Leptogenesis. Neutrino 08 Christchurch, New Zealand 30/5/2008

Similar documents
Recent progress in leptogenesis

Leptogenesis with Composite Neutrinos

Baryogenesis. David Morrissey. SLAC Summer Institute, July 26, 2011

Leptogenesis in Higgs triplet model

Effects of Reheating on Leptogenesis

Astroparticle Physics and the LC

Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism

Astroparticle Physics at Colliders

The Standard Model of particle physics and beyond

Testing leptogenesis at the LHC

Leptogenesis via varying Weinberg operator

Neutrino Mass Seesaw, Baryogenesis and LHC

Sterile Neutrino Dark Matter & Low Scale Leptogenesis from a Charged Scalar

Creating Matter-Antimatter Asymmetry from Dark Matter Annihilations in Scotogenic Scenarios

Electroweak Baryogenesis in the LHC era

Natural Nightmares for the LHC

arxiv: v1 [astro-ph] 11 Jul 2007

arxiv:hep-ph/ v1 26 Jul 2006

A biased review of Leptogenesis. Lotfi Boubekeur ICTP

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC

Neutrino masses. Universe

Leptogenesis with type II see-saw in SO(10)

The Matter-Antimatter Asymmetry and New Interactions

Aspetti della fisica oltre il Modello Standard all LHC

A model of the basic interactions between elementary particles is defined by the following three ingredients:

Cosmological Family Asymmetry and CP violation

Neutrino masses, dark matter and baryon asymmetry of the universe

The first one second of the early universe and physics beyond the Standard Model

Neutrino theory of everything? dark matter, baryogenesis and neutrino masses

Falsifying High-Scale Leptogenesis at the LHC

Leptogenesis: A Pedagogical Introduction. Abstract

Neutrino Masses SU(3) C U(1) EM, (1.2) φ(1, 2) +1/2. (1.3)

Leptogenesis. Alejandro Ibarra Technische Universität München. Warsaw February 2010

Lepton Flavor Violation

Baryogenesis in Higher Dimension Operators. Koji Ishiwata

Lecture 18 - Beyond the Standard Model

Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays.

University College London. Frank Deppisch. University College London

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation

Leptogenesis and the Flavour Structure of the Seesaw

arxiv: v1 [hep-ph] 25 Jan 2008

Status Report on Electroweak Baryogenesis

Electroweak baryogenesis in the MSSM. C. Balázs, Argonne National Laboratory EWBG in the MSSM Snowmass, August 18, /15

Electromagnetic Leptogenesis at TeV scale. Sudhanwa Patra

Solar and atmospheric neutrino mass splitting with SMASH model

U(1) Gauge Extensions of the Standard Model

Electroweak Baryogenesis after LHC8

The Origin of Matter

Right-handed SneutrinoCosmology and Hadron Collider Signature

ORIGIN OF MATTER. S. SARKAR & M. QUIROS (ON ABSENCE) LESVOS September 29, Outline INTRODUCTION AND SM RESULTS EWBG IN THE MSSM NETWORK RESULTS

Probing the Majorana nature in radiative seesaw models at collider experiments

arxiv: v1 [hep-ph] 2 Jun 2015

Revisiting gravitino dark matter in thermal leptogenesis

arxiv:astro-ph/ v4 5 Jun 2006

arxiv:hep-ph/ v2 16 Jun 2003

kev sterile Neutrino Dark Matter in Extensions of the Standard Model

Lepton number symmetry as a way to testable leptogenesis

On the double-counting problem in Boltzmann equations and real-intermediate state subtraction

Models of New Physics for Dark Matter

generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion Nejc Košnik

Lepton Number Violation and the Baryon Asymmetry of the Universe

Exotic Charges, Multicomponent Dark Matter and Light Sterile Neutrinos

Implications of massive neutrinos

Relating the Baryon Asymmetry to WIMP Miracle Dark Matter

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv:

Neutrinos and Fundamental Symmetries: L, CP, and CP T

Falsifying highscale Baryogenesis

Flaxion. a minimal extension to solve puzzles in the standard EW 2018, Mar. 13, 2018

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang

Lepton Number Violation

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov

Matter vs Anti-matter

Implications of a Heavy Z Gauge Boson

Leptogenesis with Majorana neutrinos

Electroweak Baryogenesis in Non-Standard Cosmology

Supersymmetric Origin of Matter (both the bright and the dark)

Asymmetric Sneutrino Dark Matter

Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K

CP Violation, Baryon violation, RPV in SUSY, Mesino Oscillations, and Baryogenesis

Leptogenesis via the Relaxation of Higgs and other Scalar Fields

Puzzles of Neutrino Mixing and Anti-Matter: Hidden Symmetries and Symmetry Breaking. Shao-Feng Ge

Overview of mass hierarchy, CP violation and leptogenesis.

Neutrino masses, muon g-2, dark matter, lithium probelm, and leptogenesis at TeV-scale SI2009 AT FUJI-YOSHIDA

Baryo- and leptogenesis. Purpose : explain the current excess of matter/antimatter. Is there an excess of matter?

arxiv:hep-ph/ v1 20 Mar 2002

12 Best Reasons to Like CP Violation

Right-Handed Neutrinos as the Origin of the Electroweak Scale

Leptogenesis from a First-Order Lepton- Number Breaking Phase Transition

arxiv:hep-ph/ v2 20 Jul 2005

Leptogenesis: Improving predictions for experimental searches

arxiv: v2 [hep-ph] 19 Nov 2013

SUPERSYMETRY FOR ASTROPHYSICISTS

Non-Abelian SU(2) H and Two-Higgs Doublets

Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential)

Cosmology at Colliders: Possible LHC searches for RPV baryogenesis

Phenomenology of Friedberg Lee Texture in Left-Right Symmetric Model

PHYSICS BEYOND SM AND LHC. (Corfu 2010)

Non-zero Ue3 and TeV-leptogenesis through A4 symmetry breaking

SOME COMMENTS ON CP-VIOLATION AND LEPTOGENESIS

Flavor dependence of CP asymmetries and thermal leptogenesis with strong right-handed neutrino mass hierarchy

Transcription:

Leptogenesis Neutrino 08 Christchurch, New Zealand 30/5/2008 Yossi Nir (Weizmann Institute of Science) Sacha Davidson, Enrico Nardi, YN Physics Reports, in press [arxiv:0802.2962] E. Roulet, G. Engelhard, Y. Grossman, T. Kashti, J. Racker Leptogenesis 1/25

Leptogenesis Plan of Talk 1. Baryogenesis 2. Basics 3. Implications 4. Recent developements Spectator processes Finite temperature Flavor N 2 leptogenesis Resonant leptogenesis 5. Variations 6. Conclusions Leptogenesis 2/25

Leptogenesis Baryogenesis Sakharov, 1967 Leptogenesis 3/25

Baryogenesis Sakharov Conditions Nucleosynthesis, CMBR = Y B n b n b s = n b s 10 10 The baryon asymmetry can be dynamically generated ( baryogenesis ) provided that 1. Baryon number is violated; 2. C and CP are violated; 3. Departure from thermal equilibrium. Leptogenesis 4/25

Baryogenesis SM Baryogenesis Sakharov conditions are met within the SM: 1. B L is conserved, but B + L is violated; 2. CP is violated by δ KM ; 3. Departure from thermal equilibrium at the EWPT. Leptogenesis 5/25

Baryogenesis SM Baryogenesis Sakharov conditions are met within the SM: 1. B L is conserved, but B + L is violated; 2. CP is violated by δ KM ; 3. Departure from thermal equilibrium at the EWPT. The SM fails on two aspects: 1. The Higgs sector does not give a strongly first order PT; 2. KM CP violation is too suppressed. Leptogenesis 5/25

Baryogenesis Alternative Scenarios Should have: New sources of CP violation Either a new departure from TE and B L violation Or a modification of the EWPT MSSM baryogenesis is (still) viable: New scalars = first order PT is possible; At least two new phases = diagonal CP violation; Pushed to a corner of parameter space: m h < 120 GeV, m t 1 < m t (= m t 2 > TeV ), m χ < 250 GeV. Testable at LHC Leptogenesis 6/25

Leptogenesis Basics Fukugita and Yanagida, 1986 Leptogenesis 7/25

Basics The Seesaw Mechanism Atmospheric + Solar Neutrinos = m ν3 > 0.05 ev In the SM: m ν = 0 Add SM singlets N: L N = Y NHL + MNN = Neutrinos are massive but very light The Seesaw Mechanism: m ν Y 2 φ 2 (= M/Y 2 10 14 GeV ) M Leptogenesis 8/25

Basics The Seesaw Leptogenesis Relation Implications: L N = Y NHL + MNN 1. Lepton number is violated (M) 2. New sources of CP violation (Y ) 3. If Γ N1 < H(T = M N1 ) (= m 1 (Y Y ) 11 v 2 M 1 < 10 3 ev ) = N 1 decays out of equilibrium Leptogenesis 9/25

Basics The Seesaw Leptogenesis Relation Implications: L N = Y NHL + MNN 1. Lepton number is violated (M) 2. New sources of CP violation (Y ) 3. If Γ N1 < H(T = M N1 ) (= m 1 (Y Y ) 11 v 2 M 1 < 10 3 ev ) = N 1 decays out of equilibrium LEPTOGENESIS Leptogenesis 9/25

Basics Leptogenesis at Work N j H L i N j L H N H L i N j H, H N L, L H L i Lepton number violation at tree level, Direct CP violation at one loop, Requires at least 2 N s. ǫ Γ(N LH) Γ(N LH ) Γ(N LH) + Γ(N LH ) = 1 8π k Im[(Y Y ) 2 k1 ] (Y Y ) 11 f ( M 2 k M 2 1 ) n B s = 1.38 10 3 η ǫ. Leptogenesis 10/25

Leptogenesis Implications Leptogenesis 11/25

Implications The relevant parameters Ignoring flavor, the final Y B depends on four parameters: ǫ, the CP asymmetry; M 1, the mass of the lightest N; m 1 (Y Y ) 11 v 2 M 1, the effective neutrino mass; m 2 = m 2 1 + m 2 2 + m 2 3, the sum of light neutrino mass-squared. Successful baryogenesis requires M 1 > 10 9 GeV (= T RH > 10 9 GeV) With supersymetry: gravitino problem? No model-independent bound on low energy phases Leptogenesis 12/25

Implications m 1 (Y Y ) 11 φ 2 M 1 10 3 ev N 1 Decay rate: Γ 1 = M 1(Y Y ) 11 8π The expansion rate: H(T) = 1.66g 1/2 T 2 M Pl The out of equilibrium decay condition: Γ 1 < H(T = M 1 ) Equivalently: m 1 (Y Y ) 11 φ 2 M 1 < 10 3 ev m 1 determines almost all washout effects: η (10 3 ev/ m 1 ) m 1 always larger than the lightest ν mass, m 1 m 1 = m 1 m 1 < 10 1 ev Leptogenesis 13/25

Implications m 2 1 + m 2 2 + m 2 3 < (0.15 ev ) 2 ν i ν i ν i ν i N j N j Yij M j Y ij Y ij M j Y ij φ φ φ φ Light Neutrino Masses m i j Y 2 ij /M j L changing 2 2 Scattering σ i j Y 2 ij /M j 2 Require that L = 2 washout effects are not too strong: m 2 1 + m 2 2 + m 2 3 < (0.15 ev ) 2 Buchmuller, Plumacher; Giudice et al. T LG < 10 12 GeV + Flavor effects = m ν < 4 ev (10 10 GeV/T LG ) 1/2 Leptogenesis 14/25

Leptogenesis Recent Developments Leptogenesis 15/25

Recent developments Spectator Processes Fast, B L conserving processes: Gauge, (Heavy) Yukawa, Sphaleron = T-dependent relations among chemical potentials T > 10 13 GeV: Higgs asymmetry enhances washout-effects = Suppression of Y B L by 40% Buchmuller, Plumacher, PLB 511 (2001) 74 T < 10 8 GeV: Lepton asymmetry transferred into baryons and into SU(2)-singlets = Enhancement of Y B L by 20% Nardi, Nir, Racker, Roulet, JHEP 0601 (2006) 068 Leptogenesis 16/25

Recent developments Finite Temperature Effects Finite temperature effects modify masses and couplings = Decay and scattering rates depend on temperature The most dramatic effect: m 2 H T 2 = 3 16 g2 2 + 1 16 g2 Y + 1 4 y2 t + 1 2 λ N LH blocked above T 2m N H LN opened above T 7m N = O(1) corrections to final asymmetry Giudice, Notari, Raidal, Riotto, Strumia, NP B685 (2004) 89 Leptogenesis 17/25

Recent developments Flavor Issues N 1 Hl 1 : Define K i = l i l 1 2 (i = e, µ, τ) ǫ i ǫk 0 i + (K i K i ) For generic flavor structure (K i = O(1), 0, 1) η i ηk i = Y B L n f i=1 η iǫ i n f (ηǫ) n f = 1 T>10 13 GeV, 2 10 11 <T<10 13 GeV, 3 T<10 11 GeV For non-generic flavor structure (K i 1, 0) Large (order of magnitude) effects are possible Qualitatively new effects from K i K i M 1 > 10 9 GeV but m ν < ev Barbieri et al, NP B575 (2000) 61 Abada et al, JCAP 0604 (2006) 004; Nardi et al, JHEP 0601 (2006) 164 Leptogenesis 18/25

Recent developments N 2 Leptogenesis Common wisdom: Pre-existing lepton asymmetry washed-out by N 1 interactions Consequence: ǫ N2,3 can be ignored Obviously, not true in the N 1 -decoupling regime m 1 10 3 ev Vives, PR D73 (2006) 073006; Blanchet, Di Bari, JCAP 0606 (2006) 023 Surprisingly, not true in the strong N 1 -coupling regime m 1 10 3 ev Barbieri et al, NP B575 (2000) 61; Engelhard et al, PRL 99 (2007) 081802 N 2 l 2 + H, N 1 l 1 + H, l 2 = sl 1 + cl o = N 1 interactions project ǫ 2 s 2 ǫ 1 + c 2 ǫ o = Y L (3/2)c 2 Y l2 Leptogenesis 19/25

Recent developments Resonant Leptogenesis The lepton asymmetry is resonantly enhanced for M 2 M 1 Γ N Successful leptogenesis is possible even with M 1 TeV e.g. Pilaftsis, Underwood, NP B692 (2004) 303 Quantum Boltzmann equations should be employed De Simeone, Riotto, JCAP 0708 (2007) 002 MLFV: M 2 M 1 Y 2 Γ Ignoring flavor, ǫ is higher order in Y = M > 10 12 GeV With flavor, M 1 TeV is possible again Quantum effects are important Cirigliano, Isidori, Poretti, NP B763 (2007) 228 Cirigliano et al., JCAP 0801 (2008) 004 Leptogenesis 20/25

Leptogenesis Variations Leptogenesis 21/25

Variations Soft Leptogenesis The framework: Supersymmetric Standard Model + N s Soft SUSY breaking terms (A, B, m w ) = New sources of lepton number violation = New sources of CP violation The lepton asymmetry is generated by sneutrino decays Indirect CP violation can play a major role (Similar to ǫ or to S ψks ) Particularly significant for low M (No gravitino problem) Grossman, Kashti, Nir, Roulet, PRL 91 (2003) 251801; JHEP 0411 (2004) 080 D Ambrosio, Giudice, Raidal, PL B575 (2003) 75 Leptogenesis 22/25

Variations Dirac Leptogenesis The framework: SM + N s + Lepton number +... Neutrinos have Dirac masses = Tiny Yukawa couplings Some mechanism to make Y N 0, Y L 0 but Y N + Y L = 0 = Total lepton number = zero Yukawa < 10 11 : no equilibration of L- and N-asymmetries until T T EWPT Sphalerons convert L-asymmetry to baryon asymmetry Akhmedov, Rubakov, Smirnov, PRL 81 (1998) 1359 Dick et al, PRL 84 (2000) 4039; Murayama, Pierce, PRL 89 (2002) 271601 Leptogenesis 23/25

Leptogenesis Conclusions Leptogenesis 24/25

Conclusions Conclusions m ν 0 = See-saw = leptogenesis Quantitative success depends on unknown values of parameters: M > 10 9 GeV - gravitino problem? m 1 0.01 ev - plausible ( m < 0.12 ev not valid with flavor effects) Various aspects have been explored/improved/corrected: Spectator processes, finite-temperature, flavor, heavier N s...; Flavor effects particularly significant; Predictive power reduced Interesting variations have been proposed: Soft, Dirac... Observation of 0ν2β decay and/or CPV in ν - further support; Direct tests are very unlikley Leptogenesis 25/25