Statistical modeling with backward propagation of variance and covariance equation

Similar documents
Different Strategies for Statistical Compact Modeling MOS-AK Dresden

Automotive Power CAD. Statistical Simulation Methodology for a Smart Power Technology

Quantitative. Accurate. Precise. Measurement Error

EEC 118 Lecture #16: Manufacturability. Rajeevan Amirtharajah University of California, Davis

EECS240 Spring Lecture 21: Matching. Elad Alon Dept. of EECS. V i+ V i-

Sample Control Chart Calculations. Here is a worked example of the x and R control chart calculations.

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

Session XI. Process Capability

Measurement System Analysis

Chapter 5 Joint Probability Distributions

Multivariate Capability Analysis Using Statgraphics. Presented by Dr. Neil W. Polhemus

Descriptive statistics: Sample mean and variance

Tolerance Intervals an Adaptive Approach for Specification Setting

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303)

tutorial Statistical reliability analysis on Rayleigh probability distributions

Statistical Process Control

Application of Simulation to Sample Size Calculations and Teaching Statistical Concepts. Presented by: Lou Johnson

Statistical Tools for Multivariate Six Sigma. Dr. Neil W. Polhemus CTO & Director of Development StatPoint, Inc.

Statistical Modeling for Circuit Simulation

PCM- and Physics-Based Statistical BJT Modeling Using HICUM and TRADICA

June 12 to 15, 2011 San Diego, CA. for Wafer Test. Lance Milner. Intel Fab 12, Chandler, AZ

Statistical Quality Design & Control Fall 2003 Odette School of Business University of Windsor

CASE STUDY IN INVESTIGATION OF ACCURACY OF HOLE DRILLING

The Kalman Filter ImPr Talk

Vector spaces. DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis.

IndyASQ Workshop September 12, Measure for Six Sigma and Beyond

Methods for Identifying Out-of-Trend Data in Analysis of Stability Measurements Part II: By-Time-Point and Multivariate Control Chart

Propagation of Error. Ch En 475 Unit Operations

Statistical Methods for Calculating the Risk of Collision between Petroleum Wells Bjørn Erik Loeng and Erik Nyrnes, Statoil ASA

RESEARCH PAPERS FACULTY OF MATERIALS SCIENCE AND TECHNOLOGY IN TRNAVA SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

Particle Filtering Approaches for Dynamic Stochastic Optimization

A comparison between two evaluations of neutron multiplicity distributions

Econ 424 Time Series Concepts

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

Feed-Forward Control for Advanced Chemical Blending. Gary Anderson, Klaus Wolke Tres-Ark, Inc. Austin, TX

Reference: Chapter 7 of Devore (8e)

Automatic Autocorrelation and Spectral Analysis

Gaussian Process Approximations of Stochastic Differential Equations

Control of Manufacturing Processes

Supporting Information for Estimating restricted mean. treatment effects with stacked survival models

Radial basis functions and kriging a gold case study

arxiv:hep-ex/ v1 17 Sep 1999

Ph.D. Preliminary Examination Statistics June 2, 2014

1.0 Continuous Distributions. 5.0 Shapes of Distributions. 6.0 The Normal Curve. 7.0 Discrete Distributions. 8.0 Tolerances. 11.

Registration Error Terms: Grid: Wafer Terms and Field IFD

Semester , Example Exam 1

Parameter estimation

Precision and Bias of Spectrocolorimeters

EE 330 Lecture 3. Basic Concepts. Feature Sizes, Manufacturing Costs, and Yield

2D Image Processing (Extended) Kalman and particle filter

Particle Filters. Outline

Fast Buffer Insertion Considering Process Variation

Measurement and Data. Topics: Types of Data Distance Measurement Data Transformation Forms of Data Data Quality

How to find a Higgs boson. Jonathan Hays QMUL 12 th October 2012

Parameter Estimation and Fitting to Data

Statistical Perspectives on Geographic Information Science. Michael F. Goodchild University of California Santa Barbara

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

Business Statistics. Lecture 10: Correlation and Linear Regression

CHAPTER-5 MEASUREMENT SYSTEM ANALYSIS. Two case studies (case study-3 and 4) conducted in bearing

ERROR ANALYSIS ACTIVITY 1: STATISTICAL MEASUREMENT UNCERTAINTY AND ERROR BARS

Objective localization of ensemble covariances: theory and applications

for Complex Environmental Models

Statistics Introductory Correlation

Assignment 7 (Solution) Control Charts, Process capability and QFD

STATISTICAL PROCESS CONTROL - THE IMPORTANCE OF USING CALIBRATED MEASUREMENT EQUIPMENT. CASE STUDY

Lecture #14. Prof. John W. Sutherland. Sept. 28, 2005

Non-Linear Statistical Static Timing Analysis for Non-Gaussian Variation Sources

Validating Expensive Simulations with Expensive Experiments: A Bayesian Approach

In the Memory of John Rowlands

EE 330 Lecture 3. Basic Concepts. Feature Sizes, Manufacturing Costs, and Yield

Simulation. Alberto Ceselli MSc in Computer Science Univ. of Milan. Part 4 - Statistical Analysis of Simulated Data

Techniques for Improving Process and Product Quality in the Wood Products Industry: An Overview of Statistical Process Control

Chapter 2 Process Variability. Overview. 2.1 Sources and Types of Variations

Random Offset in CMOS IC Design

Multivariate statistical methods and data mining in particle physics

Yield Modeling and Analysis of Bundled Data and Ring-Oscillator Based Designs

Assessment of uncertainty in computer experiments: from Universal Kriging to Bayesian Kriging. Céline Helbert, Delphine Dupuy and Laurent Carraro

Direct Measurement of the W Total Decay Width at DØ. Outline

As an example, consider the Bond Strength data in Table 2.1, atop page 26 of y1 y 1j/ n , S 1 (y1j y 1) 0.

(NUCLEAR) DATA EVALUATION METHODOLOGY INCLUDING ESTIMATES OF COVARIANCE

CONDENSATION Conditional Density Propagation for Visual Tracking

SG39 Meeting May 16-17, Update on Continuous Energy Cross Section Adjustment. UC Berkeley / INL collaboration

Kernel adaptive Sequential Monte Carlo

Statistics of Non-Poisson Point Processes in Several Dimensions

Random Processes. DS GA 1002 Probability and Statistics for Data Science.

Product Held at Accelerated Stability Conditions. José G. Ramírez, PhD Amgen Global Quality Engineering 6/6/2013

A Complete Spatial Downscaler

Evaluating Production Yields of TFT-LCD Manufacturing Processes

Nemours Biomedical Research Biostatistics Core Statistics Course Session 4. Li Xie March 4, 2015

Markov Chain Monte Carlo Methods for Stochastic Optimization

COMPLEMENTARY RANDOM NUMBERS & DAGGER SAMPLING

Monte-Carlo Methods and Stochastic Processes

Linear Methods for Regression. Lijun Zhang

Linear inverse Gaussian theory and geostatistics a tomography example København Ø,

Lecture Notes 1: Vector spaces

Precision Correcting for Random Error

Measurement Systems Analysis

Advanced statistical methods for data analysis Lecture 1

Achieve Your Best Design with SI

Univariate Normal Distribution; GLM with the Univariate Normal; Least Squares Estimation

Transcription:

Statistical modeling with backward propagation of variance and covariance equation Klaus-Willi Pieper and Elmar Gondro Device Characterization and Modeling Infineon Technologies AG

Outline n Introduction n The Six-Sigma Concept n Targets for Process Deviations in Statistical Modeling n Generation of Statistical Model Parameters (Backward Propagation of Variances) n Conclusions Page 2

Electrical Parameters Overview golden wafer PCM targets QM data measurements, parameter extraction parameter centering nominal electrical parameters Spec Limits process sigmas PCM data QM data correlation coefficients mismatch constants statistical parameters 4/22/13 Page 3

Basics of Statistics PCM: Process control monitoring σ: standard deviation of a distribution µ: mean value of a distribution LSL and USL: lower and upper spec limit CPK: (process capability index) The value is the distance from the mean value µ to the nearest spec limit in units of 3σ (three times standard deviation) LSL µ USL σ CPK = min USL µ 3σ µ, LSL 3σ Page 4

PCM Simulation Test Bench Output parameters ISAT_N_L ISAT_N_S ISAT_N_N VT_N_L_0d2_0 ISAT_P_L ISAT_P_S ISAT_P_N VT_P_L_0d1_0 RON_P_S ISAT_NX_L ISAT_NX_S Page 5

Outline n Introduction n The Six-Sigma Concept n Targets for Process Deviations in Statistical Modeling n Generation of Statistical Model Parameters (Backward Propagation of Variances) n Conclusions Page 6

Six-Sigma Design n Six-Sigma is a statistical target n The Six-Sigma concept is widely used in industry and business n Managers like to use it as a buzz word n Almost none of them can explain what a Six-Sigma design should be Set date Page 7

Six-Sigma In literature I found Six-Sigma criterion means to get a yield 99.9993% (99.9997% one side) or discard of 6.8ppm (3.4ppm one side) without any further comment. x*σ Some calculations with Excel (function normdist ) deliver σ-range yield [%] discard [ppm] 1 68,2689% 317310,508 2 95,4500% 45500,264 Set date σ discard/2 yield x: σ-range 3 99,7300% 2699,796 4 99,9937% 63,342 4,5 99,9993% 6,795 5 99,9999% 0,573 6 100,0000% 0,002 Page 8

Six-Sigma Six-Sigma was invented by Motorola in the 1980s when they had some issues with quality. The standard deviation Sigma was related to short-term data. Six-Sigma criterion means to get a yield of 99.9993%. short-term long-term discard/2 A link is missing that leads us from a short-term statement to a long-term statement. Set date Page 9

Short-term data LSL µ USL 6σ 6σ Measured over 1 month An example for short-term data is PCM data in a monthly report. If PCM spec limits are defined like in the figure, a PCM structure is a Six-Sigma-Design by construction. 4/22/13 Page 10

Long-term data LSL µ USL Measured over years An example for long-term data is product data collected over a long time during manufacturing in order to determine the yield of a product. Yield which we want to predict is always related to long-term. 4/22/13 Page 11

The link from short-term to long-term data LSL µ L µ µ U 1.5σ 1.5σ USL CPK>=1.5 is the required value for all PCM key parameters. 4.5σ 4.5σ Measured Long-term data = superposition of short-term distributions with a possible mean value shift up to +-1.5σ. 4/22/13 Page 12

Six-Sigma 4.5-Sigma Six-Sigma criterion means to get a yield of 99.9993%. short-term long-term long-term σ-range yield [%] discard [ppm] 1 68,2689% 317310,508 2 95,4500% 45500,264 3 99,7300% 2699,796 discard/2 Set date 4 99,9937% 63,342 4,5 99,9993% 6,795 5 99,9999% 0,573 6 100,0000% 0,002 Page 13

Outline n Introduction n The Six-Sigma Concept n Targets for Process Deviations in Statistical Modeling n Generation of Statistical Model Parameters (Backward Propagation of Variances) n Conclusions Page 14

Targets for Statistical Simulation (Monte Carlo) Process variations in simulation models have to be long-term, because n We want to produce a product over several years n We are interested in yield over a long time σ PCM target MC Sim = σ long term 4/22/13 Page 15

Statistical Simulation (Monte Carlo) Assumption 1 A symmetric Gaussian distribution with CPK=1.5 is a good approximation for long term PCM data. LSL µ L µ µ U 1.5σ 1.5σ USL LSL Target USL 4.5σ 4.5σ 4.5σ long 4.5σ long Long-term Measured Estimated long-term PCM not Gaussian CPK>=1.5 one side discard=both side discard<=3.4ppm Monte Carlo target distribution Gaussian CPK=1.5 (both side discard)/2=one side discard=3.4ppm 4/22/13 Page 16

Monte Carlo Simulation Target LSL 4.5σ long 4.5σ long USL Fitting target for process variations σ PCM_long-Target = (USL-LSL)/9 Simulated PCM 4/22/13 Assumption 2 If a statistical simulation (Monte Carlo) matches a CPK=1.5 PCM distribution for all PCM key parameters, then the process variation parameters are also good for product simulation of long-term statistic. Page 17

Yield prediction with Monte Carlo Simulation (for Gaussian distribution) What a yield do I need to predict? (e.g. 99,73% corresponds to a range of +-3 σ ) µ LSL USL 3σ 3σ σ-range yield [%] discard [ppm] Simulated range is in spec -> test passed 1 68,2689% 317310,508 2 95,4500% 45500,264 3 99,7300% 2699,796 4 99,9937% 63,342 4,5 99,9993% 6,795 5 99,9999% 0,573 6 100,0000% 0,002 4/22/13 Page 18

Outline n Introduction n The Six-Sigma Concept n Targets for Process Deviations in Statistical Modeling n Generation of Statistical Model Parameters (Backward Propagation of Variances) n Conclusions Page 19

Introduction, PCM Simulation Test Bench Input variations M Output variations P = = ( m ( p 1 1, m, p Output parameters 2 2 ISAT_N_L ISAT_N_S ISAT_N_N VT_N_L_0d2_0 ISAT_P_L ISAT_P_S ISAT_P_N VT_P_L_0d1_0 RON_P_S ISAT_NX_L ISAT_NX_S,..., m,..., p n n ) ) n Number of Monte Carlo samples Page 20

Page 21 Sensitivity Matrix = m n n m M P M P M P M P S 1 1 1 1 In general a simulated PCM parameter depends on several model parameters e.g. ISAT_N_S depends on 5 model parameters. Sm i p i =

Sensitivity Matrix for PCM All dependencies of PCM parameters on model parameters are included in the sensitivity matrix S (normalized here) Model parameters P C M p a r a m e t e r s Sensitivites global_tox_prc global_lint_prc pmos_u0_prc pmos_vth0_prc pmos_vsat_prc hvpmos_vth0_prc hvpmos_u0_prc hvpmos_rdson_prc T_GOX 1,01 0,00 0,00 0,00 0,00 0,00 0,00 0,00 PMOS_L_VTL -0,02 0,00 0,00 1,07 0,00 0,00 0,00 0,00 g l o b a l PMOS_L_K -0,76 0,14 0,62 0,74-0,04 0,00 0,00 0,00 PMOS PMOS_L_ISAT 0,52-0,14-0,61-0,84-0,01 0,00 0,00 0,00 PMOS_S_ISAT 0,43-1,33-0,45-0,69-0,23 0,00 0,00 0,00 PMOS_S_RON 0,48-1,50-0,57-0,32-0,01 0,00 0,00 0,00 HVPMOS_VTL 0,00-0,05 0,00 0,00 0,00 0,91 0,02 0,06 HVPMOS_VTS -0,01-0,08 0,00 0,00 0,00 1,15 0,00 0,00 HVPMOS HVPMOS_K -0,38 0,42 0,00 0,00 0,00 0,21 0,74 0,00 HVPMOS_ISAT 0,29-0,27 0,00 0,00 0,00-0,71-0,55 0,00 HVPMOS_RON 0,11-0,13 0,00 0,00 0,00-0,06-0,25 1,07 Page 22

Example: correlation coefficient of -0.86 Scatterplot HVPMOS_VTS [V] PMOS_L_ISAT [A] Page 23

New Modeling Method for Monte Carlo Simulation from simulations from correlation analysis of PCM data/ spec limits S T = Cov( M ) S Cov( P) to be calculated model parameter variations complete set of model parameter correlation coefficients Page 24

Flow Statistical Parameter Calculation PCM Simulation Test Bench PCM Database / Spec Limits Sensitivity Analysis Correlation Analysis Sensitivity Matrix S Correlation Coefficients Corr(P) σ-targets, Correlations model parameter standard deviations StatFit Monte Carlo Simulation correlation coefficients match no match finished check selection of model parameters and/or spec limits Samples for P sim StatCheck σ(p sim ), Corr(P sim ) Page 25

Standard Deviations of PCM Parameters Parameter Name Unit (USL-LSL)/9 Simulated Deviation T_GOX nm 4,444E-01 4,517E-01 1,64% PMOS_L_VTL V 1,867E-02 2,015E-02 7,97% PMOS_L_K A/V^2 2,211E-07 2,102E-07-4,94% PMOS_L_ISAT A 1,544E-06 1,634E-06 5,79% PMOS_S_ISAT A 1,778E-05 1,792E-05 0,78% PMOS_S_RON Ohm 3,556E+01 3,681E+01 3,54% HVPMOS_VTL V 2,333E-02 2,363E-02 1,27% HVPMOS_VTS V 2,000E-02 2,362E-02 18,10% HVPMOS_K A/V^2 4,500E-06 4,396E-06-2,30% HVPMOS_ISAT A 6,667E-06 6,271E-06-5,93% HVPMOS_RON Ohm 2,000E+02 2,081E+02 4,03% Page 26

Correlations extracted from PCM measurements PCM T_GOX PMOS_L_VTL PMOS_L_K PMOS_L_ISAT PMOS_S_ISAT PMOS_S_RON HVPMOS_VTL HVPMOS_VTS HVPMOS_K HVPMOS_ISAT HVPMOS_RON T_GOX 1,00-0,39-0,54 0,51 0,06-0,04-0,38-0,39-0,20 0,43 0,17 PMOS_L_VTL -0,39 1,00 0,86-0,91-0,05 0,22 0,92 0,94 0,00-0,64-0,08 PMOS_L_K -0,54 0,86 1,00-0,98 0,08 0,30 0,77 0,82 0,01-0,56-0,34 PMOS_L_ISAT 0,51-0,91-0,98 1,00-0,05-0,29-0,83-0,86 0,00 0,60 0,29 PMOS_S_ISAT 0,06-0,05 0,08-0,05 1,00 0,95-0,09 0,00-0,81 0,59-0,38 PMOS_S_RON -0,04 0,22 0,30-0,29 0,95 1,00 0,17 0,25-0,82 0,41-0,35 HVPMOS_VTL -0,38 0,92 0,77-0,83-0,09 0,17 1,00 0,98 0,06-0,70 0,03 HVPMOS_VTS -0,39 0,94 0,82-0,86 0,00 0,25 0,98 1,00 0,00-0,66-0,11 HVPMOS_K -0,20 0,00 0,01 0,00-0,81-0,82 0,06 0,00 1,00-0,71 0,10 HVPMOS_ISAT 0,43-0,64-0,56 0,60 0,59 0,41-0,70-0,66-0,71 1,00 0,00 HVPMOS_RON 0,17-0,08-0,34 0,29-0,38-0,35 0,03-0,11 0,10 0,00 1,00 Page 27

Simulated PCM Correlations PCM T_GOX PMOS_L_VTL PMOS_L_K PMOS_L_ISAT PMOS_S_ISAT PMOS_S_RON HVPMOS_VTL HVPMOS_VTS HVPMOS_K HVPMOS_ISAT HVPMOS_RON T_GOX 1,00-0,46-0,64 0,49 0,04-0,12-0,46-0,47-0,21 0,43 0,13 PMOS_L_VTL -0,46 1,00 0,82-0,91-0,03 0,27 0,94 0,95 0,08-0,62-0,06 PMOS_L_K -0,64 0,82 1,00-0,97 0,12 0,35 0,76 0,79 0,05-0,50-0,35 PMOS_L_ISAT 0,49-0,91-0,97 1,00-0,08-0,34-0,84-0,86-0,04 0,54 0,27 PMOS_S_ISAT 0,04-0,03 0,12-0,08 1,00 0,94-0,05 0,02-0,81 0,61-0,38 PMOS_S_RON -0,12 0,27 0,35-0,34 0,94 1,00 0,24 0,31-0,77 0,41-0,34 HVPMOS_VTL -0,46 0,94 0,76-0,84-0,05 0,24 1,00 0,99 0,13-0,68 0,02 HVPMOS_VTS -0,47 0,95 0,79-0,86 0,02 0,31 0,99 1,00 0,07-0,64-0,07 HVPMOS_K -0,21 0,08 0,05-0,04-0,81-0,77 0,13 0,07 1,00-0,81 0,12 HVPMOS_ISAT 0,43-0,62-0,50 0,54 0,61 0,41-0,68-0,64-0,81 1,00-0,04 HVPMOS_RON 0,13-0,06-0,35 0,27-0,38-0,34 0,02-0,07 0,12-0,04 1,00 Page 28

Outline n Introduction n The Six-Sigma Concept n Targets for Process Deviations in Statistical Modeling n Generation of Statistical Model Parameters (Backward Propagation of Variances) n Conclusions Page 29

Conclusions n Target distributions for statistical process variations are derived from PCM spec limits in order to fulfill the fab process capability criterion of CPK>=1.5 n Target distributions for Monte Carlo are determined to be long-term, σ Target =(USL-LSL)/9 n Statistical Model Parameters are determined by solving the complete covariance matrix equation (=backward propagation of variances) n Targets for PCM standard deviations and PCM correlations can be reproduced accurately by Monte Carlo simulation 4/22/13 Page 30

The Color System R: 230 G: 239 B: 245 R: 200 G: 216 B: 230 R: 135 G: 165 B: 210 R: 64 G: 134 B: 191 R: 227 G: 0 B: 52 R: 0 G: 93 B: 169 R: 0 G: 33 B: 74 R: 255 G: 255 B: 255 R: 221 G: 221 B: 221 R: 192 G: 192 B: 192 R: 150 G: 150 B: 150 R: 26 G: 24 B: 23 R: 227 G: 0 B: 52 R: 183 G: 13 B: 40 R: 121 G: 9 B: 46 R: 91 G: 235 B: 156 R: 24 G: 198 B: 99 R: 14 G: 120 B: 52 R: 255 G: 163 B: 79 R: 250 G: 242 B: 88 4/22/13 Primary Colors Page 32