Aerosol. Challenge: Global Warming. Observed warming during 20 th century, Tapio. 1910s. 1950s. 1990s T [Kelvin]

Similar documents
Aerosol & Climate. Direct and Indirect Effects

CHAPTER 8. AEROSOLS 8.1 SOURCES AND SINKS OF AEROSOLS

7. Aerosols and Climate

Aerosols and climate. Rob Wood, Atmospheric Sciences

Aerosols AP sizes AP types Sources Sinks Amount and lifetime Aerosol radiative effects. Aerosols. Trude Storelvmo Aerosols 1 / 21

Short-Term Climate Variability (Ch.15) Volcanos and Climate Other Causes of Holocene Climate Change

What are Aerosols? Suspension of very small solid particles or liquid droplets Radii typically in the range of 10nm to

Implications of Sulfate Aerosols on Clouds, Precipitation and Hydrological Cycle

Recent Climate History - The Instrumental Era.

Assessment Schedule 2017 Earth and Space Science: Demonstrate understanding of processes in the atmosphere system (91414)

The Atmosphere. Characteristics of the Atmosphere. Section 23.1 Objectives. Chapter 23. Chapter 23 Modern Earth Science. Section 1

Aerosols and Climate

Radiation in the atmosphere

Lecture 8. The Holocene and Recent Climate Change

The Atmosphere. All of it. In one hour. Mikael Witte 10/27/2010

Why is it difficult to predict climate? Understanding current scientific challenges

ttp://news.discovery.com/earth/iceland-volcano-aurora.html

The Atmosphere - Chapter Characteristics of the Atmosphere

NATURAL CLIMATIC FORCING Part II

AT 350 EXAM #1 February 21, 2008

2. Fargo, North Dakota receives more snow than Charleston, South Carolina.

FORCING ANTHROPOGENIC

Lecture 2: Global Energy Cycle

Aerosol Basics: Definitions, size distributions, structure

Chapter 14: The Changing Climate

ATOC 3500/CHEM 3152 Week 9, March 8, 2016

EAS1600 Spring 2014 Lab 06 ATMOSPHERIC AEROSOLS

The Atmosphere. Topic 3: Global Cycles and Physical Systems. Topic 3: Global Cycles and Physical Systems. Topic 3: Global Cycles and Physical Systems

Physical and Optical Properties of the Stratospheric Aerosol Layer

Spatial Variability of Aerosol - Cloud Interactions over Indo - Gangetic Basin (IGB)

Introduction to Climate Change

Weather Forecasts and Climate AOSC 200 Tim Canty. Class Web Site: Lecture 27 Dec

Recent anthropogenic increases in SO2 from Asia have minimal impact on stratospheric aerosol

Lecture 3: Global Energy Cycle

General Comments about the Atmospheres of Terrestrial Planets

Outline. Planetary Atmospheres. General Comments about the Atmospheres of Terrestrial Planets. General Comments, continued

Energy Systems, Structures and Processes Essential Standard: Analyze patterns of global climate change over time Learning Objective: Differentiate

Lecture 26. Regional radiative effects due to anthropogenic aerosols. Part 2. Haze and visibility.

1. The frequency of an electromagnetic wave is proportional to its wavelength. a. directly *b. inversely

Attendance Sign-Up Sheet. A L: Light Yellow-Green. M Y: Bright Orange

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds. What is an atmosphere? About 10 km thick

Common Elements: Nitrogen, 78%

The Structure and Motion of the Atmosphere OCEA 101

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds

The Cosmic Perspective Planetary Atmospheres: Earth and the Other Terrestrial Worlds

Stratospheric sulfate geoengineering has limited efficacy and increases tropospheric sulfate burdens

Lecture # 04 January 27, 2010, Wednesday Energy & Radiation

Wrap up of TOPIC # 13 NATURAL CLIMATIC FORCING: Volcanic Eruptions (pp 71-74)

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds

7/5/2018. Global Climate Change

COMPOSITION OF THE ATMOSPHERE

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds. What is an atmosphere? Earth s Atmosphere. Atmospheric Pressure

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds

Unit 3 Review Guide: Atmosphere

2/22/ Atmospheric Characteristics

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds. What is an atmosphere? Planetary Atmospheres

Chapter 4 Lesson 1: Describing Earth s Atmosphere

Climate 1: The Climate System

Astro 1010 Planetary Astronomy Sample Questions for Exam 4

Stratospheric sulfate geoengineering has limited efficacy and increases tropospheric burdens

NATS 101 Section 13: Lecture 32. Paleoclimate

On Stationary state, also called steady state. Lifetimes and spatial scales of variability

Thursday Nov 6 th SIT WITH YOUR GROUP TODAY Topic # 11 Natural Climatic Forcing Part II ANNOUNCEMENTS

XV. Understanding recent climate variability

UKCA_RADAER Aerosol-radiation interactions

Prentice Hall EARTH SCIENCE. Tarbuck Lutgens

Slides partly by Antti Lauri and Hannele Korhonen. Liquid or solid particles suspended in a carrier gas Described by their

Directed Reading. Section: Solar Energy and the Atmosphere RADIATION. identical point on the next wave. waves

Outline. December 14, Applications Scattering. Chemical components. Forward model Radiometry Data retrieval. Applications in remote sensing

Lecture 2: Global Energy Cycle

Solar Flux and Flux Density. Lecture 2: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth

Planetary Temperatures

Climate Variability Natural and Anthropogenic

I T A T I O N H B I T B T V A O C J K M R S A T M O S P H E R E

Earth s Atmosphere About 10 km thick

Direct radiative forcing due to aerosols in Asia during March 2002

2010 Pearson Education, Inc.

Ch22&23 Test. Multiple Choice Identify the choice that best completes the statement or answers the question.

The flux density of solar radiation at the Earth s surface, on a horizontal plane, is comprised of a fraction of direct beam and diffuse radiation

In the space provided, write the letter of the description that best matches the term or phrase. as waves. thermosphere

The Atmosphere and Atmospheric Energy Chapter 3 and 4

Physio-chemical and Optical Characterization of Anthropogenic and Natural Aerosol: Implications for Assessing Global Effects

Today. Events. Terrestrial Planet Atmospheres (continued) Homework DUE. Review next time? Exam next week

Which graph best shows the relationship between intensity of insolation and position on the Earth's surface? A) B) C) D)

Lecture 6: Radiation Transfer. Global Energy Balance. Reflection and Scattering. Atmospheric Influences on Insolation

Lecture 6: Radiation Transfer

Environmental Science Chapter 13 Atmosphere and Climate Change Review

Dust Climate Interactions

Climate Change. April 21, 2009

Aerosol Effects on Water and Ice Clouds

Spectrum of Radiation. Importance of Radiation Transfer. Radiation Intensity and Wavelength. Lecture 3: Atmospheric Radiative Transfer and Climate

Arctic Chemistry And Climate

Hand in Question sheets with answer booklets Calculators allowed Mobile telephones or other devices not allowed

Lecture 3: Atmospheric Radiative Transfer and Climate

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds Pearson Education, Inc.

Name Class Date STUDY GUIDE FOR CONTENT MASTERY

ATM S 111: Global Warming Solar Radiation. Jennifer Fletcher Day 2: June

TOPICS YOU NEED TO KNOW

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Transcription:

Aerosol Challenge: Global Warming 1910s 1950s 1990s 2 1 0 +1 +2 T [Kelvin] Observed warming during 20 th century, Tapio Schneider, J. Climate, 2001 1

Aerosols are liquid or solid particles suspended in the air. They can scatter and absorb both solar and terrestrial radiation. This is called direct radiative forcing. Clouds particles (both liquid and ice) rarely form directly from homogeneous nucleation (the direct formation of clouds from water vapor), but rather are formed on seed aerosol particles (cloud condensation nuclei). Because the chemical and microphysical properties of the aerosol influence both how/when clouds form and the radiative properties of the clouds, aerosols are said to exert an indirect effect. As we have discussed earlier, clouds play a critical role in Earth s climate. The indirect effect will be the topic of the next lecture. The climate science community has identified the forcing by both the direct and indirect effects of aerosol as both important and poorly understood (IPCC 2000). Aerosols range in size from very small clusters only a few nanometers (10-9 m) in diameter to several µm. Aerosol number density range from 10 cm -3 in the lower stratosphere during volcanically quiescent times to 10 3 cm -3 in clean tropospheric air (particularly in the southern hemisphere) to 10 6 cm -3 or more in polluted urban environments. In LA basin, aerosols limit the visibility significantly. Aerosol larger than ~20 µm sediment quickly and thus have a relatively short lifetime. The radiatively important properties of aerosols (both direct and indirect) are determined at the most fundamental level by the composition and size distribution. 2

Figure 11.4 illustrates the size distribution typical of atmospheric aerosol. The number density is dominated by very small particles (10 nm). These very small particles have little mass or surface area and in general do not directly influence climate. The largest contribution to surface area (and thus scattering) come from aerosols with radii between 0.1 and 1 µm. These particles are formed by the coagulation of the smallest particles (this mode is often called the accumulation mode). The mass is often dominated by the largest particles (so-called course mode) with radii near 10 µm. Aerosol in the accumulation mode drive the direct effect of aerosol because they are the most efficient scatterers (and absorbers) and because they have the longest atmospheric lifetime. The lifetime of smaller particles is limited by coagulation while the larger particles are efficiently scavenged to form clouds or sediment to the surface. The majority of the cloud condensation nuclei (CCN) are also in the accumulation mode and so, anthropogenic alteration of the accumulation mode by release of condensates (such as sulfur) can have the largest indirect and direct influence on aerosol forcing (IPCC,2000). One of the most important properties of aerosol with respect to the direct forcing is the ratio of scattering to absorption known as the single scattering albedo: ω o Q sca / Q abs. where Q sca and Q abs are the scattering and absorption extinction coefficients of the aerosol. Q is defined as the ratio of extinction cross section (remember Beer s Law) to the geometric cross section (shadow area). Q and ω o are wavelength dependent. A change in ω o (the fraction scattered to the total extinction) from 0.9 to 0.8 can, depending on the nature of the underlying surface, change the sign of the direct effect. This has led to major efforts to try to understand the amount of soot in aerosol globally something that is quite difficult to measure. 3

Another property of aerosol critical to direct radiative forcing is the scattering phase function, P, which is normalized : 1 Pd ˆ ω = 1 4π 4 π where dω is the increment of solid angle (steradians). The phase function can be characterized by the single scatter asymmetry factor cosθ defined as: 1 cosθ = cosθpˆ dω 4π 4π where θ is the angle between the direction of the incident beam and the scattered beam. The single scatter asymmetry factor varies between 1.0 (complete forward scattering and thus minimal climate influence) and 1.0 complete backscattering. An asymmetry factor of 0 implies isotropic scattering. For typical accumulation mode aerosol, the scattering of solar radiation will follow the aerosol surface area while absorption of terrestrial radiation will follow the aerosol mass (and thus increase linearly with effective radius for a given visible optical depth). Most aerosol of size between 0.2 and 2 µm have asymmetry factors close to 1 (mostly forward scattering). This is quite apparent by observation of the sky. Note the halo that is often seen around the sun. This brightness reflects the highly forward scattering of atmospheric aerosol. As the size of the scatterer becomes much smaller than the wavelength of light, the asymmetry factor becomes close to 0. Rayleigh scattering (by molecules) is a good example. Note the sky again - the blue sky is not substantially brighter near the sun than far away from the sun. 4

The composition of atmospheric aerosol So what are these aerosols made of? It is a virtual cornucopia of the periodic table (see "In situ measurements of organics, meteoritic material, mercury, and other elements in aerosols at 5 to 19 kilometers", Murphy DM, et al., Science, 282, 1664, 1998). Nevertheless it is useful to discuss a few classes of aerosol. Stratosphere: While searching for debris from nuclear bomb tests, Christian Junge discovered in 1960 a layer of microscopic aerosol particles between the tropopause and about 30 km altitude. This layer is called the Junge Layer or the Stratospheric Aerosol Layer. This particles of mean size 0.1 µm diameter are produced from the condensation of sulfuric acid with a co-condensation of small amounts of water (25-50% by weight). The sulfuric acid is produced from the oxidation of SO 2, OCS (produced in the surface ocean), and in fact transport of aerosol from the troposphere. In the absence of volcanic emissions, this aerosol has negligible optical depth (though they greatly influence the ozone chemistry). Eruption of large volcanoes can, however, increase the stratospheric aerosol optical depths by orders of magnitude. During the last twenty years, the effects of stratospheric aerosols has become much better understood by studies of the eruption of El Chichon in southern Mexico (1982, 17.3 o N) and Mt. Pinatubo in the Philippine Islands (1991, 15.1 o N). Peak, globally-averaged aerosol optical depths were 0.07 and 0.15 following these two volcanic eruptions. These volcanoes inject large amounts of SO 2 directly into the stratosphere. Most of the ash is significantly large that it falls quickly. The SO 2 is oxidized in the stratosphere over a period of ~ 3-6 months by the hydroxyl radical (and subsequent reaction with H 2 O) and the resulting sulfuric acid accumulates on the aerosol. These aerosols have a residence time of 1 to 2 years due to their sedimentation and mixing back into the troposphere where they are scavenged by surfaces and rain. Sulfate has a number of strong absorption features between 3 and 20 µm and in addition to reflecting sunlight these aerosols absorb terrestrial radiation efficiently, heating the stratosphere and producing a small greenhouse effect (Figure 11.6). Figure 11.7 shows that for a visible optical depth of 0.1, provided that the particle size is less than 2 µm, the net influence of stratospheric aerosol is to cool the surface. Mt. Pinatubo is estimated to have produced a net radiative forcing of 4 Wm -2. Note that this implies that the asymmetry factor is nearly 1.0 (why?). The stratospheric aerosol is lost by advection into the troposphere (important for nearly all sizes), and by sedimentation (only important for particles > 1 µm). 5

6

As listed in Table 11.3, explosive eruptions have produced significant short-term cooling of the surface. The cooling is moderated by the thermal inertia of the climate system (particularly the oceans) over the few year residence time of stratospheric aerosol. In 1815 Mt. Tambora in Indonesia exploded and within a few months the optical effects of the stratospheric aerosol was observed in Europe. It is estimated that 100 Tg Sulfur was added to the stratosphere in this single eruption. The sun was dimmed noticeably for nearly 2 years with stratospheric optical depths greater than 1 at its peak. The year 1816 was anomalously cold with crop failures widespread. The influence of the volcano was embedded within what was already an anomalously cold decade (1810-1820). Tropospheric Sulfate Aerosol Just as with the stratosphere, sulfuric acid is important for formation of tropospheric aerosol. Unlike the stratosphere, however, the residence time of tropospheric aerosol is much shorter (one-two weeks). As a result, a much larger source of sulfur is required to produce high optical depths. Such high optical depths do occur, but the aerosol distribution is quite variable (as a result of the short lifetime). Emission of SO 2 by industrial activity (from sulfur containing fossil fuels) accounts for the majority of all sulfur emissions to the atmosphere (80 Tg S / yr). Volcanic emissions and reduced sulfur gas production in the oceans (H 2 S and DMS which are relatively quickly oxidized to H 2 SO 4 ) account for the most of the rest (35 Tg S/yr). These sources, however, produce sulfate with a longer residence time because they form at higher altitude. Thus the sulfate burden is more evenly distributed than the source strength's would imply. Volcanic emissions to the troposphere are also quite important for the same reason. table 11.2 7

James Lovelock, GAIA Dust Soil dust is a major contributor to aerosol loading and optical thickness, especially in sub-tropical and tropical regions. Dust sources are mostly from the deserts, dry lake beds (go to the Owen's valley), and in agricultural areas during soil disturbance. It is estimated that ~1/2 of the dust results from soil disturbance. The residence time depends (obviously) on the size of the particles. The largest particles fall quickly, while the submicron sizes can be transported over long distances. During the ACE-Asia campaign (which the Seinfeld/Flagan groups worked on), a huge dust storm from China was observed to spread a pall over the entire Pacific. In addition to radiative effects, these dust particles carry iron to the oceans where iron can be the limiting nutrient for biological production. Dust has a single scattering albedo significantly less than 1, the resulting direct forcing is small due to the partial cancellation of solar and thermal forcing. Sea Salt: The action of waves on the ocean produces sea spray and with the bursting of entrained air bubbles sea salt aerosol is formed. Where winds are strong, sea salt aerosol is often the most important contributor to both light scattering and cloud nuclei. Sea salt particles cover a wide size range (0.05-10 um diameter), and thus have a correspondingly diverse atmospheric lifetime. For the present climate, it is estimated that more than 3000 Tg/yr of sea salt aerosol is formed (IPCC 2000). 8

Carbonaceous Aerosol: Carbonaceous aerosol make up a large (but highly variable) fraction of atmospheric aerosol. Organics are the largest single component of biomass burning aerosol. Measurements over the Atlantic suggest organics are as important as sulfur to the aerosol mass (IPCC 2000). In the upper troposphere, organics can comprise the majority of aerosol mass. Much of the organic appears to be oxygenated and polar (low vapor pressure), particularly carboxylic and dicarboxylic acids. As a result, these particles are quite hydroscopic and participate as CCN. Carbonaceous aerosols form both directly (as in fires) or by secondary accumulation of oxidation products formed in the gas phase. The formation of so-called secondary aerosol is very important in the LA basin, for example. Primary biogenic aerosols are also produced by ablation of organic material at the surface and lofting of small partilces (bacteria, fungi, viruses, algae, pollen, etc.). As we learned in ESE seminar a few weeks ago, humic-like substances are formed by ablation of leaf waxes. These aerosols are often quite efficient for absorption of light shortward of 400 nm. A second class of carbonaceous aerosol is called "black carbon". This is largely elemental carbon such as soot. Small amounts of black carbon can greatly influence the radiative impact of aerosols particularly in the presence of high optical depths of non-absorbing aerosol. This is an area of very active research. Nitrates: Aerosol nitrite is also quite important. It is observed that many aerosols are near neutral ph. Nitrate and ammonia are quite efficient for forming aerosol. Ammonium nitrate aerosol is ubiquitous and very efficient absorber. Although nitrate aerosol is thought to be only perhaps 1/10 as important radiatively as sulfur at present, it is expected to become grow in importance with the further industrialization in Asia. Locally, nitrate is already quite important. Observations suggest for example, that nitrate aerosol is more abundant over India than sulfate. If you travel toward Riverside, past the agricultural areas of the basin, you can directly observe the very high aerosol optical depths produced when acid aerosol grow rapidly when neutralized with addition of ammonia (to produce ammonium nitrate and sulfate). 9