Chapter 10 Transistor amplifier design

Similar documents
Introduction to CMOS RF Integrated Circuits Design

General Topology of a single stage microwave amplifier

11.2 Stability. A gain element is an active device. One potential problem with every active circuit is its stability

Chapter 17 Amplifier Frequency Response

55:041 Electronic Circuits

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. Solutions to Assignment 3 February 2005.

Example: Amplifier Distortion

Chapter 5. BJT AC Analysis

RF Amplifier Design. RF Electronics Spring, 2018 Robert R. Krchnavek Rowan University

Chapter 12 Microwave Amplifier Design

Linearteam tech paper. The analysis of fourth-order state variable filter and it s application to Linkwitz- Riley filters

Section J8b: FET Low Frequency Response

MAE140 Linear Circuits Fall 2012 Final, December 13th

HY:433 Σχεδίαση Αναλογικών/Μεικτών και Υψισυχνών Κυκλωμάτων

Lecture 12 - Non-isolated DC-DC Buck Converter

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

Parameter Analysis and Design of A 1.5GHz, 15mw Low Noise Amplifier

The Measurement of DC Voltage Signal Using the UTI

Lecture 17: Frequency Response of Amplifiers

CHAPTER 13 FILTERS AND TUNED AMPLIFIERS

55:041 Electronic Circuits

The Operational Amplifier

ECEN620: Network Theory Broadband Circuit Design Fall 2018

Digital Control System

At the end of this lesson, the students should be able to understand:

Chapter 9: Controller design. Controller design. Controller design

NAME (pinyin/italian)... MATRICULATION NUMBER... SIGNATURE

Given the following circuit with unknown initial capacitor voltage v(0): X(s) Immediately, we know that the transfer function H(s) is

Feedback Control Systems (FCS)

EE105 Fall 2014 Microelectronic Devices and Circuits

Liquid cooling

Chapter 9 Frequency Response. PART C: High Frequency Response

Lecture 10 Filtering: Applied Concepts

Introduction to Laplace Transform Techniques in Circuit Analysis

Multivariable Control Systems

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

Clustering Methods without Given Number of Clusters

ESE319 Introduction to Microelectronics. Output Stages

NOTE: The items d) and e) of Question 4 gave you bonus marks.

55:041 Electronic Circuits The University of Iowa Fall Exam 2

UNIT 15 RELIABILITY EVALUATION OF k-out-of-n AND STANDBY SYSTEMS

Per Unit Analysis. Single-Phase systems

Chapter 13. Root Locus Introduction

7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 281

SERIES COMPENSATION: VOLTAGE COMPENSATION USING DVR (Lectures 41-48)

NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor

Bogoliubov Transformation in Classical Mechanics

Control Theory and Congestion

Laplace Transformation

Lecture 10. Erbium-doped fiber amplifier (EDFA) Raman amplifiers Have replaced semiconductor optical amplifiers in the course

FUNDAMENTALS OF POWER SYSTEMS

Z a>2 s 1n = X L - m. X L = m + Z a>2 s 1n X L = The decision rule for this one-tail test is

CHAPTER.6 :TRANSISTOR FREQUENCY RESPONSE

To determine the biasing conditions needed to obtain a specific gain each stage must be considered.

Chapter 2 Homework Solution P2.2-1, 2, 5 P2.4-1, 3, 5, 6, 7 P2.5-1, 3, 5 P2.6-2, 5 P2.7-1, 4 P2.8-1 P2.9-1

On Stability of Electronic Circuits

EE 321 Analog Electronics, Fall 2013 Homework #8 solution

The Influence of Landau Damping on Multi Bunch Instabilities

Quick Review. ESE319 Introduction to Microelectronics. and Q1 = Q2, what is the value of V O-dm. If R C1 = R C2. s.t. R C1. Let Q1 = Q2 and R C1

Control Systems Analysis and Design by the Root-Locus Method

Inference for A One Way Factorial Experiment. By Ed Stanek and Elaine Puleo

Question 1 Equivalent Circuits

Chapter 4. The Laplace Transform Method

Appendix. Proof of relation (3) for α 0.05.

Hybrid Projective Dislocated Synchronization of Liu Chaotic System Based on Parameters Identification

MA 266 FINAL EXAM INSTRUCTIONS May 2, 2005

HIGHER-ORDER FILTERS. Cascade of Biquad Filters. Follow the Leader Feedback Filters (FLF) ELEN 622 (ESS)

CHAPTER 8 OBSERVER BASED REDUCED ORDER CONTROLLER DESIGN FOR LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS

EELE 3332 Electromagnetic II Chapter 10

CHAPTER.4: Transistor at low frequencies

At point G V = = = = = = RB B B. IN RB f

Reference:W:\Lib\MathCAD\Default\defaults.mcd

Lecture 8. PID control. Industrial process control ( today) PID control. Insights about PID actions

ECE 145A / 218 C, notes set 3: Two-Port Parameters

EE/ME/AE324: Dynamical Systems. Chapter 8: Transfer Function Analysis

Lecture 23 Date:

STOCHASTIC GENERALIZED TRANSPORTATION PROBLEM WITH DISCRETE DISTRIBUTION OF DEMAND

Seismic Loads Based on IBC 2015/ASCE 7-10

Nonlinear Single-Particle Dynamics in High Energy Accelerators

Inference for Two Stage Cluster Sampling: Equal SSU per PSU. Projections of SSU Random Variables on Each SSU selection.

Useful Formulae. Electrical symbols and units

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II )

Emittance limitations due to collective effects for the TOTEM beams

Section Induction motor drives

SAMPLING. Sampling is the acquisition of a continuous signal at discrete time intervals and is a fundamental concept in real-time signal processing.

EE 330 Lecture 25. Amplifier Biasing (precursor) Two-Port Amplifier Model

The Common-Emitter Amplifier

Electronics II. Midterm #2

ECE 3510 Root Locus Design Examples. PI To eliminate steady-state error (for constant inputs) & perfect rejection of constant disturbances

Design of RF CMOS Low Noise Amplifiers Using a Current Based MOSFET Model

Control Systems Engineering ( Chapter 7. Steady-State Errors ) Prof. Kwang-Chun Ho Tel: Fax:

Lecture 4 Topic 3: General linear models (GLMs), the fundamentals of the analysis of variance (ANOVA), and completely randomized designs (CRDs)

Design By Emulation (Indirect Method)

Copyright 1967, by the author(s). All rights reserved.

Designing Circuits Synthesis - Lego

Stability Criterion Routh Hurwitz

Ali Karimpour Associate Professor Ferdowsi University of Mashhad

Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum in Run2

EE Power Gain and Amplifier Design 10/31/2017

CHAPTER 14 SIGNAL GENERATORS AND WAVEFORM-SHAPING CIRCUITS

Transcription:

hapter 0 Tranitor amplifier dein 0. tability conideration unconditionally table conditionally table tability factor ource tability circle load tability circle 0. mplifier dein for maximum ain unilateral cae bilateral cae imultaneouly conjuate match unilateral fiure of merit 0.3 ontant ain circle unilateral cae bilateral cae 0.4 ontant noie fiure circle 0.5 Broadband amplifier neative feedback amplifier balanced amplifier travelin wave amplifier 0.6 mall inal equivalent circuit model of tranitor BJT MEFET 0.7 D bia circuit for tranitor

0. tability conideration Baic. Unconditionally table for all in out k. onditionally table: there exit ome and uch that one or both of thee condition violated.

Dicuion. tability circle out in ( - plane with in tability circle ( - plane with in tability circle r r load r r load

. If =0in= the center of mith chart repreent a table point if < =0out= the center of mith chart repreent a table point if <

4. Ex.0. tranitor ha =0.894-60.6 =0.0 6.4 =3.3.6 =0.78-7.6at Hz.3646.7 r.3646.7 r 0.6964 0.5 0. k 0.607

0. mplifier dein for maximum ain Baic.Unilateral cae: =0 tability condition: << maximum ain: = = unilateral tranducer ain TU TU max

. Bilateral cae (imultaneouly conjuate match out in o in 4 4 k a ain table maximum : ( match conjuate uly imultaneo output and input B B B B B B K K K if M M M TMax T ut

3. Unilateral fiure of merit ( U U ( T U ( U ( Dicuion. inear amplifier dein procedure ( if < K> ue input and output imultaneouly conjuate matche for Tmax ( if K< plot ource and load tability circle to ee if input and output imultaneouly conjuate matche poible otherwie elect the proper and for ain or noie fiure conideration (to be dicued in the followin ection.

. Ex.0. tranitor ha (Zo=50 =0.606-55 =0 =680 =0.48-0at Hz dein an amplifier to ive TUmax. 0.606 TU max.58 36.3 73.9 8.69dB : y=j.7 or z=-j0.45 : z=j0. 3: z=-j.38 or y=j0.48 4: y=-j0.6 0.60655 0.48 0.480 0.606 6 0.48 # "!

3. Ex.0. tranitor ha (Zo=50 =0.64-67.4 =0.046 65 =.873.4 =0.76-83at 6Hz dein an amplifier to ive tmax < K=.96> in out TMax M M B ( K K B B B 4 4 8.78 4.58dB 0.8673 67.4 0.9084.48 % $& %$

:M=0.867369.76 : y=-j.7 3: M=0.9084.48 4: z=j3.4 ' ' ('

4. Ex.0.4 tranitor : =0.4550 =0.0-0 =.050 =0.4-0tranitor B: =0.64-7.3 =0.0576.3 =.0588.5 =0.57-95.7compare their U U ( ( U ( U T 0.476dB U 0.8948dB T ( U T U B U U B 0.038dB 0.9976dB 0.0055 0.085 0.989 0.838 T U T U B.0055.58 - +

.0 /. 0.3 ontant ain circle Baic. Unilateral cae (=0 max max max max 0 ( ( ( ain circle in contant ( ( ( ain circle in contant d d plane d d plane TU

6 35 43. Bilateral cae (0 ( Unconditionally table cae ue or max max max ( ( ( ( in circle ain contant T im im K K K K K c c c plane

: 79 87 max max max ( ( ( ( ain circle in contant T out out K K K K K c c plane

( otentially untable cae ue to plot contant ain circle in -plane and plot load tability circle properly elect calculate = in ue to plot contant ain circle in -plane and plot ource tability circle properly elect calculate = out Dicuion. Ex. 0.5 MEFET with -parameter (Zo=50 3Hz 0.8-90.800 0 0.66-50 4Hz 0.75-0.580 0 0.6-70 5Hz 0.7-40.360 0 0.68-85 plot contant ain circle @4Hz for =0 db and = 3dB dein an amplifier of db ain @ TU 0 4 Hz max 6.5 7.96 db TU.8 max 0 3.59 3.59 db 7.96 max.9 3.47 db.565.9 db > ;= <;

B? @? choe TU(4Hz db=db+8db+db to dein the circuit TU(3Hz=7.3TU(5Hz=6.96dB 0.44 0.303 70 0.64 70 0.5 0.64 0.8064 0.6 0.94 0.66 0 0.67 0 0.706 0.69 0.785.58 3 d db db d db db

. Ex. 0.6 a FET with -parameter (Zo=50 Hz =.7-0 =4 50 =0 =0.6-80 ( calculate Zin plot untable reion in -plane ( plot contant ain circle for =3 5dB (3 find Z for =3dB with maximum deree of table determine Z to ive maximum then dein the amplifier (4 calculate TU (.7 0 in 4.5 to be untable Zin Zin Z0 Z0 Zin 4.5 j3 F E D

J I H ( db j Z For j Z TU MX 7 50.56 4.56 5.5 7 80 0.6 : elect maximum 5 50 76 0.4 : poible maximum a ive to for Z elect (3 0.698 0.74 0 0.4 0 0.45 8.3 3.3 3 3.6 5 d db db

3. Ex. 0.7 a FET with -parameter (Zo=50 6Hz =0.64-7.3 =.0588.5 =0.0576.3=0.57-95.7dein an amplifier to ive =9dB K.5 0.3 Max ( K K.38dB 9dB contant ain circle in plane c p p c p 0.504 p 0.43 elect : 0.3650 in 0.63 75.6 : 0.6375.6 NM K

4. Ex. 0.8 a FET with -parameter (Zo=50 8Hz =0.5-80 =.570 =0.0830 =0.8-00dein an amplifier to ive =0dB ource tability circle.6770.6 r 0.998 K 0399. 0.8 load tability circle.797 r 0.3388 c p 0dB contant ain circle in plane 0.5797. elect : p 0.4733 0.97 in c 0.5 79.3 : p p 0.579.3 O Q O

5. Ex. 0.9 BJT with -parameter (Zo=50 750MHz =0.77-59 =.9 64 =0.07893 =0.848-3dein an amplifier to ive Tmax.035 0.34 imultaneouly conjuate match M = 0.79835? M = 0.9533.85 6. Ex. 0.0 ue the BJT in Ex.0.9 dein an amplifier to ive =0dB determine for max c p 0dB contant ain circle in 0.7833.8 elect : : MX 0.5634 0.345556.45.8dB 0.4 0.79835 p 0.9533.84 M in plane 0.3455 56.4 M c p p V VU T

0.4 ontant noie fiure circle Baic amplifier port - two a For F N F min min F 4 Y F / Z min contant noie fiure circle Y noie parameter : F opt n Y opt n opt 0 F min n 4 Z equivalent opt 0 n ( noie reitance of : noie fiure parameter NF NF opt opt tranito r NF opt N NF N ( N N N opt [ ZY XW

Dicuion. Ex. 0. BJT with -parameter (Zo=50 Hz =0.707-55 =5 80 =0 =0.5-0 Fmin=3dB n=4 opt= 0.4580dein an amplifier to ive T=6dB F<3.5dB F TUMX TU elect 3 3.98.3 8.9 db. db d 0.56 50 6 db 0.78 db d 0.46 0 3.5dB 0.3658 80 0.3953 NF B : D : NF 0.345 0.58 `_^]\

. Ex. 0. a FET with -parameter (Zo=50 4Hz =0.6-60 =.98 =0.056 =0.5-60 Fmin=.6dB n=0 opt= =0.6 00( aume =0 dein an amplifier to ive TUmax F<dB ( repeat for 0 K.778 0.373 U TUMax elect :.938 5.57.5 8.76dB 0.560 0.0594 0.5dB 0.59dB ( F db NF 0.5600 NF 0.45.5dB d 0.5660 0. elect :.7 db d 0.58660 0.5 T TU e dc ba

(ue 8dB elect contant ain circle in c 0.5764.7 0.53590 out plane 0.34 c 0.504 67.8 0.50467.8 3. ow noie amplifier dein procedure: if unconditionally table ue contant ain circle and contant noie fiure circle to determine and = out. if potentially untable conider ource and load tability circle in addition. j ih f

p Hz =0.6-30 =7. 86 =0.03935 =0.5-38 Fmin=.3dB n=8 opt= =0.0649 dein an amplifier to ive 6dB power ain F<.5dB ource tability circle.747 r 0.8566 K 0.7667 0.89 load tability circle.650.8 r.96 c a F elect B: 6dB 0.3547.5 out D : contant ain circle in plane 0.034640 0.30 0.469 36.45 NF 0.46936.45 a 0.673 NF 0.65 c a a o nm lk

u t rq 0.5 Broadband amplifier Baic. Neative feedback amplifier ' ' ' ( ' ( 0 0 0 0 0 0 0 0 0 0 0 c c c c c V v v i V f f f f f f j fc f j v V V

. Balanced amplifier {hybrid and amplifier ain. z yx wv

. Travelin wave amplifier (ditributed amplifier TEM line extreme wide operation bandwidth } ~ }

0.6 mall-inal equivalent circuit model of tranitor Baic. BJT ƒ

. MEFET ate f ate power ˆ

Ž 0.7 D bia circuit for tranitor Dicuion. eitive bia with voltae feedback for BJT Vcc ci Ic I I V E cc E to have I I Vcc VBE B c E E E V BE I B I B B V I BE B c le enitive to chane in V BE Œ Š

. Bia circuit with emitter bypaed reitor for BJT V V Th V V TH th th I E th th to have I V E V I B B V E in V cc VBE th BE V V ce BE E I TH E E th 0% V th ( le enitive to chane in V uually Vth 5% ~ lim ited output win cc E I BE E V BE

3. Unipolar bia circuit for MEFET