CI = critical item question or lecture test old Performance/Task: The student will: item General 1

Similar documents
Chemistry 111 Syllabus

VOCABULARY. Set #2. Set #1

General Chemistry (Second Quarter)

Chemistry: The Central Science Twelfth Edition, AP* Edition 2012

INTRODUCTORY CHEMISTRY FOR WATER QUALITY TECHNOLOGY I. Chemistry 11 and Principles of Mathematics 12 is strongly recommended.

Chemistry: Molecules, Matter, and Change, Fourth Edition Loretta Jones and Peter Atkins Correlated with AP Chemistry, May 2002, May 2003

Study guide for AP test on TOPIC 1 Matter & Measurement

generate testable Students will be able to investigations. Biology 1 2 (can be conclusions. reveal relationships identify sources of error higher.

Chemistry 152: Introduction to General Chemistry

Norton City Schools Standards-Based Science Course of Study 2003

Chemistry 151 Spring Section 01 MWF 9:10-10:00 am - MWF 9:10-10:00 am. Course Name: Course Code: N/A

Samples of Evidence to Satisfy the AP Chemistry Curricular Requirements

MARLBORO CENTRAL SCHOOL DISTRICT-CURRICULUM MAP. Subject: AP Chemistry 2015/16

MOBILE COUNTY PUBLIC SCHOOLS DIVISION OF CURRICULUM & INSTRUCTION HIGH SCHOOL BLOCK SCHEDULE PACING GUIDE AT A GLANCE

CHEMISTRY CONTENT SKILLS CHART

General Chemistry, in broad strokes. I. Introduction to chemistry, matter, measurements, and naming -- The Language of Chemistry

Unit 1: Chemical Foundations: Lab Skills, Properties of Matter, Scientific Measurement, and Dimensional Analysis

CHEM 121 Lecture Planner

Oxnard Union High School District Chemistry Pacing Plan SEMESTER 1

Spanish Fork High School Unit Topics and I Can Statements Honors Chemistry

Pine Hill Public Schools Curriculum

Chemistry 1

Plum Borough School District

SAVE THIS SYLLABUS FOR REFERENCE DURING THE SEMESTER.

CHEM 1364 Detailed Learning Outcomes Fall 2011 Buckley

Course Title: Academic chemistry Topic/Concept: Chapter 1 Time Allotment: 11 day Unit Sequence: 1 Major Concepts to be learned:

Curriculum Guide Chemistry

Mr. Morrow s Accelerated Chemistry Syllabus

BROOKDALE COMMUNITY COLLEGE CHEM GENERAL CHEMISTRY I 5.0 CREDITS COURSE SYLLABUS

Curriculum Mapping Chemistry I 1 st Nine Weeks

Miami Dade College CHM 1045 First Semester General Chemistry

EASTERN ARIZONA COLLEGE Fundamental Chemistry

AP Chemistry Standards and Benchmarks

Stoker: Introduction to Chemical Principles, 11th Ed. (Pearson Education, Paperback)

General Chemistry (Third Quarter)

Enfield Public Schools. Advanced (AP/UCONN) Chemistry (0297) Curriculum Writers: Patrick Smith William Schultz

Seymour Public Schools Curriculum

Chemistry 11 Unit 1 Safety in the Laboratory. Chemistry 11 Unit 2 Introduction to Chemistry

SAVE THIS SYLLABUS FOR REFERENCE DURING THE SEMESTER.

Students are required to bring these definitions HAND written on separate 3 in X 5 in index cards by chapters, the first week of school

SAVE THIS SYLLABUS FOR REFERENCE DURING THE SEMESTER.

MADISON ACADEMY CHEMISTRY AND HONORS CHEMISTRY SCIENCE PACING GUIDE QUARTER 1 VOCABULARY

Course Title. All students are expected to take the College Board Advanced Placement Exam for Chemistry in May.

Science. Smyth County Schools Curriculum Map Grade:11/12 Subject:Chemistry

Objective #1 (80 topics, due on 09/05 (11:59PM))

Course Name: CHEM 1311 Fall 2015 Course Code: N/A. ALEKS Course: General Chemistry (First Semester) Instructor: Master Templates

Norwich City Schools AP Chemistry

HADDONFIELD PUBLIC SCHOOLS Curriculum Map for Accelerated Chemistry

Successful completion of either Pre AP Chemistry or both Integrated Science I and II, and Algebra I.

Conceptual Chemistry Curriculum Pacing Guide

Chemistry Honors Curriculum Pacing Guide

Introductory College Chemistry

Chemistry, Ongoing Expectations

Chemistry Scope and Sequence

Advanced Placement Chemistry Syllabus

Chapter 1 The Atomic Nature of Matter

AP Chemistry Common Ion Effect; 16.6 ionization constants, will. Equilibria with Weak Acids and and the preparation of buffer

Introduction to Chemistry

Chemistry Curriculum Map

Three (3) (Qatar only) The expected learning outcome is that the student will be able to:

Principles of General Chemistry

Objective #1 (46 topics, due on 09/04/ :59 PM) Section 0.1 (15 topics) Course Name: Chem Hybrid Fall 2016 Course Code: PVPTL-XH6CF

Discovering Design With Chemistry

Stoker: Introduction to Chemical Principles, 11th Ed. (Pearson Education, Paperback)

End of First Nine Weeks

College Prep Chemistry. Skills Assessment Tech Strategies/Materials/Resources Formative:

Contents of ALEKS General Chemistry version 1.0 revised author Grayce, Christopher 1 Math and Algebra

Prep for AP Chemistry

the differences between that Students will be able to describe the states of matter.

WDHS Curriculum Map: Created by Erin Pence September 2010

CP Chemistry Curriculum Pacing Guide

Secondary Science: Curriculum Map for Chemistry

Chemistry Topics for UIL Dr. Brian Anderson

New Haven Public Schools Chemistry Curriculum Pacing. Quarter Unit Sequence of instruction Timeline 1 Matter Types of Matter

SOL TEST QUESTION BANK (Released Tests ) TEI PDF- 28 out of 29 CONTENTS:

CHEM 1310: Review. List of major topics

Chemistry Exam Review

Learning Objectives for Chemistry 173

Chemistry. Atomic and Molecular Structure

Pine Hill Public Schools Curriculum

Chemistry State Content Standards EXAM. from human beings! Explanations and Examples MUST be in Complete Sentences!

Greene County Schools Course Sequence Guide. Lesson#/Day SPI Topics to be Covered Supplemental Resources 1(Ch.1) N/A Syllabus/Intro to Class

Total

Table of Contents. * * * * * Volume 1

Proposed Content for the Project (Scope and Sequence)

First Semester Review AP Chemistry 7 points DUE AT EXAM (Thurs., 1/25/18) Date:

Chemistry Curriculum Map. Embedded in all standards. Chm Chm Chm Chm Writing:

Basic Concepts of Chemistry

STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK COURSE OUTLINE CHEM COLLEGE CHEMISTRY II

Regents Chemistry Objectives

Chemistry (Master) Content Skills Learning Targets Assessment Resources & Technology

CHEMISTRY HONORS LEOCE Study Guide

Explain the emission of electromagnetic radiation in spectral form in terms of the Bohr model

Academic Staff Specifics

AP Chemistry II Curriculum Guide Scranton School District Scranton, PA

UNIT 1: WELCOME TO CHEMISTRY

CHEMISTRY CURRICULUM. Unit 1: Using Mathematics in Chemistry

GREENEVILLE HIGH SCHOOL CURRICULUM MAP

Conceptual Chemistry West Linn High School

ADVANCED CHEMISTRY CURRICULUM. Unit 1: Mathematical Representation in Chemistry

Transcription:

Competencies for CHEM 1110: summary KEY: text delivery method (Chang) x.y where l = lecture x = chapter n = notes evaluation method y = section v = video tape or internet streaming video F = final exam available T = lecture test Lx = lab number x (labs are also delivery methods) 1 CI = critical item question or lecture test old text delivery eval. Performance/Task: The student will: item sections method method General 1 Know the definitions and characteristics of "science" and "chemistry." 1.2 2 Be able to describe the scientific method and the distinctions 1.3 between "hypothesis", "theories" and "laws" 3 Know the definitions of: "substance", "homogeneous mixture", 1.4 "heterogeneous mixture", "element" and "compound" 4 Be able to distinguish between the three major phases of matter, 1.5 solids, liquids and gases by their specific properties Unit Conversions Know the SI base units and unit symbols for mass, length, 5 temperature, amount, time and charge and the unit prefixes M, k, 1.7 /L2 c, m, µ, and n 6 Know and be able to apply the principles of quantity calculus (i.e. 1.9 unit factor.) /L2 7 Know how to interconvert between temperature in degrees celcius 1.8 and temperature in kelvins 8 Know the equation which defines density and be able to use it in calculations. 1.7 l/n/v CI/L3 Significant Figures 9 Know what is meant by significant figures (or digits) and how to express this properly in a written number. 1.8 /L2 10 Know how to determine the correct number of significant figures when adding, subtracting, multiplying and dividing quantities. 1.8 /L2 Introduction to Atomic and Molecular Structure 11 Know the characteristics of charge and mass of protons, neutrons 2.2 and electrons. 12 Know the composition and general construction of atoms and how 2.2 in general atoms are related to elements, isotopes and compounds. /L4 13 Be able to write and interpret the nuclear symbol conventions, eg. 2.3 H,

14 Be able to distinguish between ionic and covalent compounds and 2.5, 2.6 be able to write their chemical symbolism 15 Be able to describe and recognize an acid or base by the Arrhenius 2.7 definition 16 Be able to name simple common ionic and covalent compounds. 2.7 Avogadro's Number, N A, Molar Mass, M, and Moles, n 17 Be able to obtaining the molar masses, M, from the periodic chart. 2.6, 3.1 l/n/v CI/L4 18 Be able to interconvert between moles and grams and numbers of 3.2, 3.3 l/n/v atoms or molecules. CI/L4 Be able to interconvert between a molecular or ionic formula and 19 percent composition and from percent composition to empirical formula. 3.5, 3.6 /L4 20 Know what is meant in chemistry by % and how to calculate or interconvert. 3.5 /L2 Reaction Stoichiometry 21 Know what is meant by a chemical reaction and the symbolism used to describe a reaction 3.7 l/n/v CI/L4 22 Be able to do reaction stoichiometry problems if given a reaction. 3.8, 4.6 /L5 23 Be able to do a limiting reactant stoichiometry problem. 3.9 /L5 24 Know the definition of percent yield and be able to do problems involving percent yield 3.10 /L5 Solutions, Solution Reactions and Solution Stoichiometry 25 Be able to describe the properties of solutions, both electrolytic 4.1 and non-electrolytic 26 Be able to recognize a precipitation reaction 4.2 27 Know what spectator ions are and how to identify them 4.2 28 Be able to recognize an "overall reaction" and be able to describe 4.2 its usefulness for measurement purposes. 29 Be able to write and recognize net ionic reactions and be able to describe its usefulness for chemical reactions. 4.2 30 Be able to describe the Bronsted-Lowery acid-base reaction and 4.3, LM identify the conjugate pairs 31 Know the rule for oxidation number and be able to assign oxidation numbers to atoms in compounds 4.4, LM 32 Be able to name compounds by the IUPAC convention based upon oxidation numbers. LM 33 Know the definition of molarity and be able to interconvert from CI/L6 4.5 l/n/v grams or moles of solute and liters of solvent to molarity /L11 34 Be able to calculate concentrations in a solution dilution problem 4.5 l/n/v CI/L6 /L11 35 Be able to do calculations involved with titrations. 4.7, 4.8 l/n/v CI/L11 /L12 Naming and Oxidation Numbers

36 Know the rules for determining oxidation numbers and be able to 4.4 apply them. 37 Know the definition of and be able to recognize a redox reaction. 4.4 38 Know the rules for naming compounds by the IUPAC convention L and be able to apply them. The Perfect Gas Law 4 Be able to distinguish the three major states of matter and know their properties (repeat) 5.1 39 Know the definition of pressure 5.2 40 Be able to use the subset of gas laws: Boyle's law, Charles' law, 5.3 l/n/v L13/ Amontons' law, Gay-Lussac's law, Avogadro's principle combined L14/CI gas law and the Dumas method. 41 Be able to use the ideal gas law to solve problems 5.4 l/n/v 13/ L14/T 42 Know the definition of STP and the significance/use of the value 5.4 /L13 22.4 L/mol at STP. Combining the Perfect Gas Law with Stoichiometry Problems 43 Be able to use the ideal gas equation in combination with reaction 5.5 /L13 stoichiometry /CI Dalton's Law 44 Be able to derive Dalton's Law from the ideal gas law. 5.6 /L13 /L14 45 Know the definition of mole fraction and be able to calculate it 5.6 and interconvert it to other units. 46 Be able to use Dalton's Law in problem solving. 5.6 /L13 /L14 47 Be able to work with vapor pressure together with Dalton's Law. 5.6 /L13 Kinetic Molecular Theory 48 Be able to describe the situation where there are independent 5.7 /L9 particles as a gas and derive the expression for the molecular kinetic energy. Graham's Law 49 Be able to derive Graham's law from kinetic molecular theory, i. 5.7 e. the relationship between kinetic energy and temperature. 50 Be able to use Graham's law for various practical examples. 5.7 /L10 van der Waal's Equation 51 Be able to perform calculations using the van der Waal's equation 5.8 and know the significance of the van der Waal's constants. Theory of Atomic Structure 52 Know what is meant by "Quantum" and be able to describe the 7.1 fundamental differences between classical and quantum physics 53 Be able to describe the dual nature of matter, giving some examples of this dual nature 7.4

54 Be able describe and to give reasons for quantum numbers 7.5 55 Know what is meant by energy levels and the meaning of the four 7.6 quantum numbers for an electron in an atom /L7 56 Know the selection rules for the quantum numbers of electrons in 7.6 an atom. /L7 57 Know how to designate the quantum numbers by the letter designation, i. e. the electron configurations. 7.6, 7.7 /L7 58 Be able to use the aufbau principle based on the hydrogen atom to 7.8, 7.9 l/n/v give the electron configuration for any atom in its ground state.. T/L7 59 Know the order of the high stability configurations and Hund's rule. 7.8 /L7 Periodic Trends 60 Know the periodic trends, the exceptions to the trends, and the logic behind both for inozation energy, electron affinity, atomic 8.3-8.5 and ionic radius. 61 Know the definition of electronegativity and the periodic trends for it. 9.5 62 Be able to describe the peroxides and superoxides in terms of oxidation number and ions formed 8.6 Bond Structure 63 Know the definition of valence electrons and how to tell how many there are for a particular atom 8.2 /L7 64 Be able to use the Lewis dot structures of ionic and covalent molecules and ions using valence electrons. Know and be able to apply the rules for Lewis dot formulas give in the lab manual 9.2-9.9 /L8 65 Know the definitions of an ionic and covalent compounds and how each is formed.. 9.2, 9.4 /L8 66 Be able to explain the reason for the formation of ionic or covalent compounds based on the tendency to obtain highly stable electron configuations 9.3 67 Be able to describe the bonding involved in a covalent compound 9.4, 10.5 including the possibility of double and triple bonding. 68 Know the definition of lone or unshare electron pair and how to show this in the Lewis dot structure 9.4 /L8 69 Be able to predict whether a compound is ionic or covalent based 9.5 upon electronegativity and periodic table position. /L8 70 Be able to distinguish between hydrogen compounds with H having an oxidation number -1 and those with +1 9.5 71 Be able to recognize the presence of resonance and symbolize it. 9.8 Molecular Geometry 72 Know the rules for creating hybrid orbials and be able to apply them to determine electron geometry 10.1 /L8 73 From the molecular structure, be able to determine if a molecule is 9.5, 10.2 /L8

polar and, if so, what the orientation of the dipole is 74 From the hybrid orbitals and the lone electron pairs, be able to predict the electronic and molecular geometry 10.3,10.4 /L8 Know the definition of sigma and pi bonds and the physical 75 appearance and how these might affect geometry (including 10.5 /L8 hindered rotation) Ionic Bonding 76 Know the definition of ionic compound formation and be able to describe what an ionic compound is 5.1-5.5 Be able to explain the reason for the formation of ionic or 77 covalent compounds based on the tendency to obtain highly stable? configurations. 78 Be able to decide whether a compound is ionic or covalent; that is, know how to tell by electronegativity difference or Periodic Table 5.10 positions. Be able to distinguish between the hydrogen compounds with -1 79 oxidation number, the hydrides, and +1, the nonmetal hydrogen compounds. 5.3, 4.3 80 Be able to write combination reactions of non-metals (including H) with metals to give principal oxidation number. 5.2-5.5 81 Be able to give the formula for the normal oxides for groups 1, 2, 5.6 3 and 13 metals. 82 Be able to describe the peroxides and superoxides in terms of oxidation number and the ions formed. 5.6 Intermolecular Forces and the Condensed Phases 83 Be able to describe the condences phases and be able to contrast between the three states of matter. 11.1 84 Be able to describe and rank the various inter-particle forces. (London, dipole/ionc-dipole/ionic, dipole-induced dipole, 11.2 "hydrogen bond") 85 Be able to describe and explain the relative boiling points and melting points from the inter-particle forces 11.2 Solid State 86 Be able to describe some simple crystal structures for solids and 11.4 do calculations based on these structures. 87 Be able to identify types of solids and describe the inter-particle 11.6 forces for each type. (ionic, metallic, covalent, molecular) Phase Diagrams 88 Know meaning and location of the regions, boundaries and points 11.8 in a phase diagram (including the supercritical fluid.) 89 Be able to describe the equalibria involved for each phase boundary and point. 11.8 90 Be able to do calculations based on the Clausius-Clapeyron equation and the associated van't Hoff plot 11.8

91 Be able to do calculations to obtain the total enthapy using heat capacities and heats of phase changes 11.8 92 Be able to describe a system that is in dynamic equilibrium. 11.8 Electrolytic Solutions 93 Know the general characteristic of electrolytic and nonelectrolytic solutions and the molecular dynamics involved 12.1,12.2 94 Given enthapies of solution, be able to describe the temperature effects involved in solubility. 12.4 95 Know the definitions of and be able to interconvert between molarity, percent concentration, molality and mole fraction. 12.3 /L1 96 Be able to do calculations based upon Henry's law 12.5 /L Colligative Properties and Mole Fraction** 97 Know the definition of colligative properties and the dependence upon mole fraction. 12.6,L15 98 Be able to calculate mole fraction and molality (based upon particle concentrations.) 12.6,L15 99 Be able use Raoult's law in calculations. 12.6 Be able calculate freezing point depression and boilint point 100 elevation. 12.6,L15 101 Be able calculate osmotic pressure. 12.6 102 Know how to modify the colligative property calculations with the 12.7 total concentration for electrolytic solutions Colloids 103 Be able to describe the various properties of colloid systems 12.8 1 For more details about the CHEM 1110 Laboratories see: http:/www.genchem.net/competencies/lab1comp.html