Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30

Similar documents
Definite integral. Mathematics FRDIS MENDELU

1 The Riemann Integral

Sections 5.2: The Definite Integral

Indefinite Integral. Chapter Integration - reverse of differentiation

INTRODUCTION TO INTEGRATION

The Riemann Integral

The Regulated and Riemann Integrals

Week 10: Riemann integral and its properties

7.2 Riemann Integrable Functions

Integrals - Motivation

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1

Section 6.1 Definite Integral

Chapter 7 Notes, Stewart 8e. 7.1 Integration by Parts Trigonometric Integrals Evaluating sin m x cos n (x) dx...

Riemann Sums and Riemann Integrals

We divide the interval [a, b] into subintervals of equal length x = b a n

Riemann Sums and Riemann Integrals

Suppose we want to find the area under the parabola and above the x axis, between the lines x = 2 and x = -2.

Calculus and linear algebra for biomedical engineering Week 11: The Riemann integral and its properties

Chapter 6. Riemann Integral

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1

Math 554 Integration

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Integration Techniques

f(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all

Math& 152 Section Integration by Parts

APPLICATIONS OF THE DEFINITE INTEGRAL

Definite Integrals. The area under a curve can be approximated by adding up the areas of rectangles = 1 1 +

The Fundamental Theorem of Calculus

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

Test 3 Review. Jiwen He. I will replace your lowest test score with the percentage grade from the final exam (provided it is higher).

The Fundamental Theorem of Calculus. The Total Change Theorem and the Area Under a Curve.

38 Riemann sums and existence of the definite integral.

Numerical Analysis: Trapezoidal and Simpson s Rule

Chapter 6 Notes, Larson/Hostetler 3e

NUMERICAL INTEGRATION

Review of Calculus, cont d

Z b. f(x)dx. Yet in the above two cases we know what f(x) is. Sometimes, engineers want to calculate an area by computing I, but...

The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O

Anti-derivatives/Indefinite Integrals of Basic Functions

APPROXIMATE INTEGRATION

Big idea in Calculus: approximation

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite

5.2 Volumes: Disks and Washers

Math 131. Numerical Integration Larson Section 4.6

Fundamental Theorem of Calculus

Math 1431 Section M TH 4:00 PM 6:00 PM Susan Wheeler Office Hours: Wed 6:00 7:00 PM Online ***NOTE LABS ARE MON AND WED

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1

MA 124 January 18, Derivatives are. Integrals are.

NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by.

Riemann is the Mann! (But Lebesgue may besgue to differ.)

Math 118: Honours Calculus II Winter, 2005 List of Theorems. L(P, f) U(Q, f). f exists for each ǫ > 0 there exists a partition P of [a, b] such that

FINALTERM EXAMINATION 2011 Calculus &. Analytical Geometry-I

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as

Improper Integrals. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

5.7 Improper Integrals

F (x) dx = F (x)+c = u + C = du,

different methods (left endpoint, right endpoint, midpoint, trapezoid, Simpson s).

l 2 p2 n 4n 2, the total surface area of the

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b.

Midpoint Approximation

For a continuous function f : [a; b]! R we wish to define the Riemann integral

Math 8 Winter 2015 Applications of Integration

Homework 4. (1) If f R[a, b], show that f 3 R[a, b]. If f + (x) = max{f(x), 0}, is f + R[a, b]? Justify your answer.

Review of Riemann Integral

f(x) dx, If one of these two conditions is not met, we call the integral improper. Our usual definition for the value for the definite integral

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS.

MATH , Calculus 2, Fall 2018

Review on Integration (Secs ) Review: Sec Origins of Calculus. Riemann Sums. New functions from old ones.

Section 6.1 INTRO to LAPLACE TRANSFORMS

Section Areas and Distances. Example 1: Suppose a car travels at a constant 50 miles per hour for 2 hours. What is the total distance traveled?

Math 0230 Calculus 2 Lectures

Lecture 3 ( ) (translated and slightly adapted from lecture notes by Martin Klazar)

Chapter 5 : Continuous Random Variables

Section 5.4 Fundamental Theorem of Calculus 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus 1

Riemann Integrals and the Fundamental Theorem of Calculus

We know that if f is a continuous nonnegative function on the interval [a, b], then b

7.2 The Definite Integral

Math Calculus with Analytic Geometry II

Calculus I-II Review Sheet

LECTURE. INTEGRATION AND ANTIDERIVATIVE.

6.5 Numerical Approximations of Definite Integrals

Test , 8.2, 8.4 (density only), 8.5 (work only), 9.1, 9.2 and 9.3 related test 1 material and material from prior classes

Section 4.8. D v(t j 1 ) t. (4.8.1) j=1

Calculus II: Integrations and Series

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space.

1 The fundamental theorems of calculus.

MAT612-REAL ANALYSIS RIEMANN STIELTJES INTEGRAL

Math 120 Answers for Homework 13

Summer MTH142 College Calculus 2. Section J. Lecture Notes. Yin Su University at Buffalo

P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0)

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus

4.4 Areas, Integrals and Antiderivatives

1 Part II: Numerical Integration

The problems that follow illustrate the methods covered in class. They are typical of the types of problems that will be on the tests.

Lecture 19: Continuous Least Squares Approximation

Math 360: A primitive integral and elementary functions

Math 113 Fall Final Exam Review. 2. Applications of Integration Chapter 6 including sections and section 6.8

Lecture 6: Singular Integrals, Open Quadrature rules, and Gauss Quadrature

Transcription:

Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová (Mendel University) Definite integrl MENDELU /

Motivtion - re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function defined on [, b]. Wht is the re of the region bounded by y = f(x), the x-xis nd the lines x = nd x = b? The re cn be pproximted with the sum of rectngles: We cut the intervl [, b] into subintervls. Ech of these subintervls forms the bse of rectngle, where the height of the rectngle is equl to the vlue of the function f evluted t n rbitrry point from the given subintervl. The pproximtion improves s the rectngles become nrrower nd the number of rectngles increses. We define the re of the region to be the limit of the rectngle re sums s the rectngles become smller nd smller nd the number of rectngles we use pproches infinity. Such limit cn be defined even for more generl functions nd we cll it definite integrl. The definite integrls cn be defined in mny different wys, we will define the Riemnn definite integrl. Simon Fišnrová (Mendel University) Definite integrl MENDELU /

Construction of the Riemnn integrl Let f be function defined on n intervl [, b] nd suppose tht f is bounded on this intervl. Simon Fišnrová (Mendel University) Definite integrl MENDELU /

Construction of the Riemnn integrl Let f be function defined on n intervl [, b] nd suppose tht f is bounded on this intervl. The sequence of points D = {x, x, x,..., x n } such tht = x < x < x < < x n = b is sid to be prtition of the intervl [, b]. The intervls [x, x ], [x, x ],..., [x n, x n ] re clled subintervls of the prtition. Simon Fišnrová (Mendel University) Definite integrl MENDELU /

Construction of the Riemnn integrl Let f be function defined on n intervl [, b] nd suppose tht f is bounded on this intervl. The sequence of points D = {x, x, x,..., x n } such tht = x < x < x < < x n = b is sid to be prtition of the intervl [, b]. The intervls [x, x ], [x, x ],..., [x n, x n ] re clled subintervls of the prtition. The number ν(d) = mx{x i x i, i =,,..., n} is clled norm of the prtition D, i.e., the norm of the prtition is the length of the longest subintervl of the prtition. Simon Fišnrová (Mendel University) Definite integrl MENDELU /

Construction of the Riemnn integrl Let f be function defined on n intervl [, b] nd suppose tht f is bounded on this intervl. The sequence of points D = {x, x, x,..., x n } such tht = x < x < x < < x n = b is sid to be prtition of the intervl [, b]. The intervls [x, x ], [x, x ],..., [x n, x n ] re clled subintervls of the prtition. The number ν(d) = mx{x i x i, i =,,..., n} is clled norm of the prtition D, i.e., the norm of the prtition is the length of the longest subintervl of the prtition. We choose n rbitrry number from ech of the subintervls ξ [x, x ], ξ [x, x ],..., ξ n [x n, x n ] nd we denote Ξ = {ξ, ξ,..., ξ n } the set of these numbers. Then the sum n σ(f, D, Ξ) = f(ξ i )(x i x i ) i= is clled the integrl sum ssocited to the function f, the prtition D nd the choice of the numbers ξ i in Ξ. Simon Fišnrová (Mendel University) Definite integrl MENDELU /

Integrl sum: ξ ξ ξ ξ 4 ξ 5 ξ 6 = x x x x x 4 x 5 x 6 = b σ(f, D, Ξ) = f(ξ )(x x ) + f(ξ )(x x ) + f(ξ )(x x ) +f(ξ 4 )(x 4 x ) + f(ξ 5 )(x 5 x 4 ) + f(ξ 6 )(x 6 x 5 ) 6 = f(ξ i )(x i x i ) i= Simon Fišnrová (Mendel University) Definite integrl MENDELU 4 /

Refinement of the prtition: ξ ξ ξ ξ n = x x x x n x n = b σ(f, D, Ξ) = f(ξ )(x x ) + f(ξ )(x x ) + + f(ξ n )(x n x n ) n = f(ξ i )(x i x i ) i= Simon Fišnrová (Mendel University) Definite integrl MENDELU 5 /

Definition (Riemnn integrl) Let f be function defined nd bounded on n intervl [, b]. Let D, D, D,..., D n,... be sequence of prtitions of [, b] which stisfies lim n ν(d n) = nd Ξ, Ξ, Ξ,..., Ξ n,... be sequence of the corresponding choices of numbers ξ i from subintervls of the prtitions. The function f is sid to be integrble on [, b] (in sense of Riemnn) if there exists number I R with the property lim σ(f, D n, Ξ n ) = I n for every sequence of prtitions (with the bove given property) nd for rbitrry prticulr choice of the points ξ i in Ξ n. The number I is sid to be Riemnn integrl of the function f on [, b] nd it is denoted I = f(x) dx. The number is clled lower limit of the integrl nd the number b is clled n upper limit of the integrl. Simon Fišnrová (Mendel University) Definite integrl MENDELU 6 /

We hve to distinguish the definite integrls from the indefinite integrls: Indefinite integrl is set of functions. Definite integrl is limit (number). We will see, tht there is connection between the definite nd indefinite integrls, since definite integrls cn be evluted using indefinite integrls. Simon Fišnrová (Mendel University) Definite integrl MENDELU 7 /

Theorem (Sufficient conditions for integrbility) Let f be function which stisfies t lest one of the following conditions: f is continuous on [, b], f is monotone on [, b], f is bounded on [, b] nd contins t most finite number of discontinuities on this intervl. Then the function f is integrble (in sense of Riemnn) on [, b], i.e., f(x) dx exists. Simon Fišnrová (Mendel University) Definite integrl MENDELU 8 /

Properties of the Riemnn integrl Theorem (Additivity nd homogenity with respect to the integrnd) Let f nd g be functions which re integrble on [, b], c R. Then the functions f + g nd cf re lso integrble on [, b] nd it holds: [f(x) + g(x)] dx = cf(x) dx = c f(x) dx + f(x) dx g(x) dx Theorem (Additivity with respect to the domin of integrtion) Let f be function defined of [, b], nd let c (, b) be ny number. Then the function f is integrble on [, b] if nd only if it is integrble on both the intervls [, c] nd [c, b] nd it holds: f(x) dx = c f(x) dx + c f(x) dx Simon Fišnrová (Mendel University) Definite integrl MENDELU 9 /

Theorem Let f nd g be functions integrble on [, b] such tht f(x) g(x) on this intervl. Then f(x) dx It follows from the lst theorem tht if g(x), then g(x) dx. g(x) dx, i.e., integrl of the nonnegtive function is nonnegtive. Simon Fišnrová (Mendel University) Definite integrl MENDELU /

Evlution of the Riemnn integrl Theorem (Newton - Leibniz formul) Let f be function integrble on [, b] nd let F be n ntiderivtive of f on (, b) which is continuous on [, b]. Then f(x) dx = [F (x)] b = F (b) F (). The previous theorem sys tht to clculte the Riemnn integrl of f over [, b], ll we need to do is: find n ntiderivtive F of f, clculte the number F (b) F (). Simon Fišnrová (Mendel University) Definite integrl MENDELU /

Exmple x dx Simon Fišnrová (Mendel University) Definite integrl MENDELU /

Exmple [ x x dx = ] Simon Fišnrová (Mendel University) Definite integrl MENDELU /

Exmple [ x x dx = ] = Simon Fišnrová (Mendel University) Definite integrl MENDELU /

Exmple [ x x dx = ] = = 9. Simon Fišnrová (Mendel University) Definite integrl MENDELU /

Exmple [ x x dx = ] = = 9. π sin x dx Simon Fišnrová (Mendel University) Definite integrl MENDELU /

Exmple [ x x dx = ] = = 9. π sin x dx = [ cos x ] π Simon Fišnrová (Mendel University) Definite integrl MENDELU /

Exmple [ x x dx = ] = = 9. π sin x dx = [ cos x ] π = cos π + cos Simon Fišnrová (Mendel University) Definite integrl MENDELU /

Exmple [ x x dx = ] = = 9. π sin x dx = [ cos x ] π = cos π + cos =. Simon Fišnrová (Mendel University) Definite integrl MENDELU /

Exmple [ x x dx = ] = = 9. π sin x dx = [ cos x ] π = cos π + cos =. x dx Simon Fišnrová (Mendel University) Definite integrl MENDELU /

Exmple [ x x dx = ] = = 9. π sin x dx = [ cos x ] π = cos π + cos =. x dx = ( x) dx + x dx Simon Fišnrová (Mendel University) Definite integrl MENDELU /

Exmple [ x x dx = ] = = 9. π sin x dx = [ cos x ] π = cos π + cos =. x dx = ( x) dx + x dx = ] [ x + [ x ] Simon Fišnrová (Mendel University) Definite integrl MENDELU /

Exmple [ x x dx = ] = = 9. π sin x dx = [ cos x ] π = cos π + cos =. x dx = ( x) dx + x dx = ] [ x + [ x = + 9 + ] Simon Fišnrová (Mendel University) Definite integrl MENDELU /

Exmple [ x x dx = ] = = 9. π sin x dx = [ cos x ] π = cos π + cos =. x dx = ( x) dx + x dx = ] [ x + [ x ] = + 9 + = 5. Simon Fišnrová (Mendel University) Definite integrl MENDELU /

Theorem (Integrtion by prts) Let u, v be functions hving continuous derivtives on [, b]. Then u(x)v (x) dx = [u(x)v(x)] b u (x)v(x) dx. Simon Fišnrová (Mendel University) Definite integrl MENDELU /

Theorem (Integrtion by prts) Let u, v be functions hving continuous derivtives on [, b]. Then u(x)v (x) dx = [u(x)v(x)] b u (x)v(x) dx. Exmple x ln x dx Simon Fišnrová (Mendel University) Definite integrl MENDELU /

Theorem (Integrtion by prts) Let u, v be functions hving continuous derivtives on [, b]. Then u(x)v (x) dx = [u(x)v(x)] b u (x)v(x) dx. Exmple x ln x dx = u = ln x u = x v = x v = x Simon Fišnrová (Mendel University) Definite integrl MENDELU /

Theorem (Integrtion by prts) Let u, v be functions hving continuous derivtives on [, b]. Then u(x)v (x) dx = [u(x)v(x)] b u (x)v(x) dx. Exmple x ln x dx = u = ln x u = x v = x v = x [ x = ] ln x x x dx Simon Fišnrová (Mendel University) Definite integrl MENDELU /

Theorem (Integrtion by prts) Let u, v be functions hving continuous derivtives on [, b]. Then u(x)v (x) dx = [u(x)v(x)] b u (x)v(x) dx. Exmple x ln x dx = u = ln x u = x = 4 ln ln v [ = x x v = x = x dx ] ln x x x dx Simon Fišnrová (Mendel University) Definite integrl MENDELU /

Theorem (Integrtion by prts) Let u, v be functions hving continuous derivtives on [, b]. Then u(x)v (x) dx = [u(x)v(x)] b u (x)v(x) dx. Exmple x ln x dx = u = ln x u = x v [ = x x v = x = ] ln x x x dx [ ] x = 4 ln ln x dx = ln Simon Fišnrová (Mendel University) Definite integrl MENDELU /

Theorem (Integrtion by prts) Let u, v be functions hving continuous derivtives on [, b]. Then u(x)v (x) dx = [u(x)v(x)] b u (x)v(x) dx. Exmple x ln x dx = u = ln x u = x v [ = x x v = x = ] ln x x x dx [ ] x = 4 ln ln = ln [ 4 ] x dx = ln Simon Fišnrová (Mendel University) Definite integrl MENDELU /

Theorem (Integrtion by prts) Let u, v be functions hving continuous derivtives on [, b]. Then u(x)v (x) dx = [u(x)v(x)] b u (x)v(x) dx. Exmple x ln x dx = u = ln x u = x v [ = x x v = x = ] ln x x x dx [ ] x = 4 ln ln x dx = ln = ln [ 4 ] = ln 4. Simon Fišnrová (Mendel University) Definite integrl MENDELU /

Theorem (Substitution method) Let f be function continuous on [, b] nd let ϕ be function which hs continuous derivtive ϕ on [α, β]. Further suppose tht ϕ(x) b for x [α, β]. Then β α f[ϕ(x)]ϕ (x) dx = ϕ(β) ϕ(α) f(t) dt. The formul in the theorem cn be used from left to right (the st substitution method) nd from right to left (the nd substitution method). It my hppen in some prticulr cses tht the lower limit the upper limit fter the substitution. For this reson we introduce the following extension: Extension The symbol f(x) dx cn be extended for b s follows: f(x) dx =, f(x) dx = b f(x) dx. Simon Fišnrová (Mendel University) Definite integrl MENDELU 4 /

We hve two possibilities when evluting the definite integrl with using the substitution method: We use the previous theorem, i.e., we trnsform the limits of the integrl nd then we use the Newton-Leibniz formul with the new limits. (We do not substitute the originl vrible into the ntiderivtive obtined fter the integrtion.) We do not use the previous theorem. We evlute the indefinite integrl (i.e., we substitute the originl vrible fter integrtion) nd then we pply the Newton-Leibniz formul with the originl limits. Simon Fišnrová (Mendel University) Definite integrl MENDELU 5 /

Exmple Evlute π sin x cos x dx. Simon Fišnrová (Mendel University) Definite integrl MENDELU 6 /

Exmple Evlute π sin x cos x dx. We trnsform the limits: π t = sin x sin x cos x dx = dt = cos x dx t = sin = t = sin π = Simon Fišnrová (Mendel University) Definite integrl MENDELU 6 /

Exmple Evlute π sin x cos x dx. We trnsform the limits: π t = sin x sin x cos x dx = dt = cos x dx t = sin = t = sin π = = t dt Simon Fišnrová (Mendel University) Definite integrl MENDELU 6 /

Exmple Evlute π sin x cos x dx. We trnsform the limits: π t = sin x sin x cos x dx = dt = cos x dx t = sin = t = sin π = = [ t t dt = ] Simon Fišnrová (Mendel University) Definite integrl MENDELU 6 /

Exmple Evlute π sin x cos x dx. We trnsform the limits: π t = sin x sin x cos x dx = dt = cos x dx t = sin = t = sin π = = [ t t dt = ] =. Simon Fišnrová (Mendel University) Definite integrl MENDELU 6 /

Exmple Evlute π sin x cos x dx. We trnsform the limits: π t = sin x sin x cos x dx = dt = cos x dx t = sin = t = sin π = = [ t t dt = ] =. We do not trnsform the limits: sin x cos x dx = t = sin x dt = cos x dx = t dt = t = sin x + c. Simon Fišnrová (Mendel University) Definite integrl MENDELU 6 /

Exmple Evlute π sin x cos x dx. We trnsform the limits: π t = sin x sin x cos x dx = dt = cos x dx t = sin = t = sin π = = [ t t dt = ] =. We do not trnsform the limits: sin x cos x dx = t = sin x dt = cos x dx = t dt = t = sin x + c. Tedy π [ sin sin x x cos x dx = ] π Simon Fišnrová (Mendel University) Definite integrl MENDELU 6 /

Exmple Evlute π sin x cos x dx. We trnsform the limits: π t = sin x sin x cos x dx = dt = cos x dx t = sin = t = sin π = = [ t t dt = ] =. We do not trnsform the limits: sin x cos x dx = t = sin x dt = cos x dx = t dt = t = sin x + c. Tedy π [ sin sin x x cos x dx = ] π = sin π sin Simon Fišnrová (Mendel University) Definite integrl MENDELU 6 /

Exmple Evlute π sin x cos x dx. We trnsform the limits: π t = sin x sin x cos x dx = dt = cos x dx t = sin = t = sin π = = [ t t dt = ] =. We do not trnsform the limits: sin x cos x dx = t = sin x dt = cos x dx = t dt = t = sin x + c. Tedy π [ sin sin x x cos x dx = ] π = sin π sin =. Simon Fišnrová (Mendel University) Definite integrl MENDELU 6 /

Applictions of the Riemnn integrl in geometry The re under curve nd between two curves Let f be nonnegtive nd continuous function on [, b]. The re S of the region in the plne bounded by y = f(x), the x-xis nd the lines x = nd x = b is: S = f(x) dx Let f, g be continuous functions nd suppose f(x) g(x) for x [, b]. The re S of the region in the plne bounded by y = f(x), y = g(x) nd the lines x = nd x = b is: S = [f(x) g(x)] dx (The signs of f nd g re rbitrry.) Simon Fišnrová (Mendel University) Definite integrl MENDELU 7 /

Volume of the solid of revolution I Let f be nonnegtive nd continuous function on [, b]. The volume V of the solid generted by revolving the region bounded by y = f(x), the x-xis nd the lines x = nd x = b bout the x-xis is: V = π f (x) dx Simon Fišnrová (Mendel University) Definite integrl MENDELU 8 /

Volume of the solid of revolution II Let f, g be nonnegtive continuous functions nd suppose f(x) g(x) for x [, b]. The volume V of the solid generted by revolving the region bounded by y = f(x), y = g(x) nd the lines x = nd x = b bout the x-xis is: V = π [ f (x) g (x) ] dx Simon Fišnrová (Mendel University) Definite integrl MENDELU 9 /

Mny other res nd volumes cn be clculted using the bove formuls since we cn cut the given region into severl pieces which stisfy the bove conditions. S = S + S = c [f(x) h(x)] dx + c [g(x) h(x)] dx Simon Fišnrová (Mendel University) Definite integrl MENDELU /

Exmple (Volume of the cone) Find the formul for volume of cone such tht the rdius of the bse is r nd the ltitude of the cone is v. Solution: If the following tringle revolves bout the x-xis, we obtin the cone: V = π v ( r v x ) dx = πr v v x dx = πr v [ x ] v = πr v v = πr v Simon Fišnrová (Mendel University) Definite integrl MENDELU /

Exmple (Volume of the bll) Find the formul for the volume of bll with the rdius r. Solution: The eqution of circle with rdius r nd the center t [, ] is x + y = r. The upper hlf-circle is the grph of the function y = r x, the lower hlf-circle is the grph of the function y = r x. If the hlf-circle revolves bout the x-xis, we obtin bll. If qurter of circle revolves bout the x-xis, we obtin hlf of the bll. r V = π = π r (r x ) dx = π [r x x ] r = π r (r r (r x ) dx ) = 4πr Simon Fišnrová (Mendel University) Definite integrl MENDELU /

Appliction of the definite integrl in physics Consider region bounded by the grphs of the functions y = f(x), y = g(x), nd the lines x =, x = b, where g(x) f(x) on, b. Suppose tht the region hs constnt density ρ. Then: Mss of the region: m = ρ [f(x) g(x)] dx Moments of force with respect to x-xis, y-xis: S x = ρ [ f (x) g (x) ] dx, S y = ρ x [f(x) g(x)] dx Center of mss: T = [ ] Sy m, Sx m Simon Fišnrová (Mendel University) Definite integrl MENDELU /

Exmple (Center of mss) Find the center of mss of the tringle given by the vertices [, ], [, ], [, ]. Suppose tht the density ρ is constnt. Mss: [ ] x m = ρ x dx = ρ = ρ 9 = ρ Moments of force: S x = ρ 4 9 x dx = [ ] x 9 ρ = 9 ρ 9 = ρ S y = ρ Center of mss: T = S y m =, x x dx = ρ x dx = ρ [ x T = S x m = = T = [, ] ] = ρ 9 = 6ρ Simon Fišnrová (Mendel University) Definite integrl MENDELU 4 /

Approximtion of definite integrls Numericl methods for pproximting the definite integrl the following cses: f(x) dx re used in The ntiderivtive of the function f hs no elementry formul, hence the Newton-Leibniz formul cnnot be used ( sin x x, sin x, ex x, e x,... ). A formul for the function f is not known, we hve only set of mesured vlues. Simon Fišnrová (Mendel University) Definite integrl MENDELU 5 /

The trpezoidl rule The trpezoidl rule for the evlution definite integrl is bsed on pproximting the region between curve nd the x-xis with trpezoids. = x x x x x 4 = b Simon Fišnrová (Mendel University) Definite integrl MENDELU 6 /

Let f be function bounded on [, b]. To evlute f(x) dx : We cut the intervl [, b] into n subintervls [x, x ], [x, x ],..., [x n, x n ], (x =, x n = b). Suppose tht the length of ech subintervl is h = b n. Denote y = f(x ), y = f(x ),..., y n = f(x n ). We pproximte the function f on [x i, x i ], (i =,,..., n) with the liner function pssing through [x i, y i ], [x i, y i ]. This liner function is of the form Hence xi x i f(x) dx y = y i + y i y i (x x i ). h xi x i [ y i + y ] i y i (x x i ) dx h Simon Fišnrová (Mendel University) Definite integrl MENDELU 7 /

xi x i f(x) dx = xi [ x i [ y i + y ] i y i (x x i ) dx h y i x + y ] xi i y i (x x i ) h x i = y i h + y i y i h h = h (y i + y i ), which (in cse when f is positive function ) is the well-known formul for evluting n re of the trpezoid with corners [x i, ], [x i, y i ], [x i, ], [x i, y i ]. Hence, f(x) dx = x x xn f(x) dx + f(x) dx + + f(x) dx x x x n h (y + y ) + h (y + y ) + + h (y n + y n ) = h (y + y + y + + y n + y n ). Simon Fišnrová (Mendel University) Definite integrl MENDELU 8 /

The trpezoidl rule Let f be function bounded on [, b], nd let = x < x < < x n = b be prtition of [, b] such tht the length of ech subintervl of this prtition is h = b n. Then f(x) dx h (y + y + y + + y n + y n ), where y = f(x ), y = f(x ),..., y n = f(x n ). (We suppose tht f is defined t the points x, x,..., x n.) Simon Fišnrová (Mendel University) Definite integrl MENDELU 9 /

The trpezoidl rule Let f be function bounded on [, b], nd let = x < x < < x n = b be prtition of [, b] such tht the length of ech subintervl of this prtition is h = b n. Then f(x) dx h (y + y + y + + y n + y n ), where y = f(x ), y = f(x ),..., y n = f(x n ). (We suppose tht f is defined t the points x, x,..., x n.) Some other rules for pproximting the definite integrls cn be used, e.g., the so-clled Simpson s rule is bsed on pproximting curves with prbols insted of lines. Simon Fišnrová (Mendel University) Definite integrl MENDELU 9 /

Using the computer lgebr systems Wolfrm Alph: http://www.wolfrmlph.com/ Mthemticl Assistnt on Web (MAW): wood.mendelu.cz/mth/mw-html/index.php?lng=en&form=min Exmple Using the Wolfrm Alph find the integrl Solution: π sin x dx. integrte sin x dx from x= to pi Simon Fišnrová (Mendel University) Definite integrl MENDELU /