Georgia Standards of Excellence Curriculum Map High School Chemistry

Similar documents
Crosswalk of Georgia Performance Standards & Georgia Standards of Excellence GSE Implementation in Chemistry

Unit 3. 4 weeks BL/8 weeks YR

Unit 1. Unit 2. Unit 6. Unit 3. Unit 5. Unit 4. Solutions

A Correlation of. to the. Georgia Standards of Excellence Chemistry

CORRELATIONS FOR THE GEORGIA SCIENCE STANDARDS OF EXCELLENCE 2016 GRADES CHEMISTRY

Prentice Hall. Chemistry, (Wilbraham) 2008, National SE, Georgia TE. Grades 9-12

Spanish Fork High School Unit Topics and I Can Statements Honors Chemistry

HADDONFIELD PUBLIC SCHOOLS Curriculum Map for Accelerated Chemistry

Seymour Public Schools Curriculum

Important Note: The current 2004 SCOS will continue to be the operational standards in the and school years

Unit 1: Chemical Foundations: Lab Skills, Properties of Matter, Scientific Measurement, and Dimensional Analysis

Plum Borough School District

Chemistry Curriculum Map. Embedded in all standards. Chm Chm Chm Chm Writing:

Norwich City Schools AP Chemistry

CHEMISTRY CURRICULUM. Unit 1: Using Mathematics in Chemistry

Chemistry. Essential Standards Chemistry

ADVANCED CHEMISTRY CURRICULUM. Unit 1: Mathematical Representation in Chemistry

generate testable Students will be able to investigations. Biology 1 2 (can be conclusions. reveal relationships identify sources of error higher.

Course Title: Academic chemistry Topic/Concept: Chapter 1 Time Allotment: 11 day Unit Sequence: 1 Major Concepts to be learned:

Curriculum Guide Chemistry

NCSD HIGH SCHOOL CHEMISTRY SCOPE AND SEQUENCE

TEACHER CERTIFICATION STUDY GUIDE. Table of Contents ATOMIC STRUCTURE AND THE PROPERTIES OF MATTER

Oxnard Union High School District Chemistry Pacing Plan SEMESTER 1

Chemistry Honors Curriculum Pacing Guide

Pre AP Chemistry Syllabus

PhET Interactive Chemistry Simulations Aligned to an Example General Chemistry Curriculum

AP Chemistry Standards and Benchmarks

Enfield Public Schools. Advanced (AP/UCONN) Chemistry (0297) Curriculum Writers: Patrick Smith William Schultz

Chemistry: The Central Science Twelfth Edition, AP* Edition 2012

Conceptual Chemistry Curriculum Pacing Guide

Chemistry. Atomic and Molecular Structure

Chemistry Curriculum Map

The performance expectation above was developed using the following elements from A Framework for K-12 Science Education: Disciplinary Core Ideas

B L U E V A L L E Y D I S T R I C T C U R R I C U L U M Science AP Chemistry

Curriculum Mapping Chemistry I 1 st Nine Weeks

Students are required to bring these definitions HAND written on separate 3 in X 5 in index cards by chapters, the first week of school

correlated to the Maryland Core Learning Goals Concepts of Chemistry

Chemistry Unit Overview and Pacing Guide

MOBILE COUNTY PUBLIC SCHOOLS DIVISION OF CURRICULUM & INSTRUCTION HIGH SCHOOL BLOCK SCHEDULE PACING GUIDE AT A GLANCE

2018 Mississippi College and Career-Readiness Standards for Chemistry

Course: CP Chemistry Year: Teacher: L. Page. Unit 2: Matter and Energy Approximate Time Frame: # of Weeks 4

NAME: Chemistry Final Exam Review *=equations not given on Reference Sheet Unit 1: Math & Measurement Main Topics: Conversions, Significant Figures,

VOCABULARY. Set #2. Set #1

WDHS Curriculum Map: Created by Erin Pence September 2010

Norton City Schools Standards-Based Science Course of Study 2003

Chemistry: Molecules, Matter, and Change, Fourth Edition Loretta Jones and Peter Atkins Correlated with AP Chemistry, May 2002, May 2003

Big Idea 1: Structure of Matter Learning Objective Check List

General Chemistry (Second Quarter)

Chemistry, Ongoing Expectations

CP Chemistry Curriculum Pacing Guide

Pine Hill Public Schools Curriculum

URBANDALE COMMUNITY SCHOOL DISTRICT CURRICULUM FRAMEWORK OUTLINE. 2 Credits / 4 DMACC PREREQUISITES: B+ or better in both semesters of Algebra

CHEMISTRY CONTENT SKILLS CHART

Study guide for AP test on TOPIC 1 Matter & Measurement

CP Chemistry Chemistry: Matter & change

1. Atomic Concepts. The student should be able to: relate experimental evidence to models of the atom

Milford Public Schools Curriculum

Chemistry (Master) Content Skills Learning Targets Assessment Resources & Technology

Science. Smyth County Schools Curriculum Map Grade:11/12 Subject:Chemistry

This is a DRAFT form of the document

End of First Nine Weeks

Chemistry I : Embedded Inquiry

COURSE: GRADE(S): UNIT:

Isotope-same element (same atomic #), different # of neutrons so mass is different

Chemistry Scope and Sequence

A Correlation of. To the Alabama Course of Study Science Chemistry

UNIT 1: CHEMISTRY FOUNDATIONS

Explain the emission of electromagnetic radiation in spectral form in terms of the Bohr model

Spanish Fork High School Unit Topics and I Can Statements AP Chemistry

Essential Standards: Chemistry Unpacked Content

MEDFORD HIGH SCHOOL COURSE SYLLABUS

Regents Chemistry Objectives

2. Atomic Modeling 3. Atomic Mass 4. Periodicity. 2. Nomenclature. 2. Energy and Bonds. 2. Collision Theory 3. Catalysts

SCIENCE DEPARTMENT CHEMISTRY (AE): COURSE

Chemistry 152: Introduction to General Chemistry

Killingly Public Schools

Essential Questions. The following 8 essential questions are used throughout this planning guide.

4, 6 4.3, , , , , ,7,8 5.1, 5.2, 7.1, 7.2, 8.2 4, 5 4.2, 5.3

Identify the bonding types molecular, covalent network, ionic, and metallic - in various solids (11.8)

Reavis High School AP Chemistry Curriculum Snapshot

Tennessee Science Curriculum Framework Chemistry I

Oroville Union High School District Science Curriculum

Sequence of Concepts Rationale for Sequence Prior Knowledge

Discovering Design With Chemistry

TExES Chemistry 7 12 Curriculum Crosswalk

LO 1.2 SP 2.2] LO 1.3 SP

Sequence of Concepts Rationale for Sequence Prior Knowledge

1 (C) demonstrate an understanding of the use and conservation of resources and the proper disposal or recycling of materials.

Chemistry 11 Unit 1 Safety in the Laboratory. Chemistry 11 Unit 2 Introduction to Chemistry

CALIFORNIA STANDARDS TEST CHEMISTRY (Blueprint adopted by the State Board of Education 10/02)

General Chemistry (Third Quarter)

Course Title. All students are expected to take the College Board Advanced Placement Exam for Chemistry in May.

Requirements for Prospective Teachers General Science 11.1g Distinguish between physical and chemical change and provide examples of each

Davison Community Schools ADVISORY CURRICULUM COUNCIL Phase 2, April 25th, 2013

Chemistry Review Unit

California Science Content Standards Chemistry Grades 9-12

STRUCTURE AND PROPERTIES OF MATTER PATTERNS

Basic Chemistry 2014 Timberlake

Specific Curriculum Outcomes (updated September 18, 2016)

St. Lucie County Public Schools Chemistry Scope and Sequence Course: Chemistry 1 Honors Course Code: Quarter: 2 Unit 5

Transcription:

Vocabulary Standards and elements with main topics Unit Name Focus Georgia Standards of Excellence Curriculum Map 2017-18 High School Chemistry Unit # Unit 1 Unit 2 Unit 3 Unit 4 Pace 26 days 12 days 30 days 14 days Atomic Theory Finding Patterns in the Periodic Table Bonding and Naming Compound Analysis 1a. Atomic Models 1b. Element identity 1c. Stellar nucleosynthesis 1d. Isotopes and Avg. Mass 1e. Light emission 1g. Electron configuration 1f. Periodic trends and their relationship with the PT 2a. Bonding affects properties 2b. ID substances based on properties 2c. Structure Function 2d. Modelling bonding 2e. Chemical names 3c. Molar math 1, 2, 6, and 7 1, 2, 4, 6, and 7 1, 2, 3, 4, 5, 6, and 7 4 and 5 A, C, and D A and B A, D, and F C Atom, proton, neutron, electron, nucleus, electron cloud, atomic mass, atomic number, isotope, relative abundance, electron configuration. Period, family, group, atomic radius, trend, ionic radius, ionization energy, electronegativity Chemical property, physical property, intermolecular, intramolecular, IUPAC, ionic, covalent, polar covalent, acidic, binary, ternary Mole, Avogardo s number, percent composition, molecule, formula unit, empirical formula, molecular formula, STP, molar mass Revised Jan. 3, 2017 Page 1

Vocabulary Standards and elements with main topics Unit Name Focus Unit # Unit 5 Unit 6 Unit 7 Unit 8 Pace 26 days 16 days 20 days 20 days Exploring Change: Chemical Reactions Stoichiometry Thermodynamics Solutions 3a. Balancing reactions 3b. Signs of a chemical change 4a. Affecting rxn rate 4b. Collision theory 4c. Effects of a catalyst 4d. Le Chatelier s principle 3d. Stoichiometry 3e. Limiting reactants 5a. Heat flow investigations 5b. Heat curves and phase changes 5c. Gas laws 6a. Solvation vs. dissociation 6b. Factors that affect rate of dissolution 6c. Molarity 6d. Solution preparation 6e. Colligative properties 6f. ph and its meaning 6g. Arrhenius and BL theory 6h. Acid-base neutralization 1, 2, 3, 5, 7 3, 4, 5, and 7 2, 3, 6, and 7 1, 2, 3, 4, 5, 6, and 7 A, B, C, D, E, F, and G B, C, and D A, D, E, and G D, E, and G Chemical reaction, chemical change, physical change, synthesis, decomposition, single replacement, double replacement, combustion, reaction rate, endothermic, exothermic, activation energy, catalyst, equilibrium Stoichiometry, mole-to-mole ratio, limiting reactant/reagent, excess reactant/reagent Endothermic, exothermic, specific heat capacity, latent heat of fusion, enthalpy, Hess s Law, phase change, freezing, melting, evaporation, condensation, sublimation, deposition Solvation, dissociation, molarity, concentration, solute, solvent, ph, neutralization, Arrhenius acid/base, Bronsted-Lowry acid/base, titration Revised Jan. 3, 2017 Page 2

Revised Jan. 3, 2017 Page 3

Copy of your GSE Standards here for your subject area. SC1. Obtain, evaluate, and communicate information about the use of the modern atomic theory and periodic law to explain the characteristics of atoms and elements. a. Evaluate merits and limitations of different models of the atom in relation to relative size, charge, and position of protons, neutrons, and electrons in the atom. b. Construct an argument to support the claim that the proton (and not the neutron or electron) defines the element s identity. c. Construct an explanation based on scientific evidence of the production of elements heavier than hydrogen by nuclear fusion. d. Construct an explanation that relates the relative abundance of isotopes of a particular element to the atomic mass of the element. e. Construct an explanation of light emission and the movement of electrons to identify elements. f. Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms (i.e. including atomic radii, ionization energy, and electronegativity). g. Develop and use models, including electron configuration of atoms and ions, to predict an element s chemical properties. SC2. Obtain, evaluate, and communicate information about the chemical and physical properties of matter resulting from the ability of atoms to form bonds. a. Plan and carry out an investigation to gather evidence to compare the physical and chemical properties at the macroscopic scale to infer the strength of intermolecular and intramolecular forces. b. Construct an argument by applying principles of inter- and intra- molecular forces to identify substances based on chemical and physical properties. c. Construct an explanation about the importance of molecular-level structure in the functioning of designed materials. (Clarification statement: Examples could include why electrically conductive materials are often made of metal, flexible but durable materials are made up of long chained molecules, and pharmaceuticals are designed to interact with specific receptors.) d. Develop and use models to evaluate bonding configurations from nonpolar covalent to ionic bonding. (Clarification statement: VSEPR theory is not addressed in this element.) e. Ask questions about chemical names to identify patterns in IUPAC nomenclature in order to predict chemical names for ionic (binary and ternary), acidic, and inorganic covalent compounds. SC3. Obtain, evaluate, and communicate information about how the Law of Conservation of Matter is used to determine chemical composition in compounds and chemical reactions. a. Use mathematics and computational thinking to balance chemical reactions (i.e., synthesis, decomposition, single replacement, double replacement, and combustion) and construct an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties. b. Plan and carry out an investigation to determine that a new chemical has been formed by identifying indicators of a chemical reaction (e.g., precipitate formation, gas evolution, color change, water production, and changes in energy to the system). c. Use mathematics and computational thinking to apply concepts of the mole and Avogadro s number to conceptualize and calculate percent composition empirical/molecular formulas mass, moles, and molecules relationships molar volumes of gases d. Use mathematics and computational thinking to identify and solve different types of reaction stoichiometry problems (i.e., mass to moles, mass to Revised Jan. 3, 2017 Page 4

mass, moles to moles, and percent yield) using significant figures. (Clarification statement: For elements c and d emphasis is on use of mole ratios to compare quantities of reactants or products and on assessing students use of mathematical thinking and not on memorization and rote application of problem-solving techniques.) e. Plan and carry out an investigation to demonstrate the conceptual principle of limiting reactants. SC4. Obtain, evaluate, and communicate information about how to refine the design of a chemical system by applying engineering principles to manipulate the factors that affect a chemical reaction. a. Plan and carry out an investigation to provide evidence of the effects of changing concentration, temperature, and pressure on chemical reactions. (Clarification statement: Pressure should not be tested experimentally.) b. Construct an argument using collision theory and transition state theory to explain the role of activation energy in chemical reactions. (Clarification statement: Reaction coordinate diagrams could be used to visualize graphically changes in energy (direction flow and quantity) during the progress of a chemical reaction.) c. Construct an explanation of the effects of a catalyst on chemical reactions and apply it to everyday examples.\ d. Refine the design of a chemical system by altering the conditions that would change forward and reverse reaction rates and the amount of products at equilibrium. (Clarification statement: Emphasis is on the application of LeChatelier s principle.) SC5. Obtain, evaluate, and communicate information about the Kinetic Molecular Theory to model atomic and molecular motion in chemical and physical processes. a. Plan and carry out an investigation to calculate the amount of heat absorbed or released by chemical or physical processes. (Clarification statement: Calculation of the enthalpy, heat change, and Hess s Law are addressed in this element.) b. Construct an explanation using a heating curve as evidence of the effects of energy and intermolecular forces on phase changes. c. Develop and use models to quantitatively, conceptually, and graphically represent the relationships between pressure, volume, temperature, and number of moles of a gas. SC6. Obtain, evaluate, and communicate information about the properties that describe solutions and the nature of acids and bases. a. Develop a model to illustrate the process of dissolving in terms of solvation versus dissociation. b. Plan and carry out an investigation to evaluate the factors that affect the rate at which a solute dissolves in a specific solvent. c. Use mathematics and computational thinking to evaluate commercial products in terms of their concentrations (i.e., molarity and percent by mass). d. Communicate scientific and technical information on how to prepare and properly label solutions of specified molar concentration. e. Develop and use a model to explain the effects of a solute on boiling point and freezing point. f. Use mathematics and computational thinking to compare, contrast, and evaluate the nature of acids and bases in terms of percent dissociation, hydronium ion concentration, and ph. (Clarification statement: Understanding of the mathematical relationship between negative logarithm of the hydrogen concentration and ph is not expected in this element. Only a conceptual understanding of ph as related to acid/basic conditions is needed.) g. Ask questions to evaluate merits and limitations of the Arrhenius and Bronsted-Lowry models of acid and bases. h. Plan and carry out an investigation to explore acid-base neutralization. Revised Jan. 3, 2017 Page 5

Revised Jan. 3, 2017 Page 6