Supplementary Information. Analytics

Similar documents
Supplementary Notes: Table DR2

Treatment of Data. Methods of determining analytical error -Counting statistics -Reproducibility of reference materials -Homogeneity of sample

EPMA IMAGES. Figure 9. Energy-dispersive spectra of spot mineral analyses in sample 89GGR-33A for locations 1-5 in Figure 8.

XUV 773: X-Ray Fluorescence Analysis of Gemstones

Partitioning of chlorine between H 2 O-bearing fluid and basaltic melt of Mt. Etna

GSA DATA REPOSITORY

Standardless Analysis by XRF but I don t know what s in my sample!! Dr Colin Slater Applications Scientist, XRF Bruker UK Limited

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis

Sample collection was restricted to pumice from plinian fallout, from thin distal ignimbrite, and from

Late Pleistocene to Holocene temporal succession and magnitudes of highly-explosive volcanic eruptions in west-central Nicaragua

Electron probe microanalysis - Electron microprobe analysis EPMA (EMPA) What s EPMA all about? What can you learn?

Breeding et al., Data Repository Material Figure DR1. Athens. Study Area

Supplementary Materials for

Recent advances in the analysis of volatiles and fluid-mobile elements in melt inclusions by Secondary Ion Mass Spectrometry (SIMS)

Data Repository for 40 Ar/ 39 Ar Age Constraints on the Duration of Resurgence at the Valles Caldera, New Mexico

MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF

Overview of X-Ray Fluorescence Analysis

Metcalf and Buck. GSA Data Repository

GSA DATA REPOSITORY

Praktikum zur. Materialanalytik

2.3 Particle Induced X-Ray Emission PIXE

ABSOLUTE AIR-KERMA MEASUREMENT IN A SYNCHROTRON LIGHT BEAM BY IONIZATION FREE-AIR CHAMBER

SYNCHROTRON RADIATION INDUCED X-RAY EMISSION - SRIXE W.M. KWIATEK

Density assumed constant at 2800 kg/m3

X-RAY MICRO-TOMOGRAPHY OF PORE-SCALE FLOW AND TRANSPORT. University of California Davis. Dorthe Wildenschild & Annette Mortensen

APPENDIX A SAMPLING AND ANALYTICAL METHODS

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis

X-Ray Fluorescence and Natural History

Quantitative XRF Analysis. algorithms and their practical use

APPENDICES. Appendix 1

SEM. Chemical Analysis in the. Elastic and Inelastic scattering. Chemical analysis in the SEM. Chemical analysis in the SEM

Volatile solubility models and their application to magma storage and transport in the mantle and he crust. Julie Roberge ESIA-Ticoman, IPN Mexico

Chapter 1 X-ray Absorption Fine Structure (EXAFS)

XM1/331 XM1/331 BLFX-3 XM1/331

11. The bright-line spectra produced by four elements are represented in the diagram below.

Supplementary material to accompany the manuscript, Redox variations in HSDP2

X-ray Fluorescence Imaging Following Synchrotron Beam Excitation

V. B. NAUMOV 1, V. A. KOVALENKER 2 and V. L. RUSINOV 2

NEW CORRECTION PROCEDURE FOR X-RAY SPECTROSCOPIC FLUORESCENCE DATA: SIMULATIONS AND EXPERIMENT

EDS User School. Principles of Electron Beam Microanalysis

Q. WANG, Q-K. XIA, S. Y. O REILLY, W. L. GRIFFIN, E. E. BEYER AND H. K. BRUECKNER

Vacuum ultraviolet 5d-4f luminescence of Gd 3+ and Lu 3+ ions in fluoride matrices

Chemistry Instrumental Analysis Lecture 19 Chapter 12. Chem 4631

PETROGENESIS OF A SERIES OF MAFIC SHEETS WITHIN THE VINALHAVEN PLUTON, VINALHAVEN ISLAND, MAINE

Small-Angle X-ray Scattering (SAXS)/X-ray Absorption Near Edge Spectroscopy (XANES).

X-ray Absorption Spectroscopy

Visualizing Earth Science. Chapter Overview. Volcanoes and Eruption Types. By Z. Merali and B. F. Skinner. Chapter 9 Volcanism and Other

How Does It All Work? A Summary of the IDEAS Beamline at the Canadian Light Source

Electron Microprobe Analysis 1 Nilanjan Chatterjee, Ph.D. Principal Research Scientist

Electron Microprobe Analysis 1 Nilanjan Chatterjee, Ph.D. Principal Research Scientist

Chemistry of SO 2 in tropospheric volcanic plumes

OXEA - Online Elemental Analyzer

Supporting Information

AXP Research group Analytical X-ray Physics

Dynamic weakening of ring faults and catastrophic caldera collapse

Figure 2. Location map of Himalayan Mountains and the Tibetan Plateau (from Searle et al., 1997).

Supplemental Information. I. Alternative version of Figure 1. II. Sample Preparation

Supplementary Information for: Giant Kiruna-type deposits form by. efficient flotation of magmatic magnetite suspensions

Determination of the Halogen Elements in the Deep UV Region of the Spectrum by ICP - OES

GSA DATA REPOSITORY Swanson et al.

NATURAL CLIMATIC FORCING Part II

SUPPLEMENTARY INFORMATION. Demonstration of Feasibility of X-Ray Free Electron Laser Studies of Dynamics of Nanoparticles in Entangled Polymer Melts

EXAFS. Extended X-ray Absorption Fine Structure

FUNDAMENTAL PARAMETERS ANALYSIS OF ROHS ELEMENTS IN PLASTICS

SUPPLEMENTARY INFORMATION

ttp://news.discovery.com/earth/iceland-volcano-aurora.html

Lecture 6 - Igneous Rocks and Volcanoes

SR Allen, RS Fiske, Y Tamura Sumisu methods

Part A GEOLOGY 12 CHAPTER 4 WORKSHEET VOLCANOES. Name

Massachusetts Institute of Technology. Dr. Nilanjan Chatterjee

Supporting Online Material for

AH Chemistry Unit 1. Electromagnetic Radiation and Atomic Spectra

Technical Note: Calculation of stoichiometry from EMP data for apatite and other phases with

The years BP Laacher See eruption: estimation of volatile yields and simulation of their fate in the plume

Introduction to XAFS. Grant Bunker Associate Professor, Physics Illinois Institute of Technology. Revised 4/11/97

Recent Climate History - The Instrumental Era.

Semiconductor X-Ray Detectors. Tobias Eggert Ketek GmbH

BCIT Fall Chem Exam #1

Latest advances in identifying mineral composition variation by the M4 TORNADO AMICS

GSA Data Repository

X-ray absorption. 4. Prove that / = f(z 3.12 ) applies.

EUV Reflectivity measurements on Acktar Sample Magic Black

Ultraviolet-Visible Spectroscopy

An Introduction to XAFS

Halogen and argon evidence of Martian hydrous fluids in nakhlite meteorites Ray Burgess

Spectroscopic techniques: why, when, where,and how Dr. Roberto GIANGIACOMO

What is stoichiometry? It comes from the Greek word stoicheion, which means element, and metron, meaning measure.

Advanced Lab Course. X-Ray Photoelectron Spectroscopy 1 INTRODUCTION 1 2 BASICS 1 3 EXPERIMENT Qualitative analysis Chemical Shifts 7

Unit 5 - Energetics. Exo vs Endo, Enthalpy, Hess s Law, Born-Haber, Entropy, Spontaneity (Gibbs Free Energy)

ARTICLE IN PRESS. Received 1 February 2005; received in revised form 14 June 2005; accepted 20 June 2005

The HERMES Dual-Radiator Ring Imaging Cerenkov Detector N.Akopov et al., Nucl. Instrum. Meth. A479 (2002) 511

Thursday Nov 6 th SIT WITH YOUR GROUP TODAY Topic # 11 Natural Climatic Forcing Part II ANNOUNCEMENTS

Kent and Cooper, 2018, How well do zircons record the thermal evolution of magmatic systems?: Geology,

Improvements for Absorption Spectroscopy at Beamlines A1, E4, X1

Supplementary information

ClO + O -> Cl + O 2 Net: O 3 + O -> O 2 + O 2

Spectroscopy. Page 1 of 8 L.Pillay (2012)

Supporting Information s for

Spectroscopy on Mars!

3.2 Ga detrital uraninite in the Witwatersrand Basin, South. Africa: Evidence of a reducing Archean atmosphere

Transcription:

GSA DATA REPOSITORY 2013192 S. Kutterolf et al. Supplementary Information Analytics Table DR1: Summary of Nicaraguan tephra properties. Eruption ages and erupted magma masses from Kutterolf et al. (2007, 2008). Maximum measured bromine and chlorine contents in melt inclusions are best approximated by pre-eruptive concentrations. The standard deviation around the mean Br content shows the range in melt inclusion data. The percentage of bromine portioned into a fluid phase is determined as the difference between the most undegassed to most degassed melt inclusion. The masses of bromine and chlorine degassed during each eruption are the difference between maximum inclusion and average matrix glass concentrations multiplied by erupted magma mass. Bromine, chlorine and EESC concentrations added to the stratosphere by these eruptions are calculated using the parameters given below the Table DR1. The bottom row of Table DR2 shows average values ignoring the exceptionally large Upper Apoyo eruption. 1

Table DR1: Summary of Nicaraguan tephra properties. Tephra Age Erupted magma mass Eruption column height * Maximum Br content in melt inclusions Std. deviation of single points Max. Br partitioning into fluid phase Average Br Degassed content in mass of matrix glass Br Maximum Cl content in melt inclusions Average Cl Degassed content in mass of matrix glass Cl Br concentration added to stratosphere Cl concentration added to stratosphere EESC added to stratosphere [ka] [kg] [km] [ppm] [%] [%] [ppm] [kg] [ppm] [ppm] [kg] [ppt ] [% rel.] [ppt ] [% rel.] [ppt ] [% rel.] Cosigüina 1835 0.18 1.15E+12 17 12.2 25 28.0 1.2 1.26E+07 3308 2868 5.06E+08 0.6 10 53 10 87 10 Masaya Tuff 1.7 4.93E+12 21 5.7 27 6.5 1.1 2.27E+07 2580 961 7.99E+09 1.0 17 833 152 896 100 Chiltepe Tephra 1.8 2.18E+13 39 7.0 20 37.2 1.2 1.25E+08 4739 3302 3.13E+10 5.7 95 3263 593 3606 401 Masaya Triple Layer 2.1 4.77E+12 25 1.9 15 48.8 0.6 6.15E+06 1800 638 5.54E+09 0.3 5 578 105 595 66 Mateare Tephra c. 4 1.02E+12 15 12.4 32 19.6 1.5 1.11E+07 4124 1574 1.27E+09 0.5 8 133 24 163 18 San Antonio Tephra 6 2.43E+13 27 3.1 na 0.8 5.59E+07 1470 1082 9.44E+09 2.6 43 985 179 1138 126 Xiloa Tephra 6.1 9.12E+11 24 10.0 23 31.3 1.2 8.03E+06 4316 3315 9.13E+08 0.4 6 95 17 117 13 Upper Apoyeque Tephra 12.4 3.66E+12 28 5.8 na 1.2 1.67E+07 5410 2972 8.91E+09 0.8 13 930 169 976 108 Lower Apoyeque Tephra 17 5.39E+12 24 6.1 7 81.7 1.2 2.63E+07 4851 3344 8.13E+09 1.2 20 848 154 920 102 Upper Ometepe Tephra 19 4.24E+12 26 11.8 5 90.3 0.7 4.74E+07 2781 2280 2.12E+09 2.2 36 222 40 352 39 Upper Apoyo Tephra 24.5 7.14E+13 35 9.1 22 22.7 0.7 6.02E+08 4104 2612 1.07E+11 27.5 459 11119 2022 12770 1419 Lower Apoyo Tephra 25 6.00E+12 32 3.5 17 1.1 1.51E+07 4823 2525 1.38E+10 0.7 12 1439 262 1480 164 Fontana Tephra 60 2.89E+12 29 2.3 na 0.8 4.33E+06 1400 1014 1.11E+09 0.2 3 116 21 128 14 Unicit Tephra c. 70 3.75E+11 22 11.7 35 30.0 1.2 3.92E+06 3282 2971 1.17E+08 0.2 3 12 2 23 3 Averages with Upper Apoyo Tephra: 6.84E+07 1.41E+10 3.13 52 1473 268 1661 185 Averages ignoring Upper Apoyo Tephra 2.73E+07 7.01E+09 1.25 21 731 133 806 90 Assumptions: 10 wt% of emitted halogens reach the stratosphere; stratosphere has 2.7 10 19 moles, i.e. 15% of 1.8 10 20 moles of total atmosphere. Pre-industrial stratosphere concentrations approximated as: Br = 6 ppt, Cl = 550 ppt, EESC = 900 ppt (cf. 19). *Column heights are from Kutterolf et al. (2007) Brom partitioning is calculated assuming maximum bromine concentration from the inclusions of one sample as initial bromine content (100%) and minimum bromine content in the inclusions as most Br-depleted magma due to partitioning into the fluid phase. 2

Chlorine and major volcanic elements (Tables DR1 and DR4) have been determined using a JEOL JXA 8200 electron microprobe (EMP) at the GEOMAR in Kiel (Germany), using setups described in Kutterolf et al. (2011). Bromine in melt inclusions and matrix glasses of the tephras were analyzed with synchrotron radiation induced X-ray fluorescence analysis at beamline L, at the storage ring DORIS III at HASYLAB, Deutsches-Elektronen Synchrotron (DESY) in Hamburg, Germany. For the bromine measurements, the spatial resolution is controlled by beam size and geometry of the sample because the primary X-ray beam penetrates deep into the sample, in contrast to ion probe and electron microprobe, where only the uppermost volume of a sample at the surface is analyzed. We use doubly polished thin sections (thickness: 30-100 µm) for the analysis of inclusions and host minerals. Capillaries were used to focus the X-ray spot to values between typically 10 to 40 µm, values which approximate the sample thickness. Two point measurements were performed per analyzed inclusion: one measurement resulting in a combined spectrum of host mineral and melt inclusion and a second measurement that records only the spectra of the host mineral. Bromine concentrations were first calculated for the host mineral and then calculated for the melt inclusion, taking into account the geometry of the inclusion, major element compositions and the densities of host minerals and inclusion glasses. Bromine concentrations are based on external calibration to measurements of reference samples performed within the same experimental session (121 measurements in total). Reference samples comprised glasses with Br contents between 1.2 and 18 ppm (Table DR2) leading to the calibration line shown in Figure 1 Supplement and the resulting equation Br sample (ppm) = 0.0059121*x 0.5, where x is the normalized peak area. This allows to calculate the bromine concentration for each measurement. The observed accuracy for bromine contents in reference samples was better than 15% at concentrations levels between 1.2 18 ppm, with higher values close to the lower limits of detection (Figure 1 Supplement). In contrast to homogeneous matrix glasses, determination of Br contents in melt inclusions is additionally affected by the uncertainty in measuring the inclusion thickness optically, which adds an error of < 9%. During the course of the study, different excitation conditions were applied. Initially, measurements were made with polychromatic excitation conditions and an energy-dispersive Si(Li) detector (Fig. DR2), which is optimized to detect fluorescence at high energies, but the lower limits of detection for Br were found to be as high as 1.1 ppm for Fe-poor samples such as MPI-DING reference material ATHO-G, and more than 3 ppm in Fe-rich samples such as MPI-DING reference ML3B-G due to the high scattering background when using polychromatic excitation. In order to improve the detection limits for the samples that showed Br concentrations at or below lower limits of detection, analytical conditions were optimized for Fe-rich materials. Instead of polychromatic excitation, a quasi-monochromatic beam provided by a broad bandpass multilayer (ΔE/E = 2%, i.e., pink beam ) has been used (Fig. DR2). This reduces the scatter contribution and improves the signal to noise ratios. The excitation energy was selected with a double multilayer monochromator and set to 15 kev, i.e., slightly above the binding energy of the Br K-shell electrons to optimize detection of bromine by X-ray fluorescence. In this case, an energy-dispersive SDD detector is suitable to detect the fluorescence radiation because the maximum photon energy is then below 15 kev and not as high as 50 kev as in case of polychromatic excitation. To avoid detector overload by Fe fluorescence and the formation of pile-up peaks, a 0.18 mm thick Al absorber was 3

placed between sample and detector. This resulted in a reduction of Fe-K fluorescence recorded in the detector to values below 1% at a transmission > 45% for Br fluorescence (Figure 2 Supplement). The optimised set-up resulted in lower limits of detection for bromine of 0.3 ppm and 0.18 ppm in the MPI-DING reference glasses ML3B-G and ATHO-G, respectively. In the thin reference samples used in this study, lower limits of detection are less than 0.05 ppm for acquisition times of 300 sec. Table DR2: Reference samples with values for thickness, density and Br concentrations. Average peak areas result from 121 point measurements taken during area scans with acquisition times of 300 sec/point over the entire term of the analysis. Errors are given for the area scan deviations and the peak area estimation. The peak areas were normalised to sample time, thickness and density and then used for a calibration line for Br. Reference Peak area average Error [%] Concentration [ppm] Thickness [µm] Density [g/cm 3 ] Peak area normalised Error [%] KN18 37036 5.6 25 2.2 675 0.87 PN2-3 19164 6.8 1.4 25 2.7 284 1.14 A46 19351 6.7 1.2 29 2.5 267 1.14 CFA47 45319 11.8 4.6 20 2.4 944 1.1 KANKR 97106 13.0 18 13 2.4 3112 3.9 4

Figure DR1. Br concentrations vs. average normalised peak area of reference samples as shown in Table S1. The calibration line has been used to calculate the Br concentrations in the samples (y (ppm) = 0.0059121*x 0.5). 5

Figure DR2. Demonstration of the improvement of experimental set-up for samples with low Br contents: Br is not detectable in the reference glass ML3B-G with polychromatic excitation conditions (top). With the pink beam, lower limits of detection are significantly improved and Br is detectable in the glass. However, Br detection is hampered by the formation of Fe pile-up peaks in Fe-rich samples. This negative effect can be ruled out by the use of a 0.18 mm thick Al foil placed between sample and detector (sample thickness: 100 µm; Br concentration: 3 ppm). Atmospheric Assumptions We use the assumptions that have also been used in the WMO ozone assessements and in publications by Textor et al. (2003) like it is dicussed in the main text. For the estimations how stratospheric halogen contents are affected by additional volanic halogen emission we assume that 10% of emitted halogens reach the stratosphere (all eruption column heights >15 km) 6

(Textor et al. 2003). For calculations of atmospheric halogen load due to volcanic eruptions to the global stratosphere we used published accepted values after Jacob (1999). Accordingly, the stratosphere has 2.7 10 19 mol halogen, which is 15% of 1.8 10 20 mol of the total atmosphere. Since anthropogenic emissions of bromine decreased from 65 kt/yr in 1985-1990 to 37 kt/yr in 2008, while chlorine decreased from 1291 to 343 kt/yr over the same time period (Montzka et al., 2011) present day stratospheric halogen loading becomes more and more pre-industrial like where the stratospheric concentration in 1980 are given as a fixpoint since then stratospheric measurements of halogens become continously. Those pre-industrial stratosphere concentrations are approximated as: Br = 6 ppt, Cl = 550 ppt, EESC = 900 ppt refering to chapter 1 of the WMO ozone assessment (Montzka et al. 2011) Individual Measurements Table DR3: (see next page) Results for the individual measurements. Major elements and chlorine data stem from same inclusion like the bromine measurements if exposed on surface. If bromine measurement is from inside the crystal alternative surficial melt inclusion from same crystal has been taken (+) or an average from at least 5 different melt inclusions of the same sample (#) are used. (*) Bromine concentrations of matrix glasses are estimated to be the same like comparable measurements from chemical similar tephras from the same or nearby volcanic complex. Error of thickness determination is given in % and represents 1 µm accuracy. The combined maximum possible bromine concentration error results from the maximum possible analytical error (<15%) and the respective uncertainty in inclusion thickness per inclusion measurement. References supplement: Kutterolf, S., Freundt, A., and Peréz, W., 2008, The Pacific offshore record of Plinian arc volcanism in Central America, part 2: Tephra volumes and erupted masses: Geochem. Geophys. Geosys., v. 9, no. 2, p. doi:10.1029/2007gc001791. Kutterolf, S., Freundt, A., Peréz, W., Wehrmann, H., and Schmincke, H.-U., 2007, Late Pleistocene to Holocene temporal succession and magnitudes of highly-explosive volcanic eruptions in west-central Nicaragua: J. Volc. Geo. Res., v. 163, p. 55-82. Kutterolf S, Freundt A, & Burkert C (2011) Eruptive history and magmatic evolution of the 1.9 ka Plinian dacitic Chiltepe Tephra from Apoyeque volcano in west-central Nicaragua, Bull Volc. 73, 811-831, doi: 10.1007/s00445-011-0457 Textor C, Graf HF, Herzog M, & Oberhuber JM (2003) Injection of gases into the stratosphere by explosive volcanic eruptions. J. Geophys. Res. 108(4606), doi:10.1029/2002jd002987 (2003). Jacob DJ (1999) Introduction to Atmospheric Chemistry. 267 (Princeton University Press, 1999) Montzka, S., Reimann, S., O Doherty, S., Engel, A., Krüger, K., Sturges, W. T., and Authors), C. L., 2011, Ozone-Depleting Substances (ODSs) and Related Chemicals, Chapter 1. 7

Table DR3 Lith. Unit sample name type sample thickness [µm] thickness surface-top inclusion/gl inclusion [µm] s [µm] bottom inclusionbottom Na 2O [wt%]; sample error 1µm [%] normed to [µm] 100% P 2O 5 [wt%]; normed to 100% FeO [wt%]; SiO 2 [wt%]; normed to normed to 100% 100% CaO [wt%]; normed to 100% MgO [wt%]; K 2O [wt%]; normed to normed to 100% 100% MnO [wt%]; Al 2O 3 [wt%]; normed to normed to 100% 100% TiO 2 [wt%]; normed to 100% measured total [wt%] Br [ppm] combined analytical Br matrix (<15%) and Cl [ppm] Cl/Br Br/K delta Br glass average thickness error [ppm] Upper Ometepe Tephra UOT* N344a-2 inc 40 0 22 18 4.55 4.83 0.1 2.28 69.82 2.31 0.63 2.85 0.13 16.7 0.35 92.49 10.75 2.1 2624 244 3.77 0.7* 10.1 UOT* N344a-3 inc(1) 40 0 18 22 5.56 4.69 0.1 2.22 70.66 2.14 0.56 2.89 0.17 16.24 0.34 92.39 11.84 2.43 2352 199 4.1 0.7* 11.19 UOT* N344a-3 inc(2) 40 0 14 26 7.14 4.63 0.12 2.03 70.75 2.24 0.56 2.89 0.11 16.36 0.31 91.81 11.09 2.45 2384 215 3.84 0.7* 10.44 Lower Apoyo Tephra LAT N442-1 inc(1) 50 0 24 26 4.17 3.08 0.01 1.45 77.03 1.65 0.29 2.86 0.06 13.35 0.22 93.79 1.87 0.36 2453 1309 0.66 1 0.87 LAT N442-1+ inc(2) 50 26 16 8 6.25 3.08 0.01 1.45 77.03 1.65 0.29 2.86 0.06 13.35 0.22 93.79 2.06 0.44 2453 1192 0.72 1 1.06 LAT N442-1+ inc(2) 50 26 16 8 6.25 3.08 0.01 1.45 77.03 1.65 0.29 2.86 0.06 13.35 0.22 93.79 1.94 0.41 2453 1263 0.68 1 0.94 LAT N442-2+ inc (1) 50 8 20 24 5 4.05 0.04 2.24 74.19 1.87 0.45 2.96 0.12 13.69 0.39 92.1 2.35 0.47 2186 929 0.79 1 1.35 LAT N442-2+ inc(2) 50 30 20 0 5 4.05 0.04 2.24 74.19 1.87 0.45 2.96 0.12 13.69 0.39 92.1 1.98 0.4 2186 1103 0.67 1 0.98 LAT N442-2 inc(3) 50 0 26 24 3.85 4.05 0.04 2.24 74.19 1.87 0.45 2.96 0.12 13.69 0.39 92.1 3.31 0.62 2186 660 1.12 1 2.31 LAT N442-4# inc(1) 50 12 33 5 3.03 4 0.04 2.13 74.08 1.98 0.34 3.07 0.12 13.91 0.33 92.1 3.52 0.63 2713 771 1.15 1 2.52 LAT N442-4# inc(2) 50 12 36 2 2.78 4 0.04 2.13 74.08 1.98 0.34 3.07 0.12 13.91 0.33 92.1 2.67 0.47 2713 1017 0.87 1 1.67 LAT N442-5 inc(3) 50 0 20 30 5 3.32 0.03 2.35 74.43 2.82 1.03 2.63 0.12 13.04 0.23 93.88 2.1 0.42 2353 1120 0.8 1 1.1 LAT N333-a# inc 75 64 11 0 9.09 3.53 0.01 1.65 75.71 1.71 0.27 2.78 0.17 13.89 0.29 93.21 3.41 0.82 2854 837 1.23 1 2.41 LAT N333-b# inc 75 54 14 7 7.14 3.37 0.07 1.66 76.21 1.51 0.32 2.85 0.16 13.59 0.25 92.99 3.47 0.77 2962 854 1.22 1 2.47 LAT N442-3 gls 50 50 0 3.93 0.04 1.78 75.65 1.84 0.32 2.7 0.06 13.4 0.27 95.4 1 0.15 2112 2112 0.37 Upper Apoyo Tephra UAT N450-5 inc(1)+ 50 15 30 5 3.33 3.42 0.07 1.63 75.84 1.79 0.37 2.75 0.03 13.81 0.3 92.42 5.86 1.07 2613 446 2.13 0.65 5.2 UAT N450-5 inc(1)+ 50 15 30 5 3.33 3.42 0.07 1.63 75.84 1.79 0.37 2.75 0.03 13.81 0.3 92.42 5.82 1.07 2613 449 2.12 0.65 5.16 UAT N450-5 inc(2) 50 0 24 26 4.17 3.42 0.07 1.63 75.84 1.79 0.37 2.75 0.03 13.81 0.3 92.42 6.98 1.34 2613 374 2.54 0.65 6.33 UAT N450-5 inc(3)+ 50 10 20 20 5 3.42 0.07 1.63 75.84 1.79 0.37 2.75 0.03 13.81 0.3 92.42 5.65 1.13 2613 463 2.05 0.65 4.99 UAT N450-1 inc(1) 44 0 18 26 5.56 3.77 0 2.03 74.89 1.66 0.29 2.92 0.18 14.03 0.22 90.45 8.88 1.83 2587 291 3.04 0.65 8.23 UAT N450-1 inc(1) 44 0 18 26 5.56 3.77 0 2.03 74.89 1.66 0.29 2.92 0.18 14.03 0.22 90.45 9.09 1.87 2587 285 3.11 0.65 8.43 UAT N450-3 inc(2) 44 0 16 28 6.25 3.48 0.08 2.3 75.27 1.68 0.26 2.83 0.1 13.74 0.25 91.44 4.76 1.01 2261 475 1.68 0.65 4.11 UAT N450-3 inc(3)+ 44 5 21 18 4.76 3.48 0.08 2.3 75.27 1.68 0.26 2.83 0.1 13.74 0.25 91.44 6.53 1.29 2261 346 2.31 0.65 5.88 UAT N450-4 inc(1) 50 0 28 22 3.57 3.38 0.02 1.43 76.65 1.62 0.29 2.84 0.08 13.42 0.27 93.67 2.57 0.48 2258 878 0.91 0.65 1.92 UAT N450-6 gls 50 50 0 4.23 0.05 2.03 74.7 1.79 0.39 2.84 0.07 13.57 0.34 95.8 0.73 0.11 2038 2775 0.26 UAT N450-6 gls 50 50 0 4.23 0.05 2.03 74.7 1.79 0.39 2.84 0.07 13.57 0.34 95.8 0.87 0.13 2038 2337 0.31 UAT N450-3 gls 50 50 0 4.08 0.03 2.02 74.97 1.75 0.39 2.83 0.08 13.47 0.38 96.45 0.96 0.14 2062 2147 0.34 UAT N450-3 gls 50 50 0 4.08 0.03 2.02 74.97 1.75 0.39 2.83 0.08 13.47 0.38 96.45 0.05 0.01 2062 41240 0.02 Chiltepe Tephra CT N562-1+ inc(1) 32 2 20 10 5 3.61 0.08 3.16 73.35 2.43 0.54 2.32 0.15 14.06 0.29 90.37 3.37 0.67 2944 873 1.45 1.23 2.15 CT N562-1+ inc(2) 32 2 25 5 4 3.61 0.08 3.16 73.35 2.43 0.54 2.32 0.15 14.06 0.29 90.37 5.01 0.95 2944 588 2.16 1.23 3.78 CT N562-2+ inc 32 12 20 0 5 3.83 0.08 3.13 73.3 2.2 0.45 2.48 0.1 14.13 0.3 90.14 6.99 1.4 3037 435 2.81 1.23 5.76 CT N562-2+ inc 32 12 20 0 5 3.83 0.08 3.13 73.3 2.2 0.45 2.48 0.1 14.13 0.3 90.14 6.85 1.37 3037 443 2.76 1.23 5.62 CT N562-4# inc 32 2 20 10 5 3.55 0.01 2.5 72.42 2.86 0.61 2.49 0.21 14.96 0.39 90.9 5.79 1.16 3184 550 2.33 1.23 4.56 CT N562-4# inc 32 2 20 10 5 3.55 0.01 2.5 72.42 2.86 0.61 2.49 0.21 14.96 0.39 90.9 6.83 1.37 3184 466 2.75 1.23 5.6 CT N241-a inc 70 0 20 50 5 3.31 0.11 2.74 73.56 2.22 0.64 2.44 0.11 14.48 0.38 91.76 4.76 0.95 2998 630 1.95 1.23 3.53 CT N562-5 gls 25 25 0 4.09 0.04 2.4 73.1 2.77 0.51 2.41 0.11 14.29 0.32 94.63 2.13 0.32 2940 1380 0.88 CT N562-6 gls 25 25 0 4.24 0.06 2.31 73.01 2.53 0.6 2.39 0.15 14.26 0.44 96.3 0.22 0.03 2397 10895 0.09 CT N562-7 gls 25 25 0 3.58 0.04 2.39 73.47 2.66 0.59 2.4 0.07 14.18 0.61 98.49 1.33 0.2 2803 2108 0.56 Xiloa Tephra XT* N260-3 inc(1) 44 0 34 10 2.94 3.48 0.07 3.46 71.73 2.68 0.55 2.14 0.24 15.29 0.37 94.9 10.03 1.8 3031 302 4.69 1.2* 8.8 XT* N260-3 inc(2) 48 0 34 14 2.94 3.59 0.07 3.76 72.76 2.45 0.49 2.18 0.1 14.28 0.32 91.11 5.79 1.04 2908 502 2.65 1.2* 4.57 XT* N260-4 inc(1) 44 0 24 20 4.17 3.35 0.06 3.57 71.86 2.68 0.53 2.11 0.24 15.22 0.37 94.68 3.98 0.76 3054 768 1.88 1.2* 2.75 XT* N260-4+ inc(2) 44 18 20 10 5 3.59 0.04 3.16 72.66 2.28 0.6 2.4 0.2 14.78 0.3 93.81 5.34 1.07 2875 539 2.23 1.2* 4.11 XT* N260-4+ inc(2) 44 18 20 10 5 3.59 0.04 3.16 72.66 2.28 0.6 2.4 0.2 14.78 0.3 93.81 5.22 1.04 2875 551 2.18 1.2* 3.99 XT* N259 inc 70 0 14 56 7.14 3.18 0.08 3.55 72.47 2.66 0.45 2.28 0.11 14.8 0.42 5.97 1.32 2947 493 2.62 1.2* 4.74 Mateare Tephra MaT N250-2 inc(3) 44 0 22 22 4.55 3.75 0.21 4 67.76 4.03 1.41 2.02 0.11 16.44 0.27 92.33 12.37 2.42 2552 206 6.11 1.5 10.86 MaT N250-4 inc(1) 44 0 18 26 5.56 4.5 0.25 5.7 66.02 4.01 1.28 1.91 0.18 15.53 0.63 94.27 11.63 2.39 2650 228 6.09 1.5 10.13 MaT N250-4 inc(1) 44 0 18 26 5.56 4.5 0.25 5.7 66.02 4.01 1.28 1.91 0.18 15.53 0.63 94.27 10.3 2.12 2650 257 5.4 1.5 8.8 MaT N250-4 inc(2) 44 0 22 22 4.55 4.64 0.28 5.57 65.36 4.34 1.28 1.93 0.22 15.68 0.7 92.32 4.94 0.97 2533 513 2.56 1.5 3.44 MaT N250-5 inc 44 0 18 26 5.56 4.36 0.25 5.5 66.38 3.96 1.28 1.9 0.2 15.51 0.66 93.54 3.63 0.75 2614 721 1.91 1.5 2.12 MaT N250-a+ inc(1) 80 46 14 20 7.14 3.04 0.06 3.94 67.62 3.56 1.21 1.86 0.12 14.95 0.46 90.25 2.59 0.57 2381 918 1.39 1.5 1.09 MaT N250-a+ inc(2) 80 40 14 26 7.14 4.29 0.24 4.82 67.04 4 1.51 1.84 0.18 15.84 0.81 94.08 2.51 0.56 2201 878 1.36 1.5 1 MaT N255-b# inc 70 16 24 30 4.17 4.07 0.12 3.75 64.71 5.76 1.15 1.73 0.14 17.36 0.76 92.78 11.48 2.2 2551 222 6.63 1.5 9.98 Mat N250-1 gls 22 22 0 4.5 0.25 5.7 66.02 4.01 1.28 1.91 0.18 15.53 0.63 94.27 1.5 0.23 2180 1450 0.79 1835 Cosiqüina eruption 1835 N402-2 inc(1) 36 0 22 14 4.55 3.94 0.24 7.48 60.82 5.86 2.66 1.65 0.22 16.22 0.9 94.88 6.92 1.35 1945 281 4.18 1.2 5.72 1835 N402-2 inc(1) 36 0 22 14 4.55 3.94 0.24 7.48 60.82 5.86 2.66 1.65 0.22 16.22 0.9 94.88 4.28 0.84 1945 454 2.59 1.2 3.08 1835 N402-3+ inc(2) 36 16 14 6 7.14 3.85 0.33 7.63 61.54 5.8 2.41 1.57 0.18 15.76 0.93 97.08 10.17 2.25 1900 187 6.5 1.2 8.97 1835 N402-3+ inc(2) 36 16 14 6 7.14 3.85 0.33 7.63 61.54 5.8 2.41 1.57 0.18 15.76 0.93 97.08 8.6 1.9 1900 221 5.49 1.2 7.43 1835 N402-5+ inc 36 12 18 6 5.56 3.81 0.17 7.65 62.19 5.25 2.58 1.89 0.09 15.51 0.86 95.64 12.19 2.51 2078 170 6.44 1.2 10.99 1835 N402-5 gls 36 36 0 4.45 0.19 5.54 67.15 3.83 1.09 2.23 0.13 15.37 0.05 97.26 1.21 0.18 1857 1528 0.54 Unicit Tephra UT* N22-03+ inc(1) 90 14 24 52 4.17 3.18 0.09 2.58 71.48 2.7 0.65 2.63 0.02 14.63 0.29 91.62 4.76 0.91 2740 576 1.81 1.2* 3.53 UT* N22-02+ inc(2) 90 20 14 56 7.14 3.9 0.06 3.35 71.89 2.55 0.79 2.46 0.15 14.43 0.41 93.26 4.37 0.97 2790 638 1.78 1.2* 3.14 UT* N22-01 inc 90 0 20 70 5 3.39 0.15 2.71 72.46 2.56 0.56 2.93 0.15 14.68 0.41 92.18 11.68 2.34 2870 246 3.98 1.2* 10.45 UT* N22-a inc 90 0 12 78 8.33 3.27 0.14 2.62 72 2.47 0.54 2.83 0.14 14.18 0.39 91.9 7.41 1.73 2680 362 2.62 1.2* 6.18 Lower Apoyeque Tephra Laq* N199-13 inc 80 24 24 32 4.17 3.81 0.04 2.08 74.19 2.14 0.37 2.67 0.03 14.31 0.35 92.14 5.21 1 3510 674 1.95 1.2* 3.98 Laq* N199-15 inc 80 8 18 54 5.56 1.11 0 1.99 77.92 2.05 0.36 3.05 0.11 14.14 0.34 92.93 6.1 1.25 3790 621 2 1.2* 4.88 Laq* N199-02 inc 80 10 20 50 5 3.87 0 2.12 74.73 2.01 0.36 2.89 0.05 13.74 0.22 94.79 5.54 1.11 3500 632 1.92 1.2* 4.32 Masaya Triple Layer MTL W25C6-15 inc 66 0 24 42 4.17 2.59 0.19 14.66 51.94 8.69 4.76 1.73 0.22 13.36 1.86 97.48 1.37 0.26 770 564 0.79 0.57 0.8 MTL W25C6-17 inc 66 0 36 30 2.78 2.89 0.22 15.37 50.59 8.59 5.28 1.54 0.29 13.74 1.5 95.18 1.2 0.21 790 658 0.78 0.57 0.63 MTL W25C6-18 inc(1) 66 4 38 24 2.63 2.89 0.22 15.37 50.59 8.59 5.28 1.54 0.29 13.74 1.5 95.18 1.86 0.33 790 426 1.2 0.57 1.29 MTL W25C6-18 inc(2) 66 8 30 28 3.33 2.89 0.22 15.37 50.59 8.59 5.28 1.54 0.29 13.74 1.5 95.18 1.6 0.29 790 493 1.04 0.57 1.03 MTL W67e15-7b gls 50 50 0 3.13 0.18 13.49 52.05 9.41 4.57 1.27 0.29 14.46 1.16 98.24 0.85 0.13 710 839 0.67 MTL W23b7b-5 gls 64 64 0 2.99 0.18 13.45 52.03 9.06 4.6 1.35 0.26 14.81 1.38 100.49 0.41 0.06 600 1469 0.3 MTL W23b7b-9 gls 64 64 0 2.64 0.21 13.31 51.73 9.47 4.94 1.25 0.34 14.6 1.52 100.92 0.46 0.07 650 1423 0.37 Masaya Tuff MT W31A5d-10 inc 64 0 26 38 3.85 2.42 0.25 12.26 55.98 7.85 3.24 1.77 0.32 14.66 1.25 93.21 1.39 0.26 930 671 0.78 1.09 0.3 MT W28A8f-11+ inc(1) 66 10 24 32 4.17 3.38 0.19 10.48 55.23 8.13 3.31 1.65 0.25 16.54 0.84 94.91 2.54 0.49 1190 469 1.54 1.09 1.45 MT W28A8f-11+ inc(2) 66 30 32 4 3.13 3.38 0.19 10.48 55.23 8.13 3.31 1.65 0.25 16.54 0.84 94.91 3.34 0.61 1230 368 2.03 1.09 2.25 MT W28A8f-15+ inc 66 30 26 10 3.85 2.22 0.11 9.13 56.39 8.61 2.67 1.01 0.15 18.51 1.47 95.52 1.95 0.37 1180 606 1.94 1.09 0.86 MT W28A8f-14+ inc 66 16 30 20 3.33 2.35 0.12 8.87 56.54 8.23 2.31 1.6 0.17 17.23 1.25 91.97 5.69 1.04 1560 274 3.56 1.09 4.6 MT W28A8f-18 inc 66 0 30 36 3.33 2.86 0.19 7.87 53.81 9.97 3.21 1.1 0.19 17.99 1.17 95.52 1.7 0.31 1060 624 1.54 1.09 0.61 MT W28A8f-19+ inc 66 36 20 10 5 2.75 0.21 7.94 53.72 10.88 3.35 1.08 0.21 18.82 1.06 98.84 4.07 0.81 1220 300 3.78 1.09 2.98 MT W31a5d gls 66 66 0 1.76 0.2 14.69 52.81 8.69 5.11 1.43 0.26 13.59 1.45 101.95 1.03 0.15 1180 1149 0.72 MT W31a5d gls 66 66 0 1.76 0.2 14.69 52.81 8.69 5.11 1.43 0.26 13.59 1.45 101.95 1.16 0.17 1070 925 0.81 Fontana Tephra FT* N69-3 inc 70 0 17 53 5.88 2.37 0.29 12.61 54.41 8.12 3.9 1.76 0.28 14.9 1.36 99.77 2.8 0.58 1340 479 1.59 1.09 1.71 San Antonio Tephra SAT W67B6-1b inc 60 0 22 38 4.55 3.37 0.3 12.12 52.41 10.48 2.92 1.37 0.24 15.64 1.16 99.32 3.09 0.6 1470 476 2.25 0.77 2.32 SAT W67B6-1c gls 60 60 1.67 2.48 0.22 13.23 52.61 9.34 4.88 1.25 0.29 14.33 1.38 99.56 1.6 0.27 780 488 1.28 Upper Apoyeque Tephra Uaq* N8-1 inc 55 0 12 43 8.33 3.72 0.4 1.95 74.08 2.36 0.66 2.54 0.03 13.89 0.37 94.3 7.6 1.77 3630 478 2.99 1.2* 6.37 major elements and chlorine data are from same inclusion like the bromine measurements if on surface exposed; otherwise melt inclusion from same crystall (+) or an average from at least 5 different inclusions of the same sample (#) are used *Bromine concentrations of mat glasses are estimated to be the same like the others from the same or nearby volcanic complex error of thickness determination is given in % and represents one µm accuracy. Combined maximum possible bromine concentration error results from the maximum possible analytical error (<15%) and the respective uncertainty in inclusion thickness per inclusion measurement