, but bursts into flames in pure oxygen.

Similar documents
Chapter 12. Kinetics. Factors That Affect Reaction Rates. Factors That Affect Reaction Rates. Chemical. Kinetics

CHEMISTRY. Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics

Kinetics. Chapter 14. Chemical Kinetics

Lecture Presentation. Chapter 14. James F. Kirby Quinnipiac University Hamden, CT. Chemical Kinetics Pearson Education, Inc.

Ch 13 Rates of Reaction (Chemical Kinetics)

Lecture Presentation. Chapter 14. Chemical Kinetics. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc.

Chemical Kinetics. Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions:

Brown et al, Chemistry, 2nd ed (AUS), Ch. 12:

Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates

Kinetics - Chapter 14. reactions are reactions that will happen - but we can t tell how fast. - the steps by which a reaction takes place.

Chemical. Chapter 14. Kinetics. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E.

Outline: Kinetics. Reaction Rates. Rate Laws. Integrated Rate Laws. Half-life. Arrhenius Equation How rate constant changes with T.

Chemical Kinetics and Equilibrium

Chapter 14. Chemical Kinetics

How fast reactants turn into products. Usually measured in Molarity per second units. Kinetics

Chapter 14. Chemical Kinetics

Chapter 14. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten

Chapter 13 Lecture Lecture Presentation. Chapter 13. Chemical Kinetics. Sherril Soman Grand Valley State University Pearson Education, Inc.

Chapter 12. Chemical Kinetics

Ch 13 Chemical Kinetics. Modified by Dr. Cheng-Yu Lai

Chapter 14: Chemical Kinetics

Chapter 13 Rates of Reactions

Chapter 14 Chemical Kinetics

AP Chemistry - Notes - Chapter 12 - Kinetics Page 1 of 7 Chapter 12 outline : Chemical kinetics

C H E M I C N E S C I

Chemical Kinetics. Kinetics. Factors That Affect Reaction Rates. Factors That Affect Reaction Rates. Factors That Affect Reaction Rates

Chapter 14 Chemical Kinetics

Chapter 12. Chemical Kinetics

Chapter 12. Chemical Kinetics

11/2/ and the not so familiar. Chemical kinetics is the study of how fast reactions take place.

Chapter 14 Chemical Kinetics

Chapter: Chemical Kinetics

Chapter 13 Kinetics: Rates and Mechanisms of Chemical Reactions

REACTION KINETICS. Catalysts substances that increase the rates of chemical reactions without being used up. e.g. enzymes.

CHEMISTRY - CLUTCH CH.13 - CHEMICAL KINETICS.

Chapter 14. Chemical Kinetics

Chapter 11: CHEMICAL KINETICS

Chapter 30. Chemical Kinetics. Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved.

Chapter 14: Chemical Kinetics

Kinetics CHAPTER IN THIS CHAPTER

Chemical Kinetics. Rate = [B] t. Rate = [A] t. Chapter 12. Reaction Rates 01. Reaction Rates 02. Reaction Rates 03

Unit #10. Chemical Kinetics

AP Chem Chapter 14 Study Questions

CHAPTER 13 (MOORE) CHEMICAL KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics

Chapter 14. Chemical Kinetics

AP CHEMISTRY CHAPTER 12 KINETICS

Chapter 14. Chemical Kinetics

2/23/2018. Familiar Kinetics. ...and the not so familiar. Chemical kinetics is the study of how fast reactions take place.

Chemical Kinetics AP Chemistry Lecture Outline

CHEMISTRY NOTES CHEMICAL KINETICS

Chemical Kinetics. Chapter 13. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Name AP CHEM / / Chapter 12 Outline Chemical Kinetics

Chapter 14 Chemical Kinetics

Chapter 11 Rate of Reaction

Calculating Rates of Substances. Rates of Substances. Ch. 12: Kinetics 12/14/2017. Creative Commons License

CHAPTER 12 CHEMICAL KINETICS

Examples of fast and slow reactions

11/9/2012 CHEMICAL REACTIONS. 1. Will the reaction occur? 2. How far will the reaction proceed? 3. How fast will the reaction occur?

Chemical Kinetics -- Chapter 14

AP CHEMISTRY NOTES 7-1 KINETICS AND RATE LAW AN INTRODUCTION

Chemistry 40S Chemical Kinetics (This unit has been adapted from

Chapter 14, Chemical Kinetics

Reaction Rate. Products form rapidly. Products form over a long period of time. Precipitation reaction or explosion

Chemical Kinetics. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chem 401 Unit 1 (Kinetics & Thermo) Review

Chemical Kinetics Ch t ap 1 er

Theoretical Models for Chemical Kinetics

The first aspects forms the subject matter of chemical equilibrium. The second aspects forms the subject matter of chemical kinetics.

Chemistry 102 Chapter 14 CHEMICAL KINETICS. The study of the Rates of Chemical Reactions: how fast do chemical reactions proceed to form products

Chem 401 Unit 1 (Kinetics & Thermo) Review

CHAPTER 10 CHEMICAL KINETICS

Lecture (3) 1. Reaction Rates. 2 NO 2 (g) 2 NO(g) + O 2 (g) Summary:

3: Chemical Kinetics Name: HW 6: Review for Unit Test KEY Class: Date: A Products

There is not enough activation energy for the reaction to occur. (Bonds are pretty stable already!)

Unit 12: Chemical Kinetics

The Rate Expression. The rate, velocity, or speed of a reaction

Reaction Rate. Rate = Conc. of A at t 2 -Conc. of A at t 1. t 2 -t 1. Rate = Δ[A] Δt

Chapter 12 - Chemical Kinetics

Name: UNIT 5 KINETICS NOTES PACEKT #: KINETICS NOTES PART C

Collision Theory. and I 2

General Chemistry I Concepts

14.1 Factors That Affect Reaction Rates

Chemistry 1B Fall 2016

Chapter 8: Reaction Rates and Equilibrium

Reaction Kinetics. Reaction kinetics is the study of the rates of reactions and the factors which affect the rates. Hebden Unit 1 (page 1 34)

Ch part 2.notebook. November 30, Ch 12 Kinetics Notes part 2

How fast or slow will a reaction be? How can the reaction rate may be changed?

SAMPLE EXERCISE 14.3 Relating Rates at Which Products Appear and Reactants Disappear

Rates of Chemical Reactions

KINETICS CHEMICAL CHEMIC. Unit. I. Multiple Choice Questions (Type-I)

v AB + C à AC + B Ø Bonds breaking

Chemistry 1B, Fall 2016 Topic 23

CHEM Chapter 14. Chemical Kinetics (Homework) Ky40

Properties of Solutions and Kinetics. Unit 8 Chapters 4.5, 13 and 14

concentrations (molarity) rate constant, (k), depends on size, speed, kind of molecule, temperature, etc.

Reaction Mechanisms Dependence of rate on temperature Activation Energy E a Activated Complex Arrhenius Equation

Answers to Unit 4 Review: Reaction Rates

Transcription:

Chemical Kinetics Chemical kinetics is concerned with the speeds, or rates of chemical reactions Chemical kinetics is a subject of broad importance. How quickly a medicine can work The balance of ozone depletion Factors that effect when food will spoil Rate at which a fuel burns in an engine Fast/slow setting epoxy Reaction mechanisms In order for one chemical species to react with another chemical species they must collide with one another. A B C In order for A and B to react, the two must come in contact with each other. However, collisions must occur with sufficient energy to stretch bonds to a critical length and with suitable orientation. Factors that Affect Reaction Rates: The physical state of the reactants The concentrations of the reactants The temperature at which the reaction occurs. The presence of a catalyst. The physical state of the reactants. Reactants must come together in order to react. The more readily molecules collide with each other, the more rapidly they react. Homogeneous mixtures (gases or liquids) have good contact between reactants. Heterogeneous mixtures (gas/liquid or liquid/solid) are limited to the area of contact between the two phase. The concentrations of the reactants. Most chemical reactions proceed faster if the concentration of one or more of the reactants is increased. Fig.. p 56 Steel wool burns with difficulty in air with 0% O, but bursts into flames in pure oxygen. The temperature at which the reaction occur. The rates of chemical reactions increase as temperature is increased. Increasing temperature increases the kinetic energies of molecules (see Section 0.7). As molecules move more rapidly, they collide more frequently and also with higher energy.

. The presence of a catalyst. Catalysts are agents that increase reaction rates without being used up. They affect the kinds of collisions (the mechanism) that lead to reaction. Reaction Rates The speed of an event is defined as the change that occurs in a given interval of time: Whenever we talk about speed, we have to bring in the notion of time. Speed Limit 75 75moles sec A B Each dot represents 0.M t0 t0 t0 The speed of a chemical reaction (its reaction rate) is the change in the concentration of reactants or products per unit time. The units for reaction rates are usually molarity per second (M/s) A change in concentration divided by a time interval. Average rate with respect to B Average rate change in concentration of B change in time [B at t [B at t t t 0. M 0.0M 0s 0.0s [Β.0 x 0 M/s A B Each dot represents 0.M T0 T0 T0 Change of Rate with Time Suppose one dumps 0. mole of C Cl into a liter of water then measures the concentration of C Cl at various times after time zero. C Cl H O C OH HCl Average rate with respect to A [Α Notice the minus sign. By convention, rates are always expressed as positive quantities. Because [A is decreasing with time, [A is a negative number so the negative sign converts the negative [A to a positive rate. 0.6 M.0M Average rate.0 x 0 M/s 0s 0.0s

Concentration of butyl chloride as function of time. This plot was make from the first two columns of our data from the last slide. Instantaneous rate [C Cl (0.070.0)M (80000)s 6. x 0 5 M/s This graph is particularly useful because it allows us to evaluate the instantaneous rate, the rate at a particular moment in time. The instantaneous rate is determined from the slope of the curve. In What follows, the term rate means instantaneous rate, unless indicated otherwise. The instantaneous rate at t0 is called initial rate of the reaction. Reaction Rates and Stoichiometry During our earlier discussion of: C Cl C OH, we saw that the stoichiometry requires that the rate of the disappearance of C Cl equals the rate of of appearance of C OH. Rate [C Cl [C OH What happens when the stoichiometric relationships are not one to one? Consider the decomposition of HI gas: HI H I We can measure the rate of disappearance of HI or the rate of appearance of either H or I. HI H I Because mol of HI disappear for each mole of H or I produced, the rate of disappearance of HI is twice the rate of appearance of H or I produced. Thus, the rate expression must half the [HI. In general, for the reaction: The rate is given by: aa bb cc dd Rate [Hl [H [I Rate a [A b [B [C c d [D

Sample exercise: How is the rate of disappearance of potassium chlorate related to the rate of of appearance of oxygen in the following equation: KClO KCl O b) If the rate of appearance of O is.5x0 6 M/s at a particular instant, what is the value of the rate of disappearance of KClO? Rate [KClO [O Got to use this expression Rate [KClO [O Solve for [KClO / t [KClO [O Plug in the value of [O / t [KClO (.5x0 6 M/s).0x0 6 M/s The Dependence of Rate on Concentration Reaction rates diminish as the concentration of reactants diminish. Conversely, rates generally increase when reactant concentrations are increased. NH NO N H O Once the initial reaction rate for various starting concentrations of NH and NO are determined the data can be tabulated. One way of studying the effect of concentration on reaction rates is to determine the way in which the rate at the beginning of a reaction depends on the starting concentrations. Consider the following reaction: NH NO N H O One sees that changing either [NH or [NO changes the reaction rate. If one doubles [NH while holding [NO constant, the rate doubles. Likewise, when [NO is similarly varied while is held constant, the rate is affected in the same manner. These results indicate that the rate is proportional to [NH raised to the first power and [NO raised to the first power. We can express the overall concentration dependence as follows: Rate k [NH [NO The above equation, which show how the rate depends on the concentrations of reactants, is called a rate law.

For a general reaction: aa bb cc dd The rate law generally has the form: Rate k[a m [B n The constant k in the rate law is called the rate constant. The magnitude of k changes with temperature and therefore determines how temperature affects rate. The exponents m and n are typically small whole numbers (0,, or ) Rate k [NH [NO If we know the rate law for a reaction and its rate for a set of reactant concentration, we can calculate the value of the rate constant,k. Using the values in experiment # 5.x0 7 M/s k [0.000[0.00 Solving for k gives: K 5.x0 7 M/s (0.000M)(0.00M).7x0 M s Let us verify that k is a constant using any of the experimental data. Using the values in experiment #.5x0 7 M/s k [0.000[0.00 Solving for k gives: Rate k [NH [NO Once we have both the rate law and the value of the rate constant for a reaction, we can calculate the rate of reaction for any set of concentrations. What is the rate of reaction when the concentration of [NH and [NO are both 0.00 M? K.5x0 7 M/s (0.000M)(0.00M).7x0 M s Rate.7x0 M s (0.00M)(0.00M).7x0 6 M/s Exponents in the Rate Law The rate laws for most reactions have the general form: Rate k[reactant m [reactant n The exponents m and n in a rate law are called reaction orders. For the reaction of NH with NO we found that the exponent of [NH is one, the rate is first order in NH The rate is also first order in NO. The overall reaction order is the sum of the orders with respect to each reactant in the rate law. Thus, the reaction is second order overall. NH NO N H O The exponents in a rate law indicate how the rate is affected by the concentration of each reactant. Doubling the concentration of [NH causes the rate to double ([ ). Doubling the concentration of [NO makes the rate increase by a factor of as well ([ ). Because the overall reaction order is second order, doubling both reactants will cause the rate to quadruple. ([ [ which is the same as [ ) 5

If a rate law is second order with respect to a reactant, [A, then doubling the concentration of that substance will cause the reaction rate to quadruple ([ ). Rate k[a m [B n The values of m and n must be determined experimentally. In most rate laws, reaction orders are 0,, or. However, we also occasionally encounter rate laws in which the reaction order is fractional or even negative Units of Rate Constants The units of the rate constant depend on the overall reaction order of the rate law. In a reaction that is second order overall the units of the rate constant must satisfy the equation: Units of rate (units of rate constant) (units of concentration) M/s (units of rate constant) (M) M s Overall reaction order Units of k st M/sk[M s nd M/sk[M M s rd M/s k[m M s th M/s k[m M s 0 th M/s k[m 0 M s / nd M/s k[m / M / s Using Rates to Determine Rate Law The rate law for any chemical reaction must be determine experimentally; it can not be predicted by merely looking at the chemical equation. If an reaction is zero order in a particular reactant, changing its concentration will have no effect on rate ([M 0 ). If an reaction is first order in a particular reactant, changing its concentration will have a proportional change on rate ([ ). If an reaction is second order in a particular reactant, doubling the concentration the rate increases by a factor of [ Given the data below, determine the rate law expression for the reaction: A B C A B BC In working with rate laws, it is important to realize that the rate of a reaction depends on concentration, but the rate constant does not. The rate constant (and hence the reaction rate) is affected by temperature and by the presence of a catalyst. [A Rate k [A m [B n [C y [B [C Rate 7. M/s In runs # and # the initial concentrations of A and C are the same. Thus, any change in the rate would be due to the change in concentration of B. We see that the rate is the same in # & #. Thus, the reaction rate is independent of [B, or n0 6

[A [B [C Rate [A [B [C Rate 7. M/s 7. M/s Rate k [A m [B 0 [C y In runs # and # involve the same initial concentration of A; thus, the observed change in rate must be due entirely to the changed [C. So we compare trials and to find y: [C has been multiplied by a factor of (0.60)/(0.0) The effect on the rate is that the rate changes by a factor of (7.)/(.) Thus, y the rate is first order in [C. Rate k [A m [B 0 [C Rate k [A m [B 0 [C We can use trials # and # to evaluate m, because [A is changed, [B does not matter, and [C is unaltered. The observed rate changed is due only to the changed [A. [A has been multiplied by a factor of (0.0)/(0.0). The rate has changed by a factor of (9.6)/(.). We now know that m ([ ). The reaction is second order in [A Rate k [A [B 0 [C or Rate k [A [C [A [B [C Rate [A [B [C Rate 7. M/s 7. M/s The rate law could be reached in a more formal way by taking the ratio of the rates from two runs. Rate.M/s Rate.M/s Using the rate law gives: rate k[0.0 m [0.0 n [0. y rate (.5) n k[0.0 m [0.0 n [0. y The only way that (.5) n is if n0 Rate 7.M/s Rate.M/s rate k[0.0 m [0.0 0 [0.60 y () y rate k[0.0 m [0.0 0 [0.0 y The only way that () y is if y [A [B [C Rate [A [B [C Rate 7. M/s 7. M/s Rate Rate rate k[0.0 m [0.0 0 [0.0 () m rate k[0.0 m [0.0 0 [0.0 The only way that () m is if m Rate k [A [B 0 [C a) Now that we know the rate law for this reaction (rate k [A [C ), solve for k using any of the runs. K 7.M/s () (0.6M) 0 M s k b) What would be the initial rate of reaction when [A, [B, and [C 0.00M? Rate (0 M s )(.00M) (0.00M).0x0 5 M/s 7

The Change of concentration with time Rate laws can be converted into equations that tell us what the concentrations of the reactants or products are at any time during the course of a reaction. We will only consider first order reactions for a reaction of the type A products. Rate [Α k[a By using calculus and integrating, the following is obtained: ln[a t kt ln[a 0 The above equation can be used in several ways. Given any three quantities, we can solve for the fourth; k, t, [A 0, and [A t. These equations can be used, to determine () the concentration of a reactant remaining at any time after the reaction has started, () the time required for a given fraction of a sample to react, or () the time required for a reactant concentration to fall to a certain level. ln[a t kt ln[a 0 ln[a t kt ln[a 0 The thermal decomposition of dinitrogen pentaoxide (N O 5(g) NO (g) ½O (g) ) is a firstorder reaction. The rate constant for the reaction is 5.x0 s at 8K. If the initial amount of is N O 5(g is.500 moles, how much would be left after 5 minutes? Halflife The halflife of a reaction, t ½, is the time required for the concentration of a reactant to drop to one half of its initial value, [A t½ ½[A 0. ln[a t kt ln[a 0 ln[a t (00 s) 5.x0 s ln[.500mol 0 ln[a t 0.5.50077 ln ½[A 0 [A 0 ln½ kt ½ kt ½ ln[a t.507797 [A t00s e.507797 [A.86 moles left t ½ ln½ k t ½ 0.69 k The thermal decomposition of dinitrogen pentaoxide (N O 5(g) NO (g) ½O (g) ) is a firstorder reaction. The rate constant for the reaction is 5.x0 s at 8K. What is the halflife of this process? t ½ 0.69 k t ½ 0.69 5.x0 s t ½ 59 seconds or min The Collision Model Reaction rates are affected both by the concentrations of reactants and by temperature. How can we explain these effects at the molecular level? The collision model of chemical kinetics, which is based on the kineticmolecular theory (0.7) The central idea of the collision model is that molecules must collide to react. The greater the number of collisions occurring per second, the grater the reaction rate. For reaction to occur, though, more is required than simply a collision. For most reactions, only a tiny fraction of the collisions leads to reaction. Only about in every 0 collisions produces a reaction. 8

The Orientation Factor In most reactions, molecules must be oriented in a certain way during collisions in order for a reaction to occur. The relative orientations of the molecules during their collisions determine whether the atoms are suitably positioned to form new bonds. Activation Energy In 888 the Swedish chemist Svante Arrhenium suggested that molecules must possess a certain minimum amount of energy in order to react. If molecules are moving too slowly, with too little kinetic energy, they merely bounce of one another without reacting. In order to react, colliding molecules must have a total kinetic energy equal to or greater than some minimum value. The minimum energy required to initiate a chemical reaction is called the activation energy, E a. Cl NOCl NO Cl The reaction will take place only if the collision brings Cl atoms together to form Cl. As an example, the rearrangement of methyl isonitrile to acetonitrile, we might imagine pass through an intermediate state in which the N C portion of the molecule is sitting sideways. The energy difference between that of the starting molecules and the highest energy along the reaction pathway is the activation energy, E a, The particular arrangement of atoms at the top of the barrier is called the activated complex or transition state. The Arrhenius Equation Arrhenius noted that for most reactions the increase in rate with increasing temperature is nonlinear. He found that most reactionrate data obeyed an equation based on three factors () the fraction of molecules possessing an energy of Ea or greater, () the number of collisions occurring per second, and () the fraction of collisions that the the appropriate orientation. These three factors are incorporated into the Arrhenius equation: k Ae Ea/RT k Ae Ea/RT k is the rate constant, E a is the activation energy, R is the gas constant, and T is the absolute temperature. The frequency factor, A, is constant, or nearly so, as the temperature is varied. It is related to the frequency of collisions and the probability that the collisions are favorably oriented for reaction. As the magnitude of E a increases, k decreases because the faction of molecules that posses the required energy is smaller. Thus, reaction rates decrease as E a increases. 9

Reaction Mechanisms A balanced equation for a chemical reaction indicates the substances present at the start of the reaction and those produced as the reaction proceeds. It provides no information about how the reaction occurs. The process by which a reaction occurs is called the reaction mechanism. At the most sophisticated level, a reaction mechanism will describe in great detail the order in which bonds are broken and formed and the changes in relative positions of the atoms in the course of the reaction. Elementary Steps Collisions between molecules methyl isonitrile can provide the energy to allow the CH CNC to rearrange CH CN C CH C N This processes occurs in a single event and is called an elementary step. The number of molecules that participated as reactants in an elementary step defines the molecularity of the step. If a single molecule is involved, the reaction is unimolecular. Elementary steps involving the collision of two reactant molecules are bimolecular. The reaction between NO and O is bimolecular. NO O NO O Elementary steps involving the simultaneous collision of three molecules are termolecular. Termolecular steps are far less probable than unimolecular of bimolecular processes and are rarely encountered. Multistep Mechanisms A balanced chemical equation often occurs by a multistep mechanism, which consists of s sequence of elementary steps. Consider the reaction of NO with CO: NO CO NO CO This reaction appears to proceed in two elementary steps, each of which is bimolecular. NO NO NO NO NO CO NO CO NO NO NO NO NO CO NO CO The elementary steps in a multistep mechanism must always add to give the chemical equation of the overall process. Rate Laws for Elementary Steps Every reaction is made up of a series of one or more elementary steps, and the rate laws and relative speeds of these steps will dictate the overall rate law. Kinetics can lead us to reaction mechanisms that are consistent with those observed experimentally. NO NO CO NO NO NO CO Simplifying this equation by eliminating substances that appear on both sides of the arrow yields: NO CO NO CO Because NO is formed in one elementary step and consumed in the next is is called an intermediate. 0

Catalysis A catalysis is a substance that changes the speed of a chemical reaction without undergoing a permanent chemical change itself in the process. k Ae Ea/RT On the basis of the Arrhenius equation, the rate constant (k) is determined by the activation energy (Ea) and the frequency factor(a). A catalyst may affect the rate of reaction by altering the value of either E a or A.