ECEN 325 Electronics

Similar documents
ECEN 326 Electronic Circuits

ECEN 325 Electronics

ECEN 326 Electronic Circuits

Series & Parallel Resistors 3/17/2015 1

OPERATIONAL AMPLIFIER APPLICATIONS

Chapter 5. Department of Mechanical Engineering

DC STEADY STATE CIRCUIT ANALYSIS

Homework Assignment 11

EE 230. Lecture 4. Background Materials

ECE Networks & Systems

Single-Time-Constant (STC) Circuits This lecture is given as a background that will be needed to determine the frequency response of the amplifiers.

Homework 6 Solutions and Rubric

Solution: K m = R 1 = 10. From the original circuit, Z L1 = jωl 1 = j10 Ω. For the scaled circuit, L 1 = jk m ωl 1 = j10 10 = j100 Ω, Z L

Preamble. Circuit Analysis II. Mesh Analysis. When circuits get really complex methods learned so far will still work,

Chapter 10 AC Analysis Using Phasors

UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS

Homework 1 solutions

Kirchhoff's Laws and Circuit Analysis (EC 2)

Kirchhoff's Laws and Maximum Power Transfer

Exercise s = 1. cos 60 ± j sin 60 = 0.5 ± j 3/2. = s 2 + s + 1. (s + 1)(s 2 + s + 1) T(jω) = (1 + ω2 )(1 ω 2 ) 2 + ω 2 (1 + ω 2 )

EE292: Fundamentals of ECE

Midterm Exam (closed book/notes) Tuesday, February 23, 2010

Electric Circuits I. Nodal Analysis. Dr. Firas Obeidat

Solution: Based on the slope of q(t): 20 A for 0 t 1 s dt = 0 for 3 t 4 s. 20 A for 4 t 5 s 0 for t 5 s 20 C. t (s) 20 C. i (A) Fig. P1.

R 2, R 3, and R 4 are in parallel, R T = R 1 + (R 2 //R 3 //R 4 ) + R 5. C-C Tsai

Lecture #3. Review: Power

ECE 1311: Electric Circuits. Chapter 2: Basic laws

Electronics II. Final Examination

Chapter 2 Circuit Elements

ECE 3050A, Spring 2004 Page 1. FINAL EXAMINATION - SOLUTIONS (Average score = 78/100) R 2 = R 1 =

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson

In this lecture, we will consider how to analyse an electrical circuit by applying KVL and KCL. As a result, we can predict the voltages and currents

CE/CS Amplifier Response at High Frequencies

EE348L Lecture 1. EE348L Lecture 1. Complex Numbers, KCL, KVL, Impedance,Steady State Sinusoidal Analysis. Motivation

Sophomore Physics Laboratory (PH005/105)

Voltage Dividers, Nodal, and Mesh Analysis

I. Frequency Response of Voltage Amplifiers

Electronics II. Final Examination

Circuit Theorems Overview Linearity Superposition Source Transformation Thévenin and Norton Equivalents Maximum Power Transfer

Electronic Circuits Summary

INTRODUCTION TO ELECTRONICS

Chapter 10: Sinusoids and Phasors

Basics of Network Theory (Part-I)

ENGR 2405 Class No Electric Circuits I

The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A =

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur

Problem Set 4 Solutions

Solved Problems. Electric Circuits & Components. 1-1 Write the KVL equation for the circuit shown.

DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C

POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems

MAE140 Linear Circuits Fall 2016 Final, December 6th Instructions

COOKBOOK KVL AND KCL A COMPLETE GUIDE

University of Toronto. Final Exam

Lecture 3 BRANCHES AND NODES

Homework Assignment 08

CHAPTER.6 :TRANSISTOR FREQUENCY RESPONSE

MAE140 - Linear Circuits - Fall 14 Midterm, November 6

ECE 255, Frequency Response

Syllabus and Course Overview!

MAE140 - Linear Circuits - Winter 09 Midterm, February 5

Homework 7 - Solutions

Sinusoidal Steady State Analysis (AC Analysis) Part I

Sirindhorn International Institute of Technology Thammasat University at Rangsit

Operational Amplifiers

Texas A & M University Department of Mechanical Engineering MEEN 364 Dynamic Systems and Controls Dr. Alexander G. Parlos

Outline. Week 5: Circuits. Course Notes: 3.5. Goals: Use linear algebra to determine voltage drops and branch currents.

The general form for the transform function of a second order filter is that of a biquadratic (or biquad to the cool kids).

Notes for course EE1.1 Circuit Analysis TOPIC 3 CIRCUIT ANALYSIS USING SUB-CIRCUITS

Systematic methods for labeling circuits and finding a solvable set of equations, Operational Amplifiers. Kevin D. Donohue, University of Kentucky 1

EE105 Fall 2015 Microelectronic Devices and Circuits Frequency Response. Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH)

Physics 116A Notes Fall 2004

Review of Circuit Analysis

Multistage Amplifier Frequency Response

The Miller Approximation

Operational amplifiers (Op amps)

Sinusoids and Phasors

Electric Circuits II Sinusoidal Steady State Analysis. Dr. Firas Obeidat

Electronic Circuits EE359A

V x 4 V x. 2k = 5

Homework Assignment 09

Network Graphs and Tellegen s Theorem

CS 436 HCI Technology Basic Electricity/Electronics Review

320-amp-models.tex Page 1 ECE 320. Amplifier Models. ECE Linear Active Circuit Design

LECTURE 130 COMPENSATION OF OP AMPS-II (READING: GHLM , AH )

EE 321 Analog Electronics, Fall 2013 Homework #8 solution

ECE 342 Electronic Circuits. Lecture 25 Frequency Response of CG, CB,SF and EF

Tutorial #4: Bias Point Analysis in Multisim

EE 435. Lecture 2: Basic Op Amp Design. - Single Stage Low Gain Op Amps

Designing Information Devices and Systems II Fall 2016 Murat Arcak and Michel Maharbiz Homework 0. This homework is due August 29th, 2016, at Noon.

ANALYSIS OF SMALL-SIGNAL MODEL OF A PWM DC-DC BUCK-BOOST CONVERTER IN CCM.

Assignment 3 ELEC 312/Winter 12 R.Raut, Ph.D.

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science : Circuits & Electronics Problem Set #1 Solution

LAPLACE TRANSFORMATION AND APPLICATIONS. Laplace transformation It s a transformation method used for solving differential equation.

Electronics II. Midterm II

Input and Output Impedances with Feedback

Discussion Question 6A

Unit 2: Modeling in the Frequency Domain. Unit 2, Part 4: Modeling Electrical Systems. First Example: Via DE. Resistors, Inductors, and Capacitors

ESE319 Introduction to Microelectronics. Feedback Basics

EE40 Midterm Review Prof. Nathan Cheung

Frequency Response Prof. Ali M. Niknejad Prof. Rikky Muller

Transcription:

ECEN 325 Electronics Introduction Dr. Aydın İlker Karşılayan Texas A&M University Department of Electrical and Computer Engineering

Ohm s Law i R i R v 1 v v 2 v v 1 v 2 v = v 1 v 2 v = v 1 v 2 v = ir v = ir i = Gv i = Gv ECEN 325 Electronics - Aydın İ. Karşılayan - Introduction 1

Ohm s Law Example I 1 I 1 V 1 10 V R1 = 5Ω 10 V R1 V 1 = 5Ω V 1 = 10 V I 1 = 2 A V 1 = 10 V I 1 = 2 A ECEN 325 Electronics - Aydın İ. Karşılayan - Introduction 2

KVL & KCL KVL: Kirchoff s Voltage Law Sum of all node-to-node voltages around the closed loop is zero. KCL: Kirchoff s Current Law Sum of all currents leaving a node is zero. ECEN 325 Electronics - Aydın İ. Karşılayan - Introduction 3

KVL i1 R 1 i R 1 2 2 2 i 3 i 4 v i L1 R 3 L2 R 4 L 1 v i + i 1 R 1 + i 3 R 3 = 0 L 2 i 2 R 2 + i 4 R 4 i 3 R 3 = 0 ECEN 325 Electronics - Aydın İ. Karşılayan - Introduction 4

KVL i R +ir i R ir direction of loop direction of loop V V +V V direction of loop direction of loop ECEN 325 Electronics - Aydın İ. Karşılayan - Introduction 5

KVL i 1 R 1 i 2 i 3 1 R 2 2 i 4 v i R 3 R 4 L 1 v i = i 1 R 1 + i 3 R 3 L 2 i 3 R 3 = i 2 R 2 + i 4 R 4 ECEN 325 Electronics - Aydın İ. Karşılayan - Introduction 6

KVL Example 1 V CC V SS I 2 I 1 R 2 I 3 R 1 V x R 3 V CC = I 1 R 1 + I 3 R 3 V SS = I 2 R 2 + I 3 R 3 ECEN 325 Electronics - Aydın İ. Karşılayan - Introduction 7

KVL Example 2 +10 V I 1 50 Ω V x I 2 I 3 10 Ω 100 Ω 5 V 10 = 50I 1 + 100I 3 5 = 10I 2 + 100I 3 10 = 50I 1 + 10I 2 5 ECEN 325 Electronics - Aydın İ. Karşılayan - Introduction 8

KCL i1 R 1 i R 1 2 2 2 i 3 i 4 v i L1 R 3 L2 R 4 1 i 1 + i 2 + i 3 = 0 v 1 v i R 1 + v 1 v 2 R 2 + v 1 R 3 = 0 2 i 2 + i 4 = 0 v 2 v 1 R 2 + v 2 R 4 = 0 ECEN 325 Electronics - Aydın İ. Karşılayan - Introduction 9

KCL Example 1 V CC V SS I 2 I 1 R 2 I 3 R 1 V x R 3 V x V SS R 2 + V x V CC R 1 + V x R 3 = 0 ECEN 325 Electronics - Aydın İ. Karşılayan - Introduction 10

KCL Example 2 +10 V I 1 50 Ω V x I 2 I 3 10 Ω 100 Ω 5 V V x ( 5) 10 + V x 100 + V x 10 50 = 0 ECEN 325 Electronics - Aydın İ. Karşılayan - Introduction 11

Linear Network Analysis Series combination Z 1 Z 2 Z Z = Z 1 + Z 2 ECEN 325 Electronics - Aydın İ. Karşılayan - Introduction 12

Linear Network Analysis Parallel combination Z 1 Z 2 Z Z = Z 1 Z 2 ECEN 325 Electronics - Aydın İ. Karşılayan - Introduction 13

Linear Network Analysis Voltage divider v i Z 1 Z 2 v o v o v i = Z 2 Z 1 + Z 2 ECEN 325 Electronics - Aydın İ. Karşılayan - Introduction 14

Linear Network Analysis Example 1 v i R 1 R 2 R 3 v o v o v i = R 3 R 1 + R 2 + R 3 ECEN 325 Electronics - Aydın İ. Karşılayan - Introduction 15

Linear Network Analysis Example 2 v o v i R 1 R 2 R 3 v o v i = R 2 R 3 R 1 + (R 2 R 3 ) ECEN 325 Electronics - Aydın İ. Karşılayan - Introduction 16

Linear Network Analysis Example 3 R 2 v o v i R 1 R 3 R 4 R 5 v o v i = R 4 R 5 R 1 + (R 2 R 3 ) + (R 4 R 5 ) ECEN 325 Electronics - Aydın İ. Karşılayan - Introduction 17

Linear Network Analysis i i v R v L v i C v = ir v = sli v = 1 sc i Z = R Z = sl Z = 1 sc ECEN 325 Electronics - Aydın İ. Karşılayan - Introduction 18

Linear Network Analysis Parallel RC R C Z Z = R 1 sc ECEN 325 Electronics - Aydın İ. Karşılayan - Introduction 19

Linear Network Analysis Series RC R Z C Z = R + 1 sc ECEN 325 Electronics - Aydın İ. Karşılayan - Introduction 20

Linear Network Analysis Example C 1 R 2 Z R 1 C 2 Z = 1 sc 1 + R 1 R 2 + 1 sc 2 ECEN 325 Electronics - Aydın İ. Karşılayan - Introduction 21

Low-pass Network Transfer function v i R C v o v o v i = 1 sc R + 1 sc = 1 src + 1 = 1 s + 1 = T(s) = 1 RC ECEN 325 Electronics - Aydın İ. Karşılayan - Introduction 22

Low-pass Network Magnitude response T(s) = 1 s + 1 T(jω) = 1 jω + 1 T(jω) = ω 1 2 + 1 20 log T(jω) = 20 log ω 2 + 1 ω 20 log T(jω) 0 ω 20 log T(jω) 20 log 20 log ω ω = 20 log T(jω) = 20 log 2 3 db ECEN 325 Electronics - Aydın İ. Karşılayan - Introduction 23

Low-pass Network Bode magnitude plot 0 db 10 3 db ω o 10 ω (log scale) 10 db 20 db / dec 20 db 20 log T(j ω) ECEN 325 Electronics - Aydın İ. Karşılayan - Introduction 24

Low-pass Network Phase response T(s) = 1 s + 1 T(jω) = 1 jω + 1 T(jω) = tan 1 ω ω T(jω) 0 ω T(jω) 90 ω = T(jω) = 45 ECEN 325 Electronics - Aydın İ. Karşılayan - Introduction 25

Low-pass Network Bode phase plot 10 ω o 10 ω (log scale) 45 90 φ(ω) ECEN 325 Electronics - Aydın İ. Karşılayan - Introduction 26

High-pass Network Transfer function v o v i C R v o v i = R 1 sc + R = s s + 1 RC = s s + = T(s) = 1 RC ECEN 325 Electronics - Aydın İ. Karşılayan - Introduction 27

High-pass Network Magnitude response T(s) = s T(jω) = jω = 1 s + jω + T(jω) = 1 + 1 ω 20 log T(jω) = 20 log 1 + 2 ω 1 j ω ω 20 log T(jω) 20 log ω 20 log ω 20 log T(jω) 0 ω = 20 log T(jω) = 20 log 2 3 db 2 ECEN 325 Electronics - Aydın İ. Karşılayan - Introduction 28

High-pass Network Bode magnitude plot 0 db 10 3 db 10 ω (log scale) 10 db 20 db 20 db / dec 20 log T(j ω) ECEN 325 Electronics - Aydın İ. Karşılayan - Introduction 29

High-pass Network Phase response T(s) = s T(jω) = jω = 1 s + jω + T(jω) = tan 1 ω 1 j ω ω T(jω) 90 ω T(jω) 0 ω = T(jω) = 45 ECEN 325 Electronics - Aydın İ. Karşılayan - Introduction 30

High-pass Network Bode phase plot φ(ω) 90 45 10 10 ω o ω (log scale) ECEN 325 Electronics - Aydın İ. Karşılayan - Introduction 31

STC Networks Generalized transfer function Generalized first order low-pass: T(s) = K s + 1 20 log T(jω) = 20 log K 20 log ω 2 + 1 Generalized first order high-pass: T(s) = Ks s + 20 log T(jω) = 20 log K 20 log 1 + ω 2 ECEN 325 Electronics - Aydın İ. Karşılayan - Introduction 32

Generalized Low-pass Bode magnitude plot 20 log T(j ω) 20 log K 3 db 20 db 20 db / dec 10 ω o 10 ω (log scale) ECEN 325 Electronics - Aydın İ. Karşılayan - Introduction 33

Generalized High-pass Bode magnitude plot 20 log T(j ω) 20 log K 3 db 20 db 20 db / dec 10 10 ω (log scale) ECEN 325 Electronics - Aydın İ. Karşılayan - Introduction 34

Amplifiers v i v o v i v o v i v o In: Differential Differential Single-ended Out: Differential Single-ended Single-ended ECEN 325 Electronics - Aydın İ. Karşılayan - Introduction 35

Voltage Amplifier Circuit model v i R o v o R i A vo v i R i : Input resistance R o : Output resistance A vo : Open-loop voltage gain ECEN 325 Electronics - Aydın İ. Karşılayan - Introduction 36

Voltage Amplifier Source and load connected R s R o v s v i R i A vo v i R L v o v o v s = R i R s + R i A vo R L R o + R L ECEN 325 Electronics - Aydın İ. Karşılayan - Introduction 37

Voltage Amplifier Cascaded R s R o1 R o2 v s v i1 R i1 A vo1 v i1 v i2 R i2 A vo2 v i2 R L v o v o v s = R i1 R s + R i1 A vo1 R i2 R o1 + R i2 A vo2 R L R o2 + R L ECEN 325 Electronics - Aydın İ. Karşılayan - Introduction 38

Transconductance amplifier Circuit model v i i o v o R i G m v i R o R i : Input resistance R o : Output resistance G m : Short-circuit transconductance gain ECEN 325 Electronics - Aydın İ. Karşılayan - Introduction 39

Voltage Amplifier Frequency response R s R o v s C i v i R i A vo v i R L v o v o v s = R i 1 sc i R s + R i 1 sc i A vo R L R o + R L = T(s) T(s) = K s + 1 K = R i R s + R i A vo R L R o + R L, = 1 (R i R s )C i ECEN 325 Electronics - Aydın İ. Karşılayan - Introduction 40

Voltage Amplifier Bode magnitude plot 20 log T(j ω) 20 log K 3 db 20 db 20 db / dec 10 ω o 10 ω (log scale) ECEN 325 Electronics - Aydın İ. Karşılayan - Introduction 41

Voltage Amplifier Bode phase plot 10 ω o 10 ω (log scale) 45 90 φ(ω) ECEN 325 Electronics - Aydın İ. Karşılayan - Introduction 42