Numerical Solution of Coupled System of Nonlinear Partial Differential Equations Using Laplace-Adomian Decomposition Method

Similar documents
State space systems analysis

Applied Mathematical Sciences, Vol. 9, 2015, no. 3, HIKARI Ltd,

Analysis of Analytical and Numerical Methods of Epidemic Models

Exact Solutions for a Class of Nonlinear Singular Two-Point Boundary Value Problems: The Decomposition Method

EXACT SOLUTION OF WHITHAM-BROER-KAUP SHALLOW WATER WAVE EQUATIONS

Modified Decomposition Method by Adomian and. Rach for Solving Nonlinear Volterra Integro- Differential Equations

A comparative study of a system of Lotka-Voltera type of PDEs through perturbation methods

EECE 301 Signals & Systems Prof. Mark Fowler

Solution of Differential Equation from the Transform Technique

EULER-MACLAURIN SUM FORMULA AND ITS GENERALIZATIONS AND APPLICATIONS

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall

AN APPLICATION OF HYPERHARMONIC NUMBERS IN MATRICES

DECOMPOSITION METHOD FOR SOLVING A SYSTEM OF THIRD-ORDER BOUNDARY VALUE PROBLEMS. Park Road, Islamabad, Pakistan

Application of Laplace Adomian Decomposition Method on Linear and Nonlinear System of PDEs

Brief Review of Linear System Theory

Explicit scheme. Fully implicit scheme Notes. Fully implicit scheme Notes. Fully implicit scheme Notes. Notes

Newton Homotopy Solution for Nonlinear Equations Using Maple14. Abstract

We will look for series solutions to (1) around (at most) regular singular points, which without

Comparison Study of Series Approximation. and Convergence between Chebyshev. and Legendre Series

The Adomian Polynomials and the New Modified Decomposition Method for BVPs of nonlinear ODEs

Zeta-reciprocal Extended reciprocal zeta function and an alternate formulation of the Riemann hypothesis By M. Aslam Chaudhry

Higher-order iterative methods by using Householder's method for solving certain nonlinear equations

Adomian Decomposition Method for Solving the Equation Governing the Unsteady Flow of a Polytropic Gas

Application of Homotopy Analysis Method for Solving various types of Problems of Ordinary Differential Equations

Introduction to Control Systems

a 1 = 1 a a a a n n s f() s = Σ log a 1 + a a n log n sup log a n+1 + a n+2 + a n+3 log n sup () s = an /n s s = + t i

Heat Equation: Maximum Principles

Solving a Nonlinear Equation Using a New Two-Step Derivative Free Iterative Methods

Application of Homotopy Perturbation Method for the Large Angle period of Nonlinear Oscillator

Similarity Solutions to Unsteady Pseudoplastic. Flow Near a Moving Wall

Relationship formula between nonlinear polynomial equations and the

STRONG DEVIATION THEOREMS FOR THE SEQUENCE OF CONTINUOUS RANDOM VARIABLES AND THE APPROACH OF LAPLACE TRANSFORM

Generalized Fibonacci Like Sequence Associated with Fibonacci and Lucas Sequences

Some New Iterative Methods for Solving Nonlinear Equations

Fig. 1: Streamline coordinates

Numerical Method for Blasius Equation on an infinite Interval

Fractional parts and their relations to the values of the Riemann zeta function

Chapter 4 : Laplace Transform

A New Modification of the Differential Transform Method for a SIRC Influenza Model

LOWER BOUNDS FOR THE BLOW-UP TIME OF NONLINEAR PARABOLIC PROBLEMS WITH ROBIN BOUNDARY CONDITIONS

ME NUMERICAL METHODS Fall 2007

Last time: Completed solution to the optimum linear filter in real-time operation

ADM Solution of Flow Field and Convective Heat Transfer over a Parallel Flat Plate and Comparison with the Forth Order Runge Kutta Method

Numerical Solutions of Second Order Boundary Value Problems by Galerkin Residual Method on Using Legendre Polynomials

Exact Solutions of the Generalized Benjamin Equation and (3 + 1)- Dimensional Gkp Equation by the Extended Tanh Method

Taylor polynomial solution of difference equation with constant coefficients via time scales calculus

Numerical solution of Bagley-Torvik equation using Chebyshev wavelet operational matrix of fractional derivative

A NEW CLASS OF 2-STEP RATIONAL MULTISTEP METHODS

A Taylor Series Based Method for Solving a Two-dimensional Second-order Equation

10-716: Advanced Machine Learning Spring Lecture 13: March 5

Assignment 1 - Solutions. ECSE 420 Parallel Computing Fall November 2, 2014

On The Computation Of Weighted Shapley Values For Cooperative TU Games

THE POTENTIALS METHOD FOR THE M/G/1/m QUEUE WITH CUSTOMER DROPPING AND HYSTERETIC STRATEGY OF THE SERVICE TIME CHANGE

-ORDER CONVERGENCE FOR FINDING SIMPLE ROOT OF A POLYNOMIAL EQUATION

A STUDY ON MHD BOUNDARY LAYER FLOW OVER A NONLINEAR STRETCHING SHEET USING IMPLICIT FINITE DIFFERENCE METHOD

The Phi Power Series

μ are complex parameters. Other

Two-step Extrapolated Newton s Method with High Efficiency Index

Numerical Solution of the Two Point Boundary Value Problems By Using Wavelet Bases of Hermite Cubic Spline Wavelets

ANALYTICAL SOLUTIONS FOR WELL DRAWDOWN WITH WELL LOSSES 2. REAL WELL NEAR BOUNDARY - SOLUTION BY IMAGE WELL

NTMSCI 5, No. 1, (2017) 26

On the Positive Definite Solutions of the Matrix Equation X S + A * X S A = Q

On Elementary Methods to Evaluate Values of the Riemann Zeta Function and another Closely Related Infinite Series at Natural Numbers

Reliable analysis for delay differential equations arising in mathematical biology

Generating Functions for Laguerre Type Polynomials. Group Theoretic method

Generalized Likelihood Functions and Random Measures

MULTIPLE TIME SCALES SOLUTION OF AN EQUATION WITH QUADRATIC AND CUBIC NONLINEARITIES HAVING FRAC- TIONAL-ORDER DERIVATIVE

wavelet collocation method for solving integro-differential equation.

TRACES OF HADAMARD AND KRONECKER PRODUCTS OF MATRICES. 1. Introduction

Numerical Methods for PDEs

Homotopy Perturbation and Elzaki Transform for Solving. Nonlinear Partial Differential Equations

8.6 Order-Recursive LS s[n]

ELEC 372 LECTURE NOTES, WEEK 4 Dr. Amir G. Aghdam Concordia University

NUMERICAL METHOD FOR SINGULARLY PERTURBED DELAY PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

Common Coupled Fixed Point of Mappings Satisfying Rational Inequalities in Ordered Complex Valued Generalized Metric Spaces

Stability Analysis of the Euler Discretization for SIR Epidemic Model

Harmonic balance approaches to the nonlinear oscillators in which the restoring force is inversely proportional to the dependent variable

ECE 422 Power System Operations & Planning 6 Small Signal Stability. Spring 2015 Instructor: Kai Sun

M227 Chapter 9 Section 1 Testing Two Parameters: Means, Variances, Proportions

A Tail Bound For Sums Of Independent Random Variables And Application To The Pareto Distribution

THE TRANSFORMATION MATRIX OF CHEBYSHEV IV BERNSTEIN POLYNOMIAL BASES

Bangi 43600, Selangor Darul Ehsan, Malaysia (Received 12 February 2010, accepted 21 April 2010)

New proofs of the duplication and multiplication formulae for the gamma and the Barnes double gamma functions. Donal F. Connon

A Study on Some Integer Sequences

Chapter 1 ASPECTS OF MUTIVARIATE ANALYSIS

Performance-Based Plastic Design (PBPD) Procedure

NEW FAST CONVERGENT SEQUENCES OF EULER-MASCHERONI TYPE

THE NUMERICAL SOLUTION OF THE NEWTONIAN FLUIDS FLOW DUE TO A STRETCHING CYLINDER BY SOR ITERATIVE PROCEDURE ABSTRACT

IN many scientific and engineering applications, one often

Application of Laplace Decomposition Method to Solve Nonlinear Coupled Partial Differential Equations

CONTROL ENGINEERING LABORATORY

ME 410 MECHANICAL ENGINEERING SYSTEMS LABORATORY REGRESSION ANALYSIS

Math 312 Lecture Notes One Dimensional Maps

STA 4032 Final Exam Formula Sheet

Weak formulation and Lagrange equations of motion

New integral representations. . The polylogarithm function

Research Article Two Expanding Integrable Models of the Geng-Cao Hierarchy

A GENERALIZED CHEBYSHEV FINITE DIFFERENCE METHOD FOR HIGHER ORDER BOUNDARY VALUE PROBLEMS

CALCULATION OF FIBONACCI VECTORS

1. Linearization of a nonlinear system given in the form of a system of ordinary differential equations

Transcription:

I S S N 3 4 7-9 V o l u m e N u m b e r 0 8 J o u r a l o f A d v a c e i M a t h e m a t i c Numerical Solutio of Coupled Sytem of Noliear Partial Differetial Equatio Uig Laplace-Adomia Decompoitio Method ABSTRACT Mohamed S. M. Bahgat Departmet of Mathematic, Faculty of Sciece, Miia Uiverity, Egypt mohamed.bahagat@mu.edu.eg Or mmbahgat66@hotmail.com.aim of the paper i to ivetigate applicatio of Laplace Adomia Decompoitio Method (LADM) o oliear phyical problem. Some coupled ytem of o-liear partial differetial equatio (NLPDE) are coidered ad olved umerically uig LADM. The reult obtaied by LADM are compared with thoe obtaied by tadard ad modified Adomia Decompoitio Method. The behavior of the umerical olutio i how through graph. It i oberved that LADM i a effective method with high accuracy with le umber of compoet. Mathematic Subject Claificatio: 45J05, 45B05, 45D05 ad 45A05 Keyword: Laplace Adomia Decompoitio Method; Adomia' Polyomial; Coupled partial differetial equatio.. INTRODUCTION The partial differetial equatio (PDE) have o may eetial applicatio of ciece ad egieerig uch a wave propagatio, hallow water wave, fluid mechaic, thermodyamic, chemitry ad micro electro mechaic ytem, etc. It i difficult to hadle oliear part of thee ytem, although mot of the cietit applied umerical method to fid the olutio of thee ytem that baed o liearizatio, perturbed ad dicretizatio. Debath [] applied the characteritic method ad Loga [] ued the Riema ivariat method to hadle ytem of PDE. Wazwaz [3] ued the Adomia decompoitio method (ADM) to hadle the ytem of PDE. Laplace Decompoitio Method (LDM) i free of ay mall or large parameter ad ha advatage over other approximatio techique like perturbatio, LDM require o dicretizatio ad liearizatio, therefore, reult obtaied by LDM are more efficiet ad realitic. Thi method ha bee ued to obtai approximate olutio of a cla of oliear ordiary ad PDE [4-7]. I thi paper, we compute umerical olutio to oliear ytem of PDE by uig LADM. The umerical olutio become eaier ad higher accuracy tha the tadard Adomia Decompoitio Method (ADM).. LADM for NONLINEAR COUPLED of PDE Coider the geeral oliear coupled of PDE writte i a operator form (ee [8]) Lt ( u ) R( u) M ( u) N ( u, v ) f ( x, t ) L ( v ) R ( v ) M ( v ) N ( u, v ) f ( x, t ) t () Subject to the iitial coditio u ( x,0) g( x ), 0 x, v ( x,0) g ( x ), 0 x, () where ad are real cotat ad the otatio of Lt, R ad R ymbolized the liear patial t differetial operator, the otatio M, M, N ad N ymbolized the oliear differetial operator ad f ( x, t ), f ( x, t ) are give fuctio. The method coit of firt applyig the Laplace traform to both ide of equatio i ytem () ad the by uig iitial coditio, we have g( x) { u} { f ( x, t )} { R( u )} { M ( u )} { N ( u, v )} g( x) { v } { f ( x, t )} { R( v )} { M ( v )} { N ( u, v )} i the Laplace decompoitio method we aume the olutio i i a ifiite erie, give a follow (3) 6530 P a g e c o u c i l f o r I o v a t i v e R e e a r c h S e p t e m b e r 06

I S S N 3 4 7-9 V o l u m e N u m b e r 0 8 J o u r a l o f A d v a c e i M a t h e m a t i c u ( x, t ) u k ( x, t ), k 0 v ( x, t ) v k ( x, t ), k 0 where uk( x, t ) ad v k( x, t ) are to be recurively computed. Alo the oliear term M, M, N ad N are decompoed a a ifiite erie of Adomia polyomial (ee [9,0]), (5) k 0 k 0 M ( u ) A, N ( u, v ) B, For the oliear operator oliearity. They are defied by the followig relatio M (u), ad N (u, v) the Adomia' polyomial ca be geerated for all form of A ( u, u,, u ) M u ( x, t ), d k 0 0 k! d k 0 0 B ( u, u,, u ; v, v,, v ) N u ( x, t ), v ( x, t ). d k k 0 0 0 0 k k! d k 0 k 0 0 Subtitutig (4) ad (6) ito (3) ad applyig the liearity of the Laplace traform, we get the followig recurively formula g( x) { u0( x, t )} { f ( x, t )} g( x) { v 0( x, t )} { f ( x, t )} ad { uk ( x, t )} R( uk ( x, t )) Ak B k, k 0 { v k ( x, t )} R( v k ( x, t ) C k Dk, k 0 Applyig the ivere Laplace traform, we ca evaluate u ( x, t ) ad v ( x, t ) 3. APPLICATIONS k I order to verify umerically whether the propoed methodology lead to the accurate olutio, we evaluate LADM uig the approximatio for ome example of o-liear ytem of PDE. To how the efficiecy of the preet method for our problem i compario with the exact olutio, we report the abolute error. The calculatio i thi paper have bee doe uig the Maple 8 oftware. The reult are lited i table - ad figure -4 below. Example : Coider the coupled ytem of oliear PDE of the form [] k (4) (6) (7) (8) pt v xw y v yw x - p v t w x p y pxw y v w t pxv y p yv x w with the followig iitial coditio (9) 653 P a g e c o u c i l f o r I o v a t i v e R e e a r c h S e p t e m b e r 06

I S S N 3 4 7-9 V o l u m e N u m b e r 0 8 J o u r a l o f A d v a c e i M a t h e m a t i c xy p( x, y,0) e, xy v ( x, y,0) e yx w ( x, y,0) e. (0) The exact olutio of the ytem (9) i []. x y t p( x, y, t ) e ; x y t v ( x, y, t ) e ; y x t w ( x, y, t ) e Solutio: To olve the ytem of equatio (9)-(0) by mea of LADM, we cotruct a correctioal fuctioal which read { p} p( x, y,0) p v w v w { v } v ( x, y,0) v w x p y pxw y {w } w( x, y,0) w pxv y p yv x We ca defie the Adomia polyomial a follow x y y x () A v k ( x, y, t ) w k ( x, y, t ), k 0x y B v k ( x, y, t ) w k ( x, y, t ), k 0y x C w k ( x, y, t ) p k ( x, y, t ), k 0x y E p k ( x, y, t ) w k ( x, y, t ), k 0x y F p k ( x, y, t ) v k ( x, y, t ), k 0x y G p k ( x, y, t ) v k ( x, y, t ). k 0y x We defie a iterative cheme () 653 P a g e c o u c i l f o r I o v a t i v e R e e a r c h S e p t e m b e r 06

I S S N 3 4 7-9 V o l u m e N u m b e r 0 8 J o u r a l o f A d v a c e i M a t h e m a t i c xy { p0( x, y, t )} e xy { v 0( x, y, t )} e yx { w 0( x, y, t )} e { p ( x, y, t )} p ( x, y, t ) A B, 0 { v ( x, y, t )} v ( x, y, t ) C E, 0 { w ( x, y, t )} w ( x, y, t ) F G, 0 the Adomia' polyomial A, B, C, E, F ad Adomia' polyomial a follow 4 6 4 A0, A t, A t t, A3 t t t 4 36 4 4 6 4 B0, B t, B t t, B3 t t t 4 36 4 y y y 4 C 0 e, C e ( t ), C e ( t 4t 4), 4 y 6 4 y y C 3 e ( t 9t 36t 36), E 0 e, E e ( t ), 36 y 4 y 6 4 E e ( t 4t 4), E 3 e ( t 9t 36t 36), 4 36 x x y 4 F0 e, F e ( t ), F e ( t 4t 4), 4 x 6 4 x x F3 e ( t 9t 36t 36), G0 e, G e ( t ), 36 x 4 x 6 4 G e ( t 4t 4), G3 e ( t 9t 36t 36), 4 36 Applyig the ivere Laplace traform, fially, Accordig to () the 0 th compoet x y x y y x p0( x, y, t ) e, v 0( x, y, t ) e ad w 0( x, y, t ) e x y x y y x p0( x, y, t ) e, v 0( x, y, t ) e, w 0( x, y, t ) e compoet: (3) G are geerated accordig to (6), we ca give the firt few writte a follow:, where, k 0 x y x y y x p ( x, y, t ) e t, v ( x, y, t ) e t, w ( x, y, t ) e t, p x y t v x y t w x y t t p x y t v x y t w x y t t 6 6 6 x y x y y x (,, ) e t, (,, ) e t, (,, ) e,, x y 3 x y 3 y x 3 3(,, ) e t, 3(,, ) e t, 3(,, ) e. So, we get the followig 6533 P a g e c o u c i l f o r I o v a t i v e R e e a r c h S e p t e m b e r 06

I S S N 3 4 7-9 V o l u m e N u m b e r 0 8 J o u r a l o f A d v a c e i M a t h e m a t i c xy 30 p30( x, y, t ) e t, 65585989058636308480000000 xy 30 v 30( x, y, t ) e t, 65585989058636308480000000 yx 30 w 0( x, y, t ) e t, 65585989058636308480000000 Similarly, we ca alo fid other compoet, ad the approximate olutio for calculatig 50 th. Uig (4), the erie olutio are therefore give by xy 5 4 3 p( x, y, t ) e ( t 5t 0t 60t 0t 0 ), 0 xy 5 4 3 v ( x, y, t ) e ( t 5t 0t 60t 0t 0 ), 0 yx 5 4 3 v ( x, y, t ) e ( t 5t 0t 60t 0t 0 ). 0 t t By uig the Taylor expaio for e ad e we ca fid the exact olutio. The umerical behavior of approximate olutio of LADM of p( x, y, t ), v ( x, y, t ) ad w ( x, y, t ) with differet value of time are compared with the exact olutio are how through figure(a)-(c) p(x,y,t) LADM (a) p(x,y,t) exact v(x,y,t) LADM (b) v(x,y,t) exact 6534 P a g e c o u c i l f o r I o v a t i v e R e e a r c h S e p t e m b e r 06

I S S N 3 4 7-9 V o l u m e N u m b e r 0 8 J o u r a l o f A d v a c e i M a t h e m a t i c w(x,y,t) LADM (c) w(x,y,t) exact Figure. (a) Exact ad umerical olutio of p(x,y, t), 5 x 5, 5 y 5 for differet value of t; (b) Exact ad umerical olutio of v(x,y, t), 5 x 5, 5 y 5 for differet value of t; (c) Exact ad umerical olutio of w(x,y, t), 5 x 5, 5 y 5 for differet value of t Example : The coupled Burger ytem u u uu ( uv ) =0 t xx x x v v vv +( uv ) =0 t xx x x (4) where q q( x, t ), q = q( x, t ), with iitial coditio u( x,0) i x, v ( x,0) i x. The exact olutio of the ytem (4) i u( x,t) v ( x, t ) i x e t (ee [] ad [] ). Solutio: To olve the ytem of equatio (4) by mea of LADM, we cotruct a correctioal fuctioal which read { u} u ( x,0) u uu ( uv ) { v } v ( x,0) v vv ( uv ) xx x x xx x x We ca defie the Adomia polyomial a follow A C E k k k k 0x k 0 x k k k k 0x k 0x k 0 u ( x, t ), B u ( x, t ) u ( x, t ), u ( x, t ) v ( x, t ), F v ( x, t ) v k ( x, t ) v k ( x, t ), x We defie a iterative cheme { u0( x, t )} i x { v 0( x, t )} i x { u ( x, t )} A B C, 0 { v ( x, t )} F E C, 0. Applyig the ivere Laplace traform, fially, the Adomia' polyomial A, B, C, E ad accordig to (6), we ca give the firt few compoet of the Adomia' polyomial repectively a follow 6535 P a g e c o u c i l f o r I o v a t i v e R e e a r c h S e p t e m b e r 06 (5) (6) (7) F are geerated

I S S N 3 4 7-9 V o l u m e N u m b e r 0 8 J o u r a l o f A d v a c e i M a t h e m a t i c A i x, B i x co x, C i x co x, E i x co x, F i x, 0 0 0 0 0 A i x ( t ), B 4t i x co x, C ( t ) i x co x, E 4t i x co x, F i x ( t ), A i x t it i x (3t t (( t 3t 3) co x 3)) 6 t co x i x ( t 3t 3), B i x ( co x (3t t (( t 3t 3) co x 3)) 6 t i x ( t 3t 3)) t i x co x i x (3t t (( t 3t 3) co x 3 3 3)) cox, C ( co x (3t t (( t 3t 3) co x 3)) t i x ( t 3t 3)) 3 6 3 ix(3t t (( t 3t 3) co x 3)) t ix co x i x co x, E i x ( co x (3t t (( t 3t 3) co x 3)) t i x ( t 3t 3)) 6 3 t i x ( t 3t 3)) t ix co x i x (3t t (( t 3t 3) co x 3 3 3)) co x, F i x t it i x (3t t (( t 3t 3) co x 3)) 6 c t o x i x ( t 3t 3) Accordig to (7), the 0 th compoet u 0 ( x, t ) ad v 0 ( x, t ) writte a follow:, where, 0. So, we get the followig compoet: u ( x, t ) t i x, v ( x, t ) t i x u ( x, t ) i x (3t t (( t 3t 3)cox 3)) 6 v ( x, t ) i x (3t t (( t 3t 3)cox 3)) 6 3 4 3 4 3 u3( x, t ) t i x (60 70t 84t 55t 40 t ((t 4t 630 4 3 4t 63t 4) co 4)) ( 630 co(3 t 35t 80t 60t 60) 630 3 4 3 5 t (8co x (t 4t 4t 63t 4) ) 4 t (co x (5t 6) 3 ( t 5t 30) 45)) t i x 3 4 3 4 3 v 3( x, t ) t i x (60 70t 84t 55t 40 t ((t 4t 630 4 3 4t 63t 4) co 4)) ( 630 co(3 t 35t 80t 60t 60) 630 3 4 3 5 t (8co x (t 4t 4t 63t 4) ) 4 t (co x (5t 6) 3 ( t 5t 30) 45)) t i x Similarly, we ca alo fid other compoet, ad the approximate olutio for calculatig 5 th. Uig (4), the erie olutio are therefore give by u ( x, t ) i x t i x i x (3t t (( t 3t 3) co x 3 )) 6 v ( x, t ) ix t ix i x (3t t (( t 3t 3) cox 3 )) 6 ad Figure. (a) ad (b) how the exact ad umerical olutio of ytem (4) with 0 th term by LADM. 6536 P a g e c o u c i l f o r I o v a t i v e R e e a r c h S e p t e m b e r 06

I S S N 3 4 7-9 V o l u m e N u m b e r 0 8 J o u r a l o f A d v a c e i M a t h e m a t i c LADM ad exact for u(x,t) (a) LADM ad exact for v(x,t) (b) Figure. (a) how the exact ad LADM umerical olutio u(x, t) of example, 5 x 5, - t ; (b) how the exact ad LADM umerical olutio v (x, t) of example, 5 x 5, - t. Example 3: we coider the oliear ytem [3] u uu vu t x y v vv uv t y x, with the iitial coditio u( x, y,0) x y ; v(x, y,0) x y, 0 x, y. x y x y The exact olutio give a u ( x, y, t ) ; v(x, y, t ), 0 t T. t t Solutio: Takig the Laplace traform o both ide of Eq. (0) the, by uig the differetiatio property of Laplace traform ad iitial coditio, a the ame procedure i the above example whe we uig equatio (9)-(0) for the ytem (0) ad accordig to (3) we have the followig 0 th compoet ;, ad the recurive relatio ca be writte a follow: ; ; ; (8) ; ; ; ; ; Similarly, we ca alo fid other compoet, ad the approximate olutio for calculatig more 0 th. Uig (3), the erie olutio are therefore give by 3 4 3 4 u ( x, y, t ) v ( x, y,t) (x y) (x y) t 4(x y) t 8(x y) t 6(x y) t ( x y )[ t 4t 8t 6 t ] x y ( x y )( t ) t x y x y that coverge to the exact olutio u ( x, y, t ) ; v ( x, y, t ), t t ad Figure 3 eure that the previou obtaied reult of ytem (8) with 30 th term by LADM it coverge to the exact olutio. Table how the abolute error betwee the exact olutio ad the reult obtaied from the LADM olutio 6537 P a g e c o u c i l f o r I o v a t i v e R e e a r c h S e p t e m b e r 06

I S S N 3 4 7-9 V o l u m e N u m b e r 0 8 J o u r a l o f A d v a c e i M a t h e m a t i c ad compario with the reult obtaied by the tadard algorithm for Adomia' polyomial ADM ad modified ADM olutio of ytem of equatio (8) (ee [4] ad [6]). u(x,y,t) LADM v(x,y,t) ) LADM u(x,y,t) ad v(x,y,t) exact Figure 3. how the exact ad LADM umerical olutio of u(x, t) ad v (x, t) for example 3, 5 x 5, - y ; t=0.. Table : The umerical reult i compario with the aalytical olutio for variou value of x, y ad t for example 3 The abolute error t y x Exact(u )=Exact(v ) LADM AMD [6] Modified AMD[4] 0. 0. 0.3 0.5 0.5 0.3500000 6.55e-06 3.000e-008 3. 0000e-00 0.785.37500000.39e-05.600e-007 0.0000e+000 0.500 0.500.50000000.6e-05.800e-007 0.0000e+000 0.875 0.5.50000000.6e-05.800e-007 0.0000e+000 0.785.075000000 4.35e-05.00e-007 0.0000e+000 0.5 0.5 0.46666667.83e-009 4.3690e-005 4. 700e-008 0.785.56666667 6.67e-009.5903e-004. 5900e-007 0.500 0.500.666666667 7.33e-009.7476e-004. 6600e-007 0.875 0.5.666666667 7.33e-009.7476e-004. 6600e-007 0.785.766666667.e-008.900e-004. 8600e-007 0.5 0.5 0.65000000.37e-005 3.779e-003. 445e-005 0.785.75000000 4.99e-005.3756e-00 5. 480e-005 0.500 0.500.500000000 5.48e-005.56e-00 5. 6574e-005 0.875 0.5.500000000 5.48e-005.56e-00 5. 6574e-005 0.785 4.50000000 9.0e-005.5093e-00 9. 3897e-005 6538 P a g e c o u c i l f o r I o v a t i v e R e e a r c h S e p t e m b e r 06

I S S N 3 4 7-9 V o l u m e N u m b e r 0 8 J o u r a l o f A d v a c e i M a t h e m a t i c We ote from the above reult, the abolute error obtaied by the propoed algorithm LADM a compared with the abolute error of the tadard algorithm for Adomia' polyomial ADM ad modified ADM give reult more accurate. Example 4: The mathematical model o may pheomea i applied ciece lead to o-liear PDE uch a the homogeeou form of the ytem of two dimeioal Burger' equatio which i propoed a mathematical model of free turbulece [5, 6] ut uu x vu y ( u xx + u yy ), R v t vv y uv x ( v xx + v yy ), R ubject to the iitial coditio 3 ux (, y,0), 4 R ( y x )/8 4 e 3 ux (, y,0), 4 R ( y x )/8 4 e (9) (0) the exact olutio [8]: 3 u ( x, y, t ), 4 R ( t4y 4 x )/3 4 e 3 v ( x, y, t ), 4 R ( t4y 4 x )/3 4 e where R i Reyold umber. A the ame procedure i the above example whe we ue (3)-(6) for the ytem (9)-(0) ad accordig to (7) (8), we have the followig 0 th compoet: 3 u0 ( x, y, t ), 4 R ( y x )/8 4 e 3 v 0 ( x, y, t ), 4 R ( y x )/8 4 e () ad the recurive relatio ca be writte a follow: u ( x, y, t )} F A B, v ( x, y, t )} G C E, ad the Adomia polyomial A, B, C, E, F ad where 0 G are defid a follow () ; 6539 P a g e c o u c i l f o r I o v a t i v e R e e a r c h S e p t e m b e r 06

I S S N 3 4 7-9 V o l u m e N u m b e r 0 8 J o u r a l o f A d v a c e i M a t h e m a t i c ; (3). We ca give the firt few Adomia' polyomial of repectively to get the followig compoet: 6540 P a g e c o u c i l f o r I o v a t i v e R e e a r c h S e p t e m b e r 06

I S S N 3 4 7-9 V o l u m e N u m b e r 0 8 J o u r a l o f A d v a c e i M a t h e m a t i c ad the recurive relatio ca be writte a follow: 654 P a g e c o u c i l f o r I o v a t i v e R e e a r c h S e p t e m b e r 06

I S S N 3 4 7-9 V o l u m e N u m b e r 0 8 J o u r a l o f A d v a c e i M a t h e m a t i c. Similarly, we ca alo fid other compoet, ad Uig (3), the erie olutio are therefore give by ad Figure 4. (a)-(d) how the exact ad umerical olutio of ytem (9) with 3 th term by LADM alo table how the abolute error betwee the exact olutio ad the reult obtaied from the LADM olutio ad compario with the reult obtaied by the tadard algorithm ADM (ee [6]). u(x,y,t) LADM u(x,y,t) exact LADM ad exact for u(x,y,t) (a) v(x,y,t) LADM v(x,y,t) exact LADM ad exact for v(x,y,t) (b) Figure 4. (a) ad (b) how the exact ad LADM of u(x,y, t) ad v (x, y,t) for example 4, 0. x 0.5; 0. y 0.5 ; t=0.; R=50 654 P a g e c o u c i l f o r I o v a t i v e R e e a r c h S e p t e m b e r 06

I S S N 3 4 7-9 V o l u m e N u m b e r 0 8 J o u r a l o f A d v a c e i M a t h e m a t i c u(x,y,t) LADM u(x,y,t) exact LADM ad exact for u(x,y,t) (c) v(x,y,t) LADM v(x,y,t) exact LADM ad exact for v(x,y,t) (d) Figure 4. (c) ad (d) how the exact ad LADM of u(x,y, t) ad v (x, y,t) for example 4, 0. x 0.5; 0. y 0.5 ; t=0.5; R=00 Table : The umerical reult i compario with the aalytical olutio for variou value of x ad t for example 4 whe y =, R = 50 ad R =00 are repectively The abolute error t x Exact(u ) Exact(v ) LADM(u ) AMD(u ) [6] LADM(v ) AMD(v )[6] R=50 R=00 R=50 R=50 R=00 R=00 0. 0.7487736486 0.749993949.73e-004 7.45e-003.88e-006 5.579e-006 0. 0.747785907 0.749978797 5.04e-004.3845e-003 6.55e-006.800e-005 0. 0.3 0.7457777 0.74996007 9.0e-004.5604e-003.8e-005 6.87e-005 0.4 0.743794 0.7497494.65e-003 4.6943e-003 7.96e-005.906e-004 0.5 0.73583645 0.74905994.84e-003 8.479e-003.77e-004 7.634e-004 0. 0.748046078 0.7499844874 6.09e-004.7787e-003.87e-006.837e-005 0. 0.74637405 0.7499458640.8e-003 3.970e-003 6.53e-006. 6.36e-005 0.5 0.3 0.7433079 0.7498486.07e-003 6.070e-003.8e-005.9e-004 0.4 0.7377855554 0.74934085 3.73e-003.040e-00 8.0e-005 7.79e-004 0.5 0.7809040 0.747785907 6.53e-003.9654e-00.84e-004.666e-003 The umerical reult how that uig of LADM by 3- compoet give reult more accurate tha the reult uig 5- compoet by tadard ADM which i preeted i [6]. 4. CONCLUSION LADM i a powerful tool which i capable of hadlig coupled ytem of oliear of partial differetial equatio. I thi paper the LADM ha bee uccefully applied to fid approximate olutio for the homogeeou form of the ytem of two dimeioal Burger' equatio without ay dicretizatio. The method preet a ueful way to develop a aalytic 6543 P a g e c o u c i l f o r I o v a t i v e R e e a r c h S e p t e m b e r 06

I S S N 3 4 7-9 V o l u m e N u m b e r 0 8 J o u r a l o f A d v a c e i M a t h e m a t i c treatmet for thee ytem. The propoed cheme ca be applied for ytem more tha two liear ad oliear partial differetial equatio. REFERENCES [] L. Debath, Noliear Partial Differetial Equatio for Scietit ad Egieer, Birkhauer, Boto, 997. [] J. D. Loga, A Itroductio to Noliear Partial Differetial Equatio, Wiley, New York, 994. [3] A. M. Wazwaz, The decompoitio method applied to ytem of partial differetial equatio ad to the reactiodiffuio bruelator model, Appl. Math. Comput., 0 (000), pp. 5-64. [4] S. A. Khuri, A Laplace Decompoitio Algorithm Applied to Cla of Noliear Differetial Equatio, Jour- al of Applied Mathematic, Vol., No. 4, 00, pp. 4-55. [5] H. Hoeizadeh, H. Jafari ad M. Roohai, Applicatio of Laplace Decompoitio Method for Solvig Klei- Gordo Equatio, World Applied Sciece Joural, Vol.8, No. 7, 00, pp. 809-83. [6] M. Kha, M. Huai, H. Jafari ad Y.Kha, Applicatio of Laplace Decompoitio Method to Solve Noliear Coupled Partial Differetial Equatio, World Applied Sciece Joural, Vol. 9, No., 00, pp. 3-9. [7] E. Yuufoglu, Numerical Solutio of Duffig Equatio by the Laplace Decompoitio Algorithm, Applied Mathematic ad Computatio, Vol. 77, No., 006, pp. 57-580. doi:0.06/j.amc.005.07.07. [8] D. Kaya ad I.E. Ia, Exact ad Numerical Travelig Wave Solutio for Noliear Coupled Equatio Uig Symbolic Computatio, Appl. Math.ad Comput. 5, (004) 775-787. [9] H. Jafari ad V. Daftardar-Gejji, Solvig Liear ad Noliear Fractioal Diffutio ad Wave Equatio by Adomia Decompoitio, Applied Mathematic ad Computatio, Vol. 80, No., 006, pp. 488-497. doi:0.06/j.amc.005..03. [0] F. Abdelwahid, A mathematical Model of Adomia Polyomial, Applied Mathematic ad Computatio, Vol. 4, No. -3, 003, pp. 447-453. doi:0.06/s0096-3003(0)0066-7. [] Mahmoud S. Rawahdeh ad Shehu Maitama, SOLVING COUPLED SYSTEM OF NONLINEAR PDE S USING THE NATURAL DECOMPOSITION METHOD. Iteratioal Joural of Pure ad Applied Mathematic, Volume 9 No. 5 04, 757-776. [] A.S. Ravi Kath ad K. Arua, Differetial traform method for olvig liear ad o-liear ytem of partial differetial equatio, Phy. Lett. A., 37, 6896-6898 (008). [3] R. Bellma, B. G. Kahef ad J. Cati, Differetial Quadrature Techique for The Rapid Solutio of Noliear Partial Differetial equatio, J. of Comput. Phyic, 0, (97), No., 40-5. [4] H. O. AL-Humedi et.al, Modified Algorithm to Compute Adomia' Polyomial for Solvig No-Liear Sytem of Partial Differetial Equatio, It. J. Cotemp. Math. Sciece, Vol. 5, 00, o. 5, 505 5. [5] M. Dehgha, H. Agar ad S. Mohammad, The Solutio of Coupled Burger' Equatio Uig Adomia Pade techique, Appl. Math. ad Comput. 89, (008),No, 034-047. [6] S.M. El- Sayed ad D. Kaya, O The Numerical Solutio of The Sytem of Two-dimeioal Burger' Equatio by The Decompoitio Method, Appl. Math. ad Comput. 58, (004), 0 09. 6544 P a g e c o u c i l f o r I o v a t i v e R e e a r c h S e p t e m b e r 06