Case Study of Australia

Similar documents
Next Generation Australian Datum. Permanent Committee on Geodesy, ICSM

Modernising the Northern Territory s GRS

The Victorian Seismic Zone 2011 GNSS Campaign Data Analysis

Report for 15th PCGIAP Meeting at 18th UNRCC-AP Working Group 1 Regional Geodesy

From Global to National Geodetic Reference Frames: how are they connected and why are they needed?

Reference frames and positioning

CORS Network and Datum Harmonisation in the Asia-Pacific Region. Richard Stanaway and Craig Roberts

A Deformation Model to support a Next Generation Australian Geodetic Datum

SINEX Manipulation Software

Performance Evaluation of AUSGeoid2020 in NSW

Options for Modernising the Geocentric Datum of Australia

Evaluating the Performance of AUSGeoid2020 in NSW

Preparation for the ITRF2013. Zuheir Altamimi Xavier Collilieux Laurent Métivier IGN, France

The many paths to a common ground: A comparison of transformations between GDA94 and ITRF

Vertical Reference Frame Pacific

New satellite mission for improving the Terrestrial Reference Frame: means and impacts

ITRF2014 Et la prise en compte des mouvements non linéaires

Actual Continuous Kinematic Model (ACKIM) of the Earth s Crust based on ITRF2014

Frequent epoch reference frames instead of instant station positions and constant velocities

Publ. Astron. Obs. Belgrade No. 91 (2012), REALIZATION OF ETRF2000 AS A NEW TERRESTRIAL REFERENCE FRAME IN REPUBLIC OF SERBIA

Geodesy on the move. Craig Allinson. Dealing with dynamic coordinate reference systems. IOGP Geodesy Subcommittee. EPUG London, November 2017

Working Group 1. Geodetic Reference Frame. Activity Report. for. The UN-GGIM-AP Plenary Meeting

South Pacific Sea Level and Climate Monitoring Project

Frames for the Future New Datum Definitions for Modernization of the U.S. National Spatial Reference System

This presentation covers the following areas

GEODETIC NETWORK OF SAUDI ARABIA AND FIDUCIAL STATIONS. GFN OF Saudi Arabia in Based on ITRF2000 Datum

Is the Australian Plate deforming? A space geodetic perspective

E. Calais Purdue University - EAS Department Civil 3273

Lab 9: Satellite Geodesy (35 points)

A decade of horizontal deformation from great earthquakes

Post-Processed Precise Point Positioning: A Viable Alternative?

A Strategic Plan for Geodesy in Sweden. Mikael Lilje Lars E. Engberg Geodesy Department Lantmäteriet Sweden

Current status of the ITRS realization

Chapter 2 Study on the Earth s Volume Change by Using Space Observed Technology

Influence of the Reference Frame Alignment on Station Positions and Velocities: Global or Regional?

A decade of horizontal deformation from great earthquakes

Originally published as:

The U.S. National Spatial Reference System in 2022

Call for space geodetic solutions corrected for non-tidal atmospheric loading (NT-ATML) at the observation level

Modernization of National Geodetic Datum in China *

The APREF Project: First Results and Analysis

The Geodetic Infrastructure in Australia and New Zealand: Differences and Similarities

Recent GNSS Developments and Reference Frame Issues in Turkey. Onur LENK and Bahadir AKTUĞ

Mount Stromlo Gravity Station Gravimetry at the ANU

The International Terrestrial Reference System and ETRS89: Part I : General concepts

United States NSRS 2022: Terrestrial Reference Frames

Rigid Plate Transformations to Support PPP and Absolute Positioning in Africa

FORMAT FOR TECHNICAL PAPERS

Geodetic Observing Systems: tools in observing the Glacial Isostatic Adjustment. Markku Poutanen Finnish Geodetic Institute

How GNSS CORS in Japan works for geodetic control and disaster mitigations

INTERNATIONAL SLR SERVICE

Do we need to update PNG94 to PNG2020?

Global & National Geodesy, GNSS Surveying & CORS Infrastructure

CHILEAN PART OF SIRGAS REFERENCE FRAME, REALIZATION, ADOPTION, MAINTENANCE AND ACTUAL STATUS. Geodesy for Planet Earth IAG 2009, Buenos Aires

STATISTICAL EVALUATION OF THE STABILITY OF VLBI, SLR, DORIS AND GPS STATIONS

SIRGAS: Basis for Geosciences, Geodata, and Navigation in Latin America

REGIONAL REFERENCE FRAMES: THE IAG PERSPECTIVE

A priori gradients in the analysis of GPS and VLBI observations

Deformation monitoring and analysis using Victorian regional CORS data

Update on the International Terrestrial Reference Frame (ITRF) : ITRF2014. Zuheir Altamimi

MSGIC Spring Mtg Denton April 23, 2014

Correction to Atmospheric Effects and Spurious Signals in GPS Analyses

A new transformation including deformation model for the Nordic. and Baltic countries

Common Realization of Terrestrial and Celestial Reference Frame

The Implementation of a Semi-Dynamic Datum in New Zealand Ten Years On

The International Terrestrial Reference System and ETRS89: Part II : ITRS & ETRS89 relationship

IGS POLAR MOTION MEASUREMENTS

Realizing a geodetic reference frame using GNSS in the presence of crustal deformations: The case of Greece

Connecting terrestrial to celestial reference frames

Torsten Mayer-Gürr Institute of Geodesy, NAWI Graz Technische Universität Graz

Australian National Report to the International Association for Geodesy, 2015

Military Geographic Institute

Semi-Dynamic Datum of Indonesia

The development and implementation of New Zealand Geodetic Datum 2000

Challenges and perspectives for CRF and TRF determination

Height Modernization 2013 A New Canadian Vertical Datum

Case study of Japan: Reference Frames in Practice

HIMALAYAN AIRBORNE GRAVITY AND GEOID OF NEPAL

12/07/2013. Apparent sea level rise and earthquakes

Positioning in the Pacific Islands

A Unique Reference Frame: Basis of the Global Geodetic Observing System (GGOS) for Geodynamics and Global Change

Co-location of VLBI with other techniques in space: a simulation study

Geocentric Datum of Australia - GDA

Positioning a nation for the future: Modernizing the United States National Spatial Reference System

On the Development and Implementations of the New Semi- Dynamic Datum for Indonesia

What are the social, technical, environmental and economic benefits and opportunities of accessing and sharing geodetic data?

Investigations into a Dynamic Geocentric Datum

Using non-tidal atmospheric loading model in space geodetic data processing: Preliminary results of the IERS analysis campaign

Contributions of Geodesy to Oceanography

The Kinematic Reference Frame for ITRF

An Assessment of the Accuracy of PPP in Remote Areas in Oman

Modern Navigation. Thomas Herring

NGS and the Modernization of the National Spatial Reference System (NSRS)

Title: Impact of Regional Reference Frame Definition on Geodynamic Interpretations

BUILDING AN ACCURATE GIS

Towards an improved ILRS TRF contribution

GEORED Project: GNSS Geodesy Network for Geodynamics Research in Colombia, South America. Héctor Mora-Páez

Effect of post-seismic deformation on earth orientation parameter estimates from VLBI observations: a case study at Gilcreek, Alaska

Updated Results from the In Situ Calibration Site in Bass Strait, Australia

The Rotational and Gravitational Signature of Recent Great Earthquakes

Transcription:

Case Study of Australia John Dawson, Geoscience Australia 1

Australia s Geodetic eco-system Geocentric Coordinates Observing Infrastructure Height Datum Geoid Models Tools Services Standards 2

Australia Fiducial Network (AFN) ITRF92@1994 3

National Measurement System 4

Geocentric Datum of Australia 1994 (GDA94) ITRF96@1994.0 5

GDA94 to ITRF Geocentric Datum of Australia 1994 (GDA94) ITRF96@1994.0 Sub-cm accuracy at Australian Fiducial Network stations 6

Source: Joel Haasdyk and Tony Watson, LPI NSW, APAS Conference 2013 7

Modernising Australia s Datum 8

GDA2020 1990 2000 2010 2020 GDA94 Australian TRF (ATRF) ICSM/ANZLIC Adoption and User Implementation 9

AuScope GNSS Array

National GNSS Infrastructure Before AuScope + AuScope GNSS Stations

Asia Pacific Reference Frame (APREF)

Beidou SLR DORIS VLBI GNSS Gravity Yarragadee Geodetic Observatory, Western Australia

National GNSS Campaign Solution Jurisdictional Adjustments Rigorous geometric adjustment aspire for an all stationsand-observations adjustment (down to the street corner) phased-adjustment strategy National GNSS CORS Solution work-flows managed automatically (using e- Geodesy technology) 14

National Adjustment Strategy National Computational Infrastructure (NCI) is the Southern Hemisphere s fastest supercomputer and filesystems From Fraser et al 2014 15

Vertical Crustal Deformation Large-scale geophysical phenomena? Or biased observations?

APREF and ITRF2014 APREF combination updated Reparametrising using ITRF2014 discontinuities Reassessing all other APREF discontinuities Reprocess using Bernese 5.2

ITRF2014 versus APREF (IGb08) RMS coordinate differences at 2016.0 3.1, 3.5, 5.0 mm (latitude, longitude, height) RMS velocity differences 0.2, 0.2, 0.6 mm (latitude, longitude, height) Significant outliers: PARK, XMIS, SA45

Supported Coordinate Transformations ITRF2008 @dd.mm.yy ITRF2005 @dd.mm.yy ITRF2000 @dd.mm.yy GDA94 GDA2020 ITRF2014 @dd.mm.yy ITRF1997 @dd.mm.yy ITRF1996 @dd.mm.yy

Approach Exclude all but the latest point code coordinate estimate 2020 PARK 1 50108M001 PARK 2 50108M001

Approach Propagate ITRF2014 coordinates to 2020 using individual site velocities Compute 7-parameter transformation using CATREF software

Results GDA2020 GDA94 YAR1 A 50107M004 1 XYZ -1206.9 143.3 1334.2 PLH 1480.1 1029.4-82.9 (MM) CEDU A 50138M001 1 XYZ -1054.7-18.8 1339.6 PLH 1516.0 774.1-98.6 (MM) ADE1 A 50109S001 1 XYZ -1019.2 8.7 1296.8 PLH 1504.9 666.8-105.3 (MM) DARW A 50134M001 1 XYZ -863.1-447.0 1521.6 PLH 1534.9 944.2-112.9 (MM) STR1 A 50119M002 1 XYZ -905.9-50.8 1222.4 PLH 1431.3 510.0-94.3 (MM) SYDN A 50124M003 1 XYZ -861.3-104.0 1225.2 PLH 1409.9 506.7-95.9 (MM) TIDB A 50103M108 1 XYZ -898.5-48.6 1226.0 PLH 1430.9 504.7-103.0 (MM) HOB2 A 50116M004 1 XYZ -976.5 152.3 1115.9 PLH 1433.6 397.2-94.3 (MM) MOBS A 50182M001 1 XYZ -983.5 39.3 1218.2 PLH 1469.9 532.2-93.2 (MM) PARK A 50108M001 1 XYZ -900.4-99.9 1239.9 PLH 1428.3 558.6-77.0 (MM) ALIC A 50137M001 1 XYZ -972.4-223.2 1441.2 PLH 1526.0 855.6-108.5 (MM) TOW2 A 50140M001 1 XYZ -722.4-463.0 1423.6 PLH 1460.8 781.4-135.2 (MM) STR2 A 50119M001 1 XYZ -908.6-43.9 1214.6 PLH 1428.3 505.4-85.1 (MM) XMIS A 50183M001 1 XYZ -1082.0-121.7 1398.3 PLH 1406.9 1074.6-81.1 (MM) NNOR A 50181M001 1 XYZ -1217.3 170.8 1322.0 PLH 1488.8 1016.9-90.2 (MM) PERT A 50133M001 1 XYZ -1216.4 179.5 1322.5 PLH 1488.9 1016.0-108.4 (MM) KARR A 50139M001 1 XYZ -1119.1-56.5 1431.1 PLH 1500.7 1022.1-83.5 (MM) YARR A 50107M006 1 XYZ -1211.5 147.4 1336.3 PLH 1484.7 1031.8-78.9 (MM) * GDA94 ellipsoidal heights ~10cm larger RMS 1468.6 797.5 97.1 (MM)

Results transformed(gda94) GDA2020 TOW2 A 50140M001 1 XYZ -17.6 7.8-11.3 PLH -4.4 3.0 21.6 (MM) ALIC A 50137M001 1 XYZ -0.7 5.1-3.1 PLH -1.2-3.1 5.0 (MM) KARR A 50139M001 1 XYZ 0.1-12.2 1.1 PLH -2.8 5.5-10.6 (MM) CEDU A 50138M001 1 XYZ -0.9 5.8 2.7 PLH 4.8-3.4 2.6 (MM) YARR A 50107M006 1 XYZ 2.3-6.1 3.5 PLH -0.1 0.5-7.4 (MM) ADE1 A 50109S001 1 XYZ -5.0 4.4-7.6 PLH -2.5 0.0 9.8 (MM) STR1 A 50119M002 1 XYZ 4.7-1.6 0.7 PLH -2.2-1.0-4.3 (MM) NNOR A 50181M001 1 XYZ -0.3 4.8-2.1 PLH 0.5-1.8 4.9 (MM) YAR1 A 50107M004 1 XYZ -2.3-1.9 5.6 PLH 4.5 2.9-3.4 (MM) DARW A 50134M001 1 XYZ -5.0-0.6 0.6 PLH 1.2 4.1 2.6 (MM) MOBS A 50182M001 1 XYZ 9.1 2.7-5.3 PLH -7.8-7.4-1.4 (MM) PERT A 50133M001 1 XYZ -8.8 17.4-14.1 PLH -1.7 0.3 24.0 (MM) STR2 A 50119M001 1 XYZ 7.3-8.5 8.4 PLH 0.7 3.5-13.6 (MM) SYDN A 50124M003 1 XYZ 4.0-3.0 1.6 PLH -1.5 0.7-5.0 (MM) TIDB A 50103M108 1 XYZ -4.0-1.3-3.9 PLH -1.6 3.2 4.5 (MM) HOB2 A 50116M004 1 XYZ -6.9 3.5 1.7 PLH 6.5 0.8 4.5 (MM) XMIS A 50183M001 1 XYZ 11.3-7.1 1.3 PLH -0.5-8.9-10.0 (MM) PARK A 50108M001 1 XYZ 12.5-8.8 20.3 PLH 8.7 0.9-23.9 (MM) RMS 3.9 3.7 11.4 (MM)

Supported Coordinate Transformations ITRF2008 @dd.mm.yy ITRF2005 @dd.mm.yy ITRF2000 @dd.mm.yy GDA94 GDA2020 ITRF2014 @dd.mm.yy ITRF1997 @dd.mm.yy ITRF1996 @dd.mm.yy

25

Estimates of the regional seismic moments (e.g., Kostrov, 1974) lead to predictions of the deformation of the Australian plate of 0.65 ± 2 mm/yr (95% confidence level) (Leonard, 2008)

Background Fastest moving continent Karratha: 70 mm/yr Alice Springs: 67 mm/yr Canberra: 58 mm/yr

Plate Model

Crustal Motion

Residual Crustal Deformation

Residual Crustal Deformation

What About the Tier 3 Sites?

Tregoning et al, 2013

2004 Mw=8.1 Macquarie Ridge earthquake Canberra to Hobart (GA Operational Solution)

Conventional plate model works well in Australia for geodetic applications Australian Plate across the Australian continent is stable at the 0.2 to 0.3 mm/yr level Post-seismic effects from far-field earthquake do change crustal motion Australian sites by ~0.3 mm/yr Co-seismic effects from far-field earthquakes at the 3mm level Not an issue for CORS if they are modelled Crustal velocities can be gazetted now as part of GDA2020

GDA2020 RVS Crustal velocities will be derived from the plate model and propagated from? Epoch of Minimal Position Variance - APREF Epoch of Minimal Position Variance ARGN/AuScope Epoch of Minimal Position Variance ITRF2014 1 Jan 2010 1 Jan 2017 1 Jan 2020 1 Jan 1994 2020

37