copable rg l lpoe, he ; copable rg. a l- (,) - Proof. Aue ha,), ad le f () a g( b ; 0 0 ; () ; p a ;, f g l. For all r 0 we have f r () g l.; Corollary.7, we have f r () g So by p l (()()) a r ; b l 0 The ;. a l ()() r b (), for 0,,,, p. Bu l-aredarz rg of power ere ype, o a ()()(), r b l by Lea.7, wh 0,0, 0 p. A lecouave, o we ge a ()() r l (), he a ()() r b l () Lea.. The ()() b, by a r b l () a r b l (). Hece ()() we have p (()()) 0. a r b So l ; l ;. Therefore we ge f r g l ; α. Coverely aue f ; α g l ; α. So we have p l ; f r g (()()) a r b, 0 for all r ; α. Thu we have a ()() r b l(). Sce l Aredarz rg of power ere ype, a ()() r b l (), o a ()() r b l (). Hece a ()() r b l (), a ()() r b l (). o The for all,,, we have l (). p a ()() r b (()()) a r ; b l, ad 0 hece f r ( g ) l ; α So, for 66

Nlpoe Elee Sew Polyoal g all r ; α f ; α ( g ) l ; α. Fally we have. For he cae of l- -copably, le f ; α g l ; α. The we have f r g p (()())()[ a ; ], r b l 0 for all r ; α. Hece a ()() r b l (). The a ()() r b l () for 0,0,0 p. Baed o he aupo we have ()() r b a l (), o a () r b l () ad ha a ()() r b l (). Hece a ()(()) r b l(), ad ha p 0 (()(())) a r ; b l. Th ple f r () g l,; α for all ; α ; ( ) l ; α r. Therefore we coclude ha f α g. Now we coder he lpoe elee ew polyoal rg whe a l-aredarz rg of power ere ype. Theore.9. Le be a l-aredarz rg of power ere ype ad l-, -copable rg. Le ; α, δ. 0 0 f () a,() g b f α δ g l α δ If ;, ;,, he a b l () for 0, 0. a rb Proof. Le 0, 0. a b for all r, We have r ; α, δ o ;, f rg f α δ g hece we have, () r() a 0 0 ()(()) a rb l( [ ]) 0 0 ()(()) b ;,, a rb ( )[ ;, ] 0 0 l Propoo.. Therefore a () 0 f rb l ( ) [ ;, ], wh. Pu 0, a f () rb,,,,, hece l(). equao: a ()(); rb l o by We have he followg a ()() rb a()(); a rb f rb l ()()()(); a rb a f rb a f rb l (())(). a f rb l The ce l-ecouave by [, Lea 3], applyg he ehod he proof of [, Theore.4], we oba a ()() rb l, he a b l(). Theore.0. Le be a l-(,) -copable ad I be a l deal of uch ha I I, I I. The a l-(,) - I copable rg. Proof. We have o prove a b l f ad oly f a() b l, for ay a, b, uch ha a a I, b b I. Fr aue ab l ad r. The a r ()() b a b, o ai r I α b I a () b. The 67

Vol. 8 No. WINTE 07 M. Az ad A. Mouav. J. Sc. I.. Ira arα b l. Bu I a () b l () arb I, I l-(,) hece arb l (), o I I l. A -copable, we have arα b l arα b l. I I l () The a () b l I o. The cae l- - copable lar. Coverely aue a () b l ad arb ab. The ()arb I a b. Uder he aupo (), hece ar () b l a r b l. A l-(,) -copable, we have arb l for all r, o we cocluded ha ab l () l I. I Defo.. [3] A rg ad o be, - ew l-aredarz f wheever 0 0 f () a,() g b ; α, δ afy. l,,, he a b l,, for ay,. f g, Lea.. If a l-(,) -copable ad l-aredarz rg of power ere ype, he a, -ew l-aredarz rg. Proof. Le 0 0 0 f () a,() g b ; α, δ ad f. g l,,. Therefore a f () b l ( ) [ ;, ], wh. So (())() a f b l, ce l-ecouave by [, Lea 3], applyg he ehod he proof of [, Theore.4], we oba a f ()() b l wh. The a, -ew l-aredarz rg. Propoo.3. Le be a l-(,) -copable ad l-aredarz rg of power ere ype, he for each depoe elee e e l ad e e u uch ha u l,. Proof. We have e e αe ee. By ag polyoal f e e, g e e, we ee ha f. g 0, whch ple ha f. g l ; α, δ l ;, by Propoo.. e e ee e l(). Now ae h e () α e, () ee. The we have h. 0 ad o e (), o we ge e e () l l. Now ae p e e α e ad q e e α e ; α, δ. The p. q eα e e eα e e α e l ; α, δ, ce e l () ad l-aredarz rg of power ere ype. Bu, -ew l- Aredarz by Lea., o e. e α e eα e α e l ( ) (). Now ae e e() α e, ee() αe ; α, δ. The we have. e () α e e e () α e e e() αe eαe. A e l(),. l ; α, δ. 68

Nlpoe Elee Sew Polyoal g Ad o a e. e ( α e ), -ew l-aredarz rg, hu () (). Now by () ad () we oba u e α e l. Hece α e e u e eα e l wh u l (). Theore.4. Le be a l-(,) -copable ad l-aredarz rg of power ere ype. The for each depoe elee e ad a, ea ae u wh u l(). Proof. Accordg o he Propoo.3, e e u wh u l () l., e () Now ae he polyoal f e ea e, g e ea e ; α, δ. Hece f. g ea e e ea e. ea e. l ad, e () O he oher had, u l () l-aredarz rg of power ere ype. So we have = ea e α e ea e e ea e e ;,. ea e u eu e e l α δ Slarly ea eea e l ; α, δ f g l ; α, δ ge e. ea e l ea ea e l h e e ae,. The, hece we, ad ha (). Le e eae, accordg o a earler ae we have eeae l. Hece ae eae l (). Ug (), () we have ea ae l, o ea a e u wh ul. Defo.5. For a edoorph ad a -dervao, a deal I ad o be l- (,) - copable provded ha: ) ab l a b l. For all a, b I. ) a b l a b l. all a, b I. For Theore.6. Le be a abela l-aredarz rg of power ere ype. The he followg aee are equvale : ) a l-(,) -copable rg. ) For each depoe e wh e e u,, e ad u l() ad e l () e are l-(,) -copable deal. Proof. rval. Le e be a l-(,) - copable deal ad ab l for each a, b o arb l, hece earb l. Thu () ea rebl. Bu e a l-(,) -copable deal, hece we have ha ea rα e α b ea r e u α b ea reα b ea ru α b l. Sce u) l (, we have ea ruα b o ea reα b ea rα bl l, (). Now, accordg o he above argue for e, we have e arα b l Wh () ad () we oba arα b l all r or aα b l ()., for. For he cae of l- -copable, we do a lar way. Coverely uppoe ha aα bl, he we ge arα b l, for each r. Bu (ea)rα (eb)= (ea) rα (e)α (b)= (ea) r (e+u) α (b)= (ea) r e α (b)+ ea rα b ea ruα b ad ha (ea) ruα (b) 69

Vol. 8 No. WINTE 07 M. Az ad A. Mouav. J. Sc. I.. Ira ea r α b,ea ruα b l. The ea rα eb l, ce e l- (,) -copable deal, hu we have ea r eb ea r b l (3). Slarly, we have ea r b l (4). Therefore (3),(4) ple arb l, for all r. Hece ab l. We coue o eed l- -copable codo ad, ; α. If o, f () a, a =,. a, we defe, for each eger uber Theore.7. If a -pral ad l- - copable rg, he, copable rg. have Proof. Le,,, a l- - [ ]. The we,. Hece for, f a uber, wh he eger we have f a, hece f g 0 o f g,., Now by Theore.8, a l- -copable rg. ecall ha a rg called of bouded de of lpoecy, f here e a pove uber uch ha 0 l., for each Lea.8. [, Lea ] If a l- Aredarz rg of power ere ype, he l( [[ ]]()[[ ) l ] ]. Theore.9. Le be a l-aredarz rg of power ere ype ad of bouded de. The l( [[ ]]()[[ ) l ] ]. Proof. By Lea.8 uffce o prove ha l()[[ ]]( [[ l ]] ). Sce l- Aredarz of power ere ype, l l ad of bouded de, a a rg, by [, Theore.5]. The [[ ]] a l rg of bouded de. Hece we ge l ()[[ ]]( [ ]] l [ ). Lea.30. [, Lea] Le be a l- Aredarz rg of power ere ype. Le f, f,, f [[ ]] f f f l()[[ ]] ad. The for all coeffce a of aa a l(), f. Theore.3. Le be a l-(,) -copable ad l-aredarz of power ere ype rg wh bouded de. The [[ ]] a l- (,) - copable rg. Proof. Le 0 0 f () a,() g b [[ ]] ad aue ha f [[ ]] g l( [[ ]] ). For each we have r() c [[ ]] 0 f r()( g [[ ]] l ). If u a arbrary elee of f [[ ]] g he u f r g r [[ ]],, for all. Uder he aupo we have f r g l( [[ ]]()[[ ) l ] ] ce, l-aredarz of power ere ype o l ad ce l-(,) - a cb copable a () b l c ad 70

Nlpoe Elee Sew Polyoal g ac () b l() for 0,,, Hece 0. (()) ac b l()[[ ]], o we have ()[[ ]]( ) f r g l l [[ ]]. Ad h ea we prove ha f rg f [[ ]] g f [[ ]]( () [[ g ] l ]). Coverely, f [[ ]]( g [[ l ]] ). If, he by he aupo f r g l ( [[ ]]) l ()[[ ]], ad ce l- Aredarz of power ere ype, we have () l. Hece a cb l a c b l for 0,,, a c b ad ha. So () a cb 0 l()[[ ]] l [ ]) Ad h ea ha ( [ ]. f [[ ]]( g [[ l ]] ). For he cae of l- -copable, we do a lar ehod. The [[ ]] a l- (,) -copable rg. Defo.3. A rg wh a edoorph ew l-aredarz of power ere ype, f wheever for all, 0 0 f () a,() g b [[ ; ]] f ().() g l()[[ ; ]], he a b l for all,. Propoo.33. Le be a l- -copable ad l-aredarz rg of power ere ype. The ew l-aredarz rg of power ere ype. Proof. Le, 0 0 f () a,() g b [[ ; ]] f ().() g l()[[ ; ]], hu (()) a b l()[[ ; ]], o 0 a ()() b l, hu a ()() b l, for all, by Lea.7. The ew l- Aredarz rg of power ere ype. Lea.34. Le be a l-(,) -copable ad ew l-aredarz rg of power ere ype. The l-ecouave. Proof. Le r ad ab l. The a()(()) r r r b l()[[ ; ]]. So ar b l ad hece a r b l. Lea.35. Le be a ew l-aredarz rg f f f of power ere ype ad aue ha l()[[ ; ]]. The ()()() a a a l()[[ ; ]], for all coeffce a of f. Proof. We wll how ha a ()()() a a a l () by 3 duco o. Suppoe ha a ()()() a a a l () 3. Sce () a 3 a l for, we have a ()()()() a a a (). Th becaue, f a l, a a()(()()) b b b b ()[[ l ; ]]. So ab l ()() ( ) ()[[. ; ]] l a a a, we have ad hece Theore.36. Le be a l-(,) -copable l-aredarz rg of power ere ype. The l( [[ ; ]]()[[ ) l ; ] ]. Proof. We how ha l( [[ ; ]]()[[ ) l ; ] ]. Le f () l( [[ ; ]]). The f 0 a 0 for oe 7

Vol. 8 No. WINTE 07 M. Az ad A. Mouav. J. Sc. I.. Ira pove eger. So we have (()()()). 0 f a a a a 3 0 If a a arbrary eber of coeffce of f, a a a l [[ ; he () ]] ( e). Hece we have Lea., ad Lea.34, we have a Thu a l, ad hece f l [[ ; ]]. aα a α a α a l. The by l. Theore.37. Le be a l-(,) -copable ad l-aredarz rg of power ere ype ad l be lpoe. The l()[[ ; ]]( [[ l ; ]] ). Proof. Le f () a l()[[ ; ]] 0 a l ad α () a l Sce l eger uch ha () l 0. The for all. lpoe, here e a pove produc of elee fro l ad ay zero. Now coder f (()()()) a a a a 0 l()[[ ; ]] 3, o... a ()...() a a... ()...() 0 a a a l, he. Hece ad ha f ()( [[ l ; ]] ). f 0 Corollary.38. Le be a l-(,) -copable l-aredarz rg of power ere ype ad l be lpoe. The l()[[ ; ]]( [[ l ; ]] ). Theore.39. Le be a l-(,) -copable, l-aredarz rg of power ere ype ad l () be lpoe. The [[ ; ]] a l- (,) - copable rg. Proof. Le 0 0 f () a,() g b [[ ; ]] ad f (). [[ ; ]].()( g [[ ; l ]] ). The for all r () r [[ ; ]] 0 f ().( r.()( ) g [ ; l ]] [ ). If u f [[ ; ]] () g elee, he u f r () g we have a arbrary, for all r( ) [[ ; ]]. f ().( r.()( )) g [[ ; l ]]. l()[[ ; ]] Uder he aupo we have Sce ew l-aredarz of power ere ype, a ()() r b l. Sce a ()() r b l a ()() r b l copable, Hece l-(,) - ad for 0. (())) a r b l()[[ ; ] ] 0 (. The we ge f ().( r.(() ) g ) l()[[ ; ]]( [[ l ; ]] ). Ad h ea ha f [[ ; ]] () g l() [[ ; ]]. Coverely, we u prove ha f (). [[ ; ]].(( g [[ ) ; ]] l ). If u f ().( r.()().[[ g ; ]].(), f g he uder he aupo f [[ ; ]] () g l( [[ ; ]]()[[ ) l ; ]], ad ce ew l-aredarz of power ere ype we have a ()() r b l. Hece ()() l a ()() r b l a r b ad ha for 0. 7

Nlpoe Elee Sew Polyoal g Hece (()()) 0 a r b l()[[ ; ]] 0 f (). [[ ; ]].(( g [[ ) ; l ]] ), for. Ad h ea ha. For he cae of l- -copably, we ca do a lar way. Thu [[ ; ]] a l-(,) -copable rg. Theore.40. Le be a l-(,) -copable ad l-aredarz rg of power ere ype. If f ().()()[[ g ; l ]], he f (). [[ ; ]].()()[[ g ; ]] l for all f, g [[ ; ]]. r() Proof. Le f ().()()[[ g ; l ]] c [[ ; ]], 0, ad for aue ha [[ ; ]] u f r g f g. The Bu ().() 0 ((c)()). u a b (()) a b l()[[, ; ] ] 0 f g ad ew l-aredarz of power ere ype, o a b l for all,. By Lea.34, l-ecouave, whch yeld a α b l By Lea.,.. aα b l Thu a (c)() b l ad hece a (c)() l, for all,,,, (()()) 0 l()[ [ ; ]]. a r b b whch yeld Therefore we have f (). [[ ; ]].() g l [[ ; ]]. Corollary.4. Le be a ew l-aredarz rg of power erewe ype, ad l-(,) - copable. The [[ ; ]] rg. a l-ecouave Proof. We prove ha, f ().()( [[ ; l ]] ), he for all, [[ ; ]] we ge (). [[ ; ]].()( [[ ; ]]). We have f g f g f g l l( [[ ; ]]) l()[[ ; ]]. The [[ ; ]] a l-ecouave rg by Lea.34. We rear ha, he above reul eable u o produce large clae of rg whch afy he l ( [ ;, ]) l [ ;, ]. codo eferece. Aur A., Algebra Over Ife Feld. Proc. Aer. Mah. Soc. 7: 35-48 (956).. Alhevaz A., ad Mouav A., O Mood g Over Nl-Aredarz g. Co. Algebra 4: - (04) 3. Aoe., Nlpoe Elee ad Aredarz g. J. Algebra 39: 38-340 (008). 4. Aredarz E.P., A Noe O Eeo of Baer ad p.p.- rg. J. Aural. Mah. Soc. 8: 470-473 (974). 5. Breeer G. F., K J. Y., ad Par J. K., gh Prary ad Nlary g ad Ideal. J. Algebra 378: 33-5 (03). 6. Callo V., Kwa T. K., Lee Y., Ideal- Syerc ad Sepre g. Co. Algebra 4: 4504-459 (03). 7. Che W., O Nl-ecouave g. Tha J.Mah. 9: 39-47 (0). 8. Habb M., Mouav A., Alhevaz A., The McCoy Codo o Ore Eeo, Co. Algebra. 4(): 4-4 (03). 9. Hahe E., Mouav A., Polyoal Eeo of Qua-Baer g. Aca Mah. Hugar. 07: 07-4 (005). 0. Her I.N., Sall L.W., Nl g Safyg Cera Cha Codo. Caad. J. Mah. 6: 77-776 (964).. Hze S., A Noe O Nl Power Serewe Aredarz g. ed. del Crc. Ma. Palero. 59: 87 99 (00).. Huh C., K C.O., K E.J., K H.K., Lee Y., Nl adcal of Power Sere g ad Nll Power Sere g. J. Korea Mah. Soc. 4: 003-05 (005). 3. Habb M., Mouav A., O Nl Sew Aredarz g. Aa-Eur. J. Mah. 5: -6 (0). 4. Kawar P., A. Leroy A., Maczu J., Idepoe g Eeo. J. Algebra. 389: 8-36 (03). 5. Krepa J., Soe Eaple of educed g. Algebra Colloq. 3: 89-300 (996). 6. La T.Y., Leroy A., Maczu J., Pree, Sepree ad Pre adcal of Ore Eeo. Co. Algebra. 5: 459-506 (997). 7. La T.Y. A Fr Coure Nocouave g. Sprger-Verlag, New Yor, 397 p. (99). 8. La C., Nl Subrg of Golde g are Nlpoe. Caad. J. Mah. : 904-907 (969). 9. Lezer E. S., Wag L., Golde a of Sew Power Sere g of Auoorphc Type. Co. Algebra 73

Vol. 8 No. WINTE 07 M. Az ad A. Mouav. J. Sc. I.. Ira 40(6): 9-97 (0). 0. Luqu O., Jgwag L., Nl-Aredarz g elave o a Mood. Arab. J. Mah. (): 8-90 (03).. Luqu O., Specal Wea Propere of Geeralzed Power Sere. J. Korea Mah. Soc. 4: 687-70 (0).. Luqu O., Jgwag L., O Wea, Copable g. Ieraoal Joural of Algebra. 5: 83 96 (0). 3. Madya A., Mouav A., Paya K., g Whch he Ahlaor of ad Ideal I Pure. Algebra Colloquu. : 948-968 (05). 4. Mazure., Nle P., Zebow M., The Upper Nlradcal ad Jacobo adcal of Segroup Graded g. J. Pure Appl. Algebra 9: 08-094 (05). 5. Paya K., Mouav A., Zero Dvor Graph of Sew Geeralzed Power Sere g. Cou. Korea Mah. Soc. 30: 363-377 (05). 6. ege M. B., Chhawchhara S., Aredarz g. Proc. Japa Acad. Ser. A Mah. Sc. 73: 4-7 (997). 7. Wag Y., e Y., -good g ad Ther Eeo. Bull. Korea Mah. Soc. 50: 7-73 (03). 8. Zhag W.., Sew Nl-Aredarz g. J. Mah. 34: 345 35 (04). 74