Pre-Launch Characterization and In-orbit Calibration of GCOM-C/SGLI

Similar documents
GCOM-C/SGLI and its Lunar Calibration

GCOM-C SGLI calibration and characterization. Hiroshi Murakami JAXA/EORC Satellite instrument pre- and post-launch calibration

Keiji Imaoka Earth Observation Research Center (EORC) Japan Aerospace Exploration Agency (JAXA) GSICS/GRWG Meeting Darmstadt, Germany March 25, 2014

Status of GCOM and expectation for microwave scatterometer

generation Global Imager (SGLI)

APPENDIX C OVERVIEW OF THE GLOBAL CHANGE OBSERVATION MISSION (GCOM)

Related missions and programs for Snowfall and Snow Hydrology of JAXA

GOSAT mission schedule

JAXA Earth Observation Satellites and the Validation

Agency Status Reports: JMA and JAXA

Thermal And Near infrared Sensor for carbon Observation (TANSO) onboard the Greenhouse gases Observing SATellite (GOSAT) Research Announcement

MODIS On-orbit Calibration Methodologies

Status of VIIRS Reflective Solar Bands On-orbit Calibration and Performance

Calibration of Ocean Colour Sensors

MERIS US Workshop. Instrument Characterization Overview. Steven Delwart

Landsat-8 Operational Land Imager (OLI) Initial On-Orbit Performance

Thermal And Near infrared Sensor for carbon Observation (TANSO) On board the Greenhouse gases Observing SATellite (GOSAT) Research Announcement

JAXA agency report. Masumi MATSUNAGA Satellite Applications and Operations Center(SAOC), JAXA

Traceability to the GIRO and ROLO

The EarthCARE mission: An active view on aerosols, clouds and radiation

A Comparative Study and Intercalibration Between OSMI and SeaWiFS

GOSAT update. June Prepared by JAXA EORC Presented by David Crisp

GCOM-W1 now on the A-Train

Interpretation of Polar-orbiting Satellite Observations. Atmospheric Instrumentation

Angelika Dehn Rob Koopman 10 Years GOME on ERS-2 Workshop

Sentinel-3 Sea and Land Surface Temperature Radiometer (SLSTR) Mireya Etxaluze (STFC RAL Space)

Atmospheric Lidar The Atmospheric Lidar (ATLID) is a high-spectral resolution lidar and will be the first of its type to be flown in space.

*C. Pan 1, F. Weng 2, T. Beck 2 and S. Ding 3

First Lunar Results from the Moon & Earth Radiation Budget Experiment (MERBE)

Status of S-NPP VIIRS Solar and Lunar Calibration

Mission Objectives and Current Status of GOSAT (IBUKI) Japan Aerospace Exploration Agency Yasushi Horikawa

Lectures 7 and 8: 14, 16 Oct Sea Surface Temperature

MODIS Reflective Solar Bands Calibration Algorithm and On-orbit Performance

Eight Years MOS-IRS Summary of Calibration Activities

The VENμS mission: Earth Observation with High Spatial and Temporal Resolution Capabilities

Project update from JAXA: GCOM-C1/SGLI

VIIRS SDR Cal/Val: S-NPP Update and JPSS-1 Preparations

JAXA s Contributions to the Climate Change Monitoring

GMES: calibration of remote sensing datasets

AN UPDATE OF MICROCARB PROJECT PROGRESS AND PERSPECTIVE.

Status of GCOM-W1 and

Minutes of the First Meeting. of the IOCCG Working Group. L1 Requirements for Ocean-Colour Remote Sensing. April 20-21, 2010

Chapter 4 Nadir looking UV measurement. Part-I: Theory and algorithm

Orbit Design Marcelo Suárez. 6th Science Meeting; Seattle, WA, USA July 2010

Remote Sensing I: Basics

Yi Liu TanSat Science Team

The EarthCARE mission: An active view on aerosols, clouds and radiation

(A)ATSR and SLSTR VIS/SWIR Channels Calibration

OVERVIEW OF THE FIRST SATELLITE OF THE GLOBAL CHANGE OBSERVATION MISSION - WATER (GCOM-W1)

APPENDIX 1 OVERVIEW OF THE GLOBAL CHANGE OBSERVATION MISSION (GCOM)

HICO Science Mission Overview

The Compact Infrared Imager and Radiometer

Overview of Hyperion On-Orbit Instrument Performance, Stability, and Artifacts

MODIS and VIIRS Reflective Solar Bands Calibration, Performance, and Inter-comparison

Operational systems for SST products. Prof. Chris Merchant University of Reading UK

STATUS OF THE FIRST SATELLITE OF THE GLOBAL CHANGE OBSERVATION MISSION - WATER (GCOM-W1)

Vicarious calibration of GLI by global datasets. Calibration 5th Group Hiroshi Murakami (JAXA EORC)

Status of GOCI-II Development

Calibration of MERIS on ENVISAT Status at End of 2002

The Earth Climate Hyperspectral Observatory: Advances in Climate Change Detection, Attribution, and Remote Sensing

Long-term Water Cycle Observation by the Advanced Microwave Scanning Radiometer (AMSR) Series: AMSR-E, AMSR2 and Follow-on

AIRS Level 1b. Tom Pagano AIRS Project Project Manager. Hartmut Aumann AIRS Project Scientist

Meteorological Satellite Image Interpretations, Part III. Acknowledgement: Dr. S. Kidder at Colorado State Univ.

Characterization of the VIIRS Blackbody Emittance

CIRiS: Compact Infrared Radiometer in Space LCPM, August 16, 2017 David Osterman PI, CIRiS Mission

Lecture 4: Radiation Transfer

SCIAMACHY REFLECTANCE AND POLARISATION VALIDATION: SCIAMACHY VERSUS POLDER

ARCHIVED REPORT. Defense Meteorological Satellite Program - Archived 11/2005

NASA's Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission update

Uncertainties in Sentinel-3 Sea and Land Surface Temperature Radiometer Thermal Infrared Calibration

Land Surface Temperature Measurements From the Split Window Channels of the NOAA 7 Advanced Very High Resolution Radiometer John C.

Tracking On-orbit Radiometric Accuracy and Stability of Suomi NPP VIIRS using Extended Low Latitude SNOs

Remote Sensing How we know what we know A Brief Tour

Joint Polar Satellite System. 3 rd Post-EPS User Consultation Workshop Mike Haas

Topics: Visible & Infrared Measurement Principal Radiation and the Planck Function Infrared Radiative Transfer Equation

Long-Term Time Series of Water Vapour Total Columns from GOME, SCIAMACHY and GOME-2

MSG system over view

SCIAMACHY IN-FLIGHT CALIBRATION

REMOTE SENSING TEST!!

Satellite observation of atmospheric dust

Lecture 19: Operational Remote Sensing in Visible, IR, and Microwave Channels

Cross-calibration of Geostationary Satellite Visible-channel Imagers Using the Moon as a Common Reference

Comparison of NASA AIRS and MODIS Land Surface Temperature and Infrared Emissivity Measurements from the EOS AQUA platform

NASA s Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) AVIRIS: PEARL HARBOR, HAWAII

Ocean Colour: Calibration Approach. CEOS WGCV-39, May The International Ocean Colour Coordinating Group

PLANET-C: Venus Climate Orbiter mission from Japan. Takeshi Imamura Japan Aerospace Exploration Agency PLANET-C team

ICE IN THE FAR-IR & DIVINER 3. Far-IR Subteam: Ben Greenhagen, Christopher Edwards, Dan McCleese Additional Contributions: Tim Schofield & Paul Hayne

JAXA Remote Sensing Satellite Missions Utilization for Earth and Environment Observation

SBUV(/2) and SSBUV Solar Irradiance Measurements Matthew DeLand, Richard Cebula, Liang-Kang Huang Science Systems and Applications, Inc.

MODIS on-orbit spatial characterization results using ground measurements

GSICS in CMA. Peng ZHANG, Xiuqing Hu, Ling Sun, Lin Chen, Na Xu, Yuan Li, Chengli Qi, Qiang Guo etc

Reminder: All answers MUST GO ON ANSWER SHEET! Answers recorded in the exam booklet will not count.

Line Parameters and Forward Calculation for Rertrieving Carbon Dioxide and Methane (CO 2 & CH 4 ) from GOSAT Data

Sumi-NPP OMPS Calibration and Characterization from Early Orbit Images

THE GLI 380-NM CHANNEL APPLICATION FOR SATELLITE REMOTE SENSING OF TROPOSPHERIC AEROSOL

OCEAN COLOUR MONITOR ON-BOARD OCEANSAT-2

Preparation for Himawari 8

Extension of the targets for the GOSAT SWIR XCO 2 and XCH 4 retrievals

Absolute Radiance Re-Calibration of FIRST

F O U N D A T I O N A L C O U R S E

Transcription:

Pre-Launch Characterization and In-orbit Calibration of GCOM-C/SGLI IGARSS 2018 July 26, 2018 Japan Aerospace Exploration Agency Yoshihiko Okamura T. Hashiguchi, T. Urabe, K. Tanaka (JAXA) J Yoshida, T Sakashita, and T Amano (NEC)

Contents 1. Overview of GCOM-C satellite and SGLI 2. GCOM-C operation status 3. SGLI pre-launch characterization 4. SGLI in-orbit calibration 5. Summary and future plans IGARSS 2018 @Jul. 26 2018 2

1. Overview of GCOM-C satellite and SGLI (1) Global Change Observation Mission(GCOM) GCOM mission: Long-term observation of the earth s environment Two satellite series; GCOM-W SHIZUKU : Microwave observation for WATER CYCLE using AMSR2 (AMSR-E follow on) GCOM-C SHIKISAI : Optical multi-channel observation for RADIATION BUDGET and CARBON CYCLE using SGLI (GLI follow on) GCOM-W (WATER) AMSR2 GCOM-C (CLIMATE) SGLI GCOM-W was launched on May 18, 2012. GCOM-C was launched on Dec. 23, 2017. Sensor Advanced Microwave Radiometer 2 (AMSR2) Passive Microwave Observation Water vapor, soil moisture etc Sensor Second Generation Global Imager (SGLI) Optical Observation 380nm 12 micron Cloud, Aerosol, Vegetation, Chlorophyll etc IGARSS 2018 @Jul. 26 2018 3

1. Overview of GCOM-C satellite and SGLI (2) GCOM-C satellite SGLI IRS ELU SGLI VNR ELU +Y deep space +X flight direction + Z earth SGLI IRS SRU SGLI VNR SRU SGLI VNR IRS SRU ELU Second Generation Global Imager Visible and Near Infrared Radiometer Infrared Scanning Radiometer Scanning Radiometer Unit Electronic Unit Orbit Parameters Mission Life Orbit Type Local sun time Altitude above equator Inclination GCOM-C sun-synchronous, ground track repeat, nearcircular orbit 10:15 10:45 at descending node 798 km at Equator 98.6 degrees > 5 years IGARSS 2018 @Jul. 26 2018 4

1. Overview of GCOM-C satellite and SGLI (3) SGLI (Second Generation Global Imager) Non Polarized Observation Telescopes (24deg FOV x 3) Solar Diffuser Earth View Window Polarized Observation Telescopes (55deg FOV x2) Sun Cal. Window About 1.4m About 1.3m About 1.7m About 0.6m Deep Space Window Visible and Near Infrared Radiometer (SGLI-VNR) Sensor Unit Infrared Scanning Radiometer (SGLI-IRS) features SGLI VNR SGLI IRS Non Polarized Observation (11ch), IFOV 250m, Swath 1150km Polarized Observation(2ch), IFOV 1km, Swath 1150km Shortwave Infrared (SWI 4ch), IFOV 250m/1km, Swath 1400km Thermal Infrared (TIR:2ch), IFOV 500m, Swath 1400km IGARSS 2018 @Jul. 26 2018 5

1. Overview of GCOM-C satellite and SGLI (4) SGLI specifications The SGLI features are 250m spatial resolution and polarization/along-track slant view channels (VNR-PL), which will improve land, coastal, and aerosol observations. GCOM-C SGLI characteristics Sun-synchronous Orbit (descending local time: 10:30) Altitude 798km, Inclination 98.6deg Mission Life 5 years (3 satellites; total 13 years) Push-broom electric scan (VNR) Scan Wisk-broom mechanical scan (IRS) 1150km cross track (VNR: VN & P) Scan width 1400km cross track (IRS: SW & T) Digitalization 12bit Polarization 3 polarization angles for P Along track Nadir for VN, SW and T, direction +45 deg and -45 deg for P On-board calibration VN: Solar diffuser, LED, Lunar cal maneuvers, and dark current by masked pixels and nighttime obs. SW: Solar diffuser, LED, Lunar, and dark current by deep space window T: Black body and dark current by deep space window CH 250m over the Land or coastal area, and 1km over offshore SGLI channels L std L max SNR at Lstd IFOV VN, P: VN, P, SW: VN, P, SW: nm W/m T: m 2 /sr/ m SNR m T: Kelvin T: NE T VN1 380 10 60 210 250 250 VN2 412 10 75 250 400 250 VN3 443 10 64 400 300 250 VN4 490 10 53 120 400 250 VN5 530 20 41 350 250 250 VN6 565 20 33 90 400 250 Multi-angle VN7 673.5 20 23 62 400 250 obs. for VN8 673.5 20 25 210 250 250 673.5 and VN9 763 12 40 350 1200 250/1000 868.5nm VN10 868.5 20 8 30 400 250 VN11 868.5 20 30 300 200 250 P1 673.5 20 25 250 250 1000 P2 868.5 20 30 300 250 1000 SW1 1050 20 57 248 500 1000 SW2 1380 20 8 103 150 1000 SW3 1630 200 3 50 57 250 SW4 2210 50 1.9 20 211 1000 T1 10.8 0.7 300 340 0.2 250/1000 T2 12.0 0.7 300 340 0.2 250/1000 IGARSS 2018 @Jul. 26 2018 TIR: 500m resolution is also used 6

2. GCOM-C operation status GCOM-C SHIKISAI was successfully launched on Dec. 23 rd, 2017. SGLI checkout operation started on Jan. 1 st, 2018 (VNR and SWIR bands) and on Jan. 22 nd (IRS-TIR bands). SGLI first images were released on Jan. 12 th. http://suzaku.eorc.jaxa.jp/gcom_c/index.html IRS- As a result of the three-month activities for SGLI in-orbit checkout, all the SGLI functions are operating properly and SGLI maintains the predicted performances obtained by the pre-launch characterization tests. We moved on to the nominal operation phase on Mar. 28 th and keep the continuous global observation. SGLI calibration and validation activities have been carrying out towards the SGLI products release to public on Dec. 2018. IGARSS 2018 @Jul. 26 2018 7

2. GCOM-C operation status SHIKISAI (=colorful) Earth Gallery Vegetation distribution of the middle of Japan JAXA Coral reefs in the Bahamas JAXA JAXA Namibia coast and Namib desert IGARSS 2018 @Jul. 26 2018 Morning glow of Kamchatka peninsula JAXA 8

3. SGLI pre-launch characterization (1) SGLI characterization Flow Device/Component Test - Optical components - Detectors - Calibration devices - Electronic components -etc. <VNR> <IRS> NP and PL telescope Test - Radiometric test - Geometric test NP and PL Sub-unit Test - Radiometric test - Geometric test - Thermal vacuum test SGLI Proto-flight Test Initial Performance Test (IPT) - Initial radiometric test - Initial geometric test <IRS> SRU-ELU integration Test SRU Environment Test - Vibration test - Acoustic test - Thermal vacuum test -EMC test Final Performance Test (FPT) - Final radiometric test - Final geometric test <IRS> GCOM-C system Proto-flight Test Initial Performance Test (IPT) Environment Test - Vibration test - Acoustic test - Thermal vacuum test -EMC test Final Performance Test (FPT) End-to-End Test (w/ ground system) Launch-site Final test IGARSS 2018 @Jul. 26 2018 9

3. SGLI pre-launch characterization (2) SGLI Radiometric tests (VNR and IRS-SWIR) Three integrating spheres (ISs) were used for the pre-launch radiometric tests of reflective solar bands (VNR and IRS-SWIR). Barium sulfate IS and Spectralon IS for VNR Spectralon Gold-coated IS for IRS-SWIR Radiometric performances were characterized and satisfied the requirements. SNR, gain, dynamic range, stability, PRNU, linearity etc. IRS-SRU Gold-coated Integrating Sphere [Ref] Hashiguchi et. al. Radiometric performance of Secondgeneration Global Imager (SGLI) using integrating spheres," IGARSS 2018 @Jul. Proc. 26 SPIE 201810000, 1000007 (2016) 10

3. SGLI pre-launch characterization (2) SGLI Radiometric tests (VNR and IRS-SWIR) Traceability scheme from the national standard SGLI IRS VNR SGLI sensors are calibrated by integrating spheres of working standard. Integrating Sphere Gold coated Integrating Sphere Barium sulfate Integrating Sphere Spectralon Integrating Sphere Relative radiance Radiometer Standard Spectral Radiometer SW02 04 SW01 VN06 11 VN01 05 Transfer Radiometer Integrating spheres of working standard are traceable to each FPBB. Zn Cu Pt C Fixed Point Black Body FPBBs of primary standard are traceable to the national standard. National Standard Ref: Hashiguchi et. al. Radiometric performance of Secondgeneration Global Imager (SGLI) using integrating spheres," Proc. SPIE 10000, 1000007 (2016) IGARSS 2018 @Jul. 26 2018 11

3. SGLI pre-launch characterization (3) SGLI Radiometric tests (TIR) Radiometric characterization of thermal infrared (TIR) bands was performed in the thermal-vacuum test using dedicated high emissivity blackbody (BB) instruments; Temperature variable BB on earth view port Cold BB on space view port IGARSS 2018 @Jul. 26 2018 12

3. SGLI pre-launch characterization (4) Pre-launch Calibration summary VNR Center Signal Level Band SNR Wavelength (Spec.) Level Lstd Saturation Ch width at Lstd nm W/m2/str/µm - VN01 379.9 10.6 60 240-241 624-675 VN02 412.3 10.3 75 305-318 786-826 VN03 443.3 10.1 64 457-467 487-531 VN04 490.0 10.3 53 147-150 858-870 NPN VN05 529.7 19.1 41 361-364 457-522 NPL VN06 566.1 19.8 33 95-96 1027-1064 NPR VN07 672.3 22.0 23 69-70 988-1088 VN08 672.4 21.9 25 213-217 537-564 VN09 763.1 11.4 40 351-359 1592-1746 VN10 867.1 20.9 8 37-38 470-510 VN11 867.4 20.8 30 305-306 471-511 60 295 609 PL1 0 672.2 20.6 25 315 707-60 293 614 60 396 646 PL2 0 866.3 20.3 30 424 763-60 400 752 IRS-SWIR Center Signal Level Band SNR Wavelength (Spec.) Level Lstd Saturation Ch width at Lstd µm nm W/m2/str/µm - SW1 1.05 21.1 57 289.2 951.8 SW2 1.39 20.1 8 118.9 347.3 SWIR SW3 1.63 195.0 3 50.6 100.5 SW4 2.21 50.4 1.9 21.7 378.7 IRS-TIR TIR Ch Center Wavelength Signal Level Band Tstd width (Spec.) µm nm K K NEdT at Tstd T1 10.785 756 300 0.08 T2 11.975 759 300 0.13 All the requirements of pre-launch SGLI performances were confirmed to be satisfied. IGARSS 2018 @Jul. 26 2018 13

4. SGLI in-orbit Calibration (1) VNR Calibration concept Deployable Spectralon diffuser is used for both Solar and LED calibration. β angle dependency for solar calibration will be characterized shortly after launch using satellite yaw maneuver. Solar CAL LED CAL Sun Tilt Mechanism NP Tele. Left NP Tele. Center NP Tele. Right Tilt Mechanism NP Tele. Left NP Tele. Center NP Tele. Right LED and Monitor Bench Deployed Spectralon Diffuser Backward Tilting PL telescopes Diffuser Deploy Mechanism with safety function PL telescope IGARSS 2018 @Jul. 26 2018 Tilting Mechanism 14

4. SGLI in-orbit Calibration (2) IRS Calibration concept IRS 81rpm rotating for both Earth Observation and Calibration. Calibration Window Spectralon Diffuser TIR Calibration : Black Body and Deep Space SWI Calibration : Diffused Solar Light, LED/Lamp and Deep Space Light Guide +Z (Earth) SCAN MIRROR Earth Observation +X (Sat. Velocity) +Y (Space) Light Guide Diffused Solar Light Deep Space SCAN MIRROR Light Guide BLACK BODY Halogen Lamp & LED SWI LED assembly ε >0.98 BLACK BODY IGARSS 2018 @Jul. 26 2018 15

4. SGLI in-orbit Calibration (3) VNR & IRS Lunar Calibration overview Moon reflecting solar light is a stable light source as a long term calibration reference of the optical sensors. GCOM-C lunar calibration maneuvers are planned every 29.5 days during 5 years mission. Lunar calibration data is evaluated using the GSICS lunar calibration tool (GIRO). Earth Lunar Observation Moon Calibration interval Lunar phase angle SGLI lunar observation Satellite Maneuver Requirement Every 29.5 days (= synodic period of the moon and the sun) 7deg +/-3deg All bands (VNR & IRS) 250m resolution - Pitch rate of 0.15 deg/s with high stability - Selectable roll angle (lunar image in SGLI swath) Pitch Maneuver Maneuver CT direction: about 29 pixels IGARSS 2018 @Jul. 26 2018 16 AT direction: about 92 lines

4. SGLI in-orbit Calibration (4) Calibration operations Calibration methodology VNR SWIR TIR Calibration Events (*1) Onboard calibrator Solar diffuser Weekly Weekly - 1/10,11,16-18, 26, 2/3, 11, 19, 27, 3/15, 23, 28 Internal lamp Weekly Weekly - Hereafter, every 8 days. Dark image Weekly Weekly - Blackbody - - Every scan - Deep space - Every scan - Calibration maneuver Lunar calibration maneuver Monthly 1/31, 2/1, 3/1, 3/2, 4/1, 4/30, 5/30, 6/28 Solar angle correction maneuver Yearly - 1/4 90-deg. yaw maneuver Yearly - - 2/7, 2/17 Vicarious calibration Cross calibration Continued activities - (*) Except for dedicated checkout condition Several onboard calibration devices and calibration maneuvers have been used for SGLI calibration. Combination of calibration results from different methodologies and sources will provide us with good information for the systematic calibration error. IGARSS 2018 @Jul. 26 2018 17

4. SGLI in-orbit Calibration (5) Noise performances (SNR, NEdT) Preliminary Dark Noise [DN] 1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00 VNR(NP) Dark Noise NPN VN01 VN02 VN03 VN04 VN05 VN06 VN07 VN08 VN09 VN10 VN11 Dark Noise [DN] 1.00 0.80 0.60 0.40 0.20 0.00 VNR(PL) Dark Noise PL Pre launch Post launch_180110 Post launch_180624 m60 pm0 p60 m60 pm0 p60 Pre launch Post launch_180110 NPN Post launch_180624 NPN PL01 PL02 Noise [DN] 1.4 1.2 1 0.8 0.6 0.4 0.2 0 SW1,2,4 Dark Noise (1km resolution) Pre launch Post launch(20180101) Post launch(20180306) NEdT 0.2 0.15 0.1 0.05 0 Spec.: 0.2 K @500m resolution TIR 1 NEdT (250m resolution) Pre launch(@300k) Post launch(@290k) IRS(SWIR) Noise [DN] 3 2.5 2 1.5 1 0.5 0 SW3 Dark Noise (250m resolution) Pre launch Post launch(20180101) Post launch(20180306) IRS(TIR) NEdT 0.2 0.15 0.1 0.05 0 Spec.: 0.2 K @500m resolution TIR 2 NEdT (250m resolution) Pre launch(@300k) Post launch(@290k) SGLI in-orbit noise performances of all bands keep the pre-launch ones and satisfy the SNR and NEdT requirements. IGARSS 2018 @Jul. 26 2018 18

Solar calibration 4. SGLI in-orbit Calibration (6) VNR gain trend LED calibration Preliminary Lunar calibration VN03 (443nm) VN05 (530nm) VN07 (673nm) VN10 (868nm) PD Monitor 865nm 670nm 530nm 412nm 865nm 670nm 530nm 412nm (*) Ratio of SGLI observation to GIRO simulation IGARSS 2018 @Jul. 26 2018 19

4. SGLI in-orbit Calibration (6) VNR gain trend Preliminary 1.1 VNR Solar Cal. trend (20180624 / 20180203) NPL NPN NPL m60 pm0 p60 PDM 1.1 VNR internal Lamp Cal. trend (20180624 / 20180203) NPL NPN NPL m60 pm0 p60 PDM 1.1 VNR Lunar Cal. trend (20180628 / 20180201) NPL NPN NPL m60 pm0 p60 PDM 1 1 1 Calibration Trend 0.9 0.8 Calibration Trend 0.9 0.8 Calibration Trend 0.9 0.8 0.7 0.7 0.7 Solar cal. LED cal. Lunar cal. 0.6 0.6 0.6 350 400 450 500 550 600 650 700 750 800 850 900 350 400 450 500 550 600 650 700 750 800 850 900 350 400 450 500 550 600 650 700 750 800 850 900 Wavelength [nm] Wavelength [nm] Wavelength [nm] Output of VNR shorter wavelength bands is decreasing for Solar and LED cal. On the other hand, output of the lunar calibration is almost constant. In-orbit VNR observation gains itself are stable. (less than +- 1%) Decrease of the Solar and LED calibration output is due to degradation of Spectralon diffuser. (Solar light might be partially illuminated to the stored diffuser around south pole.) IGARSS 2018 @Jul. 26 2018 20

4. SGLI in-orbit Calibration (7) IRS gain trend Preliminary 1.01 SW3 gain trend using LED calibrator SW3 lamp Cal. trend (LED) Ratio to pre launch 1.005 1 0.995 0.99 PIX1 PIX2 PIX3 PIX4 PIX5 PIX6 PIX7 PIX8 PIX9 PIX10 PIX11 PIX12 PIX13 PIX14 PIX15 PIX16 PIX17 PIX18 PIX19 PIX20 Pre launch 2018/1/10 2018/1/14 2018/1/18 2018/2/3 2018/2/11 2018/2/19 2018/2/27 SW1,2,4 gain trend using Halogen lamp (ratio to SW3) Ratio to pre launch SW1 lamp Cal. trend (Halogen lamp, SW3 比 ) 1.01 PIX1 PIX2 PIX3 PIX4 1.005 PIX5 1 0.995 0.99 Ratio to pre launch SW2 lampcal.trend(halogenlamp,sw3 比 ) 1.03 1.02 1.01 1 0.99 Ambient test Due to water vapor PIX1 PIX3 PIX5 PIX2 PIX4 Ratio to pre launch SW4 lamp Cal. trend (Halogen lamp, SW3 比 ) 1.01 PIX1 PIX2 PIX3 PIX4 1.005 PIX5 1 0.995 0.99 SWIR Lunar calibration trend (Ratio of SGLI observation to GIRO simulation) In-orbit SWIR observation gain are stable. (less than +- 1%) IGARSS 2018 @Jul. 26 2018 21

5. Summary and future plans As a result of the three-month checkout activities and preliminary calibration trend, All the SGLI functions are operating properly. SGLI maintains the predicted performances obtained by the pre-launch characterization tests. Calibration and validation activities are ongoing. SGLI scientific products will be released to public on December 2018 via JAXA G-Portal (data distribution system). Level 1 products Level 2 and 3 products (more than 28 scientific products including clouds, aerosols, ocean color, vegetation, snow and ice, and other applications.) IGARSS 2018 @Jul. 26 2018 22

5. Summary and future plans JAXA G-Portal Website https://gportal.jaxa.jp/ IGARSS 2018 @Jul. 26 2018 23

5. Summary and future plans Vegetation distribution of the middle of Japan JAXA Coral reefs in the Bahamas JAXA Please look forward to using SGLI data!! Thank you. JAXA Namibia coast and Namib desert IGARSS 2018 @Jul. 26 2018 Morning glow of Kamchatka peninsula JAXA 24

Acknowledgements SGLI Lunar calibration data was evaluated using the GSICS lunar calibration tool (GIRO: GSICS Implementation of the Robotic Lunar Observatory). The authors would like to thank the GIRO implementation agencies led by EUMETSAT and GSICS lunar calibration community for GIRO usage and technical assistance. IGARSS 2018 @Jul. 26 2018 25