Probabilistic Robotics

Similar documents
Introduction to Mobile Robotics

L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS. NA568 Mobile Robotics: Methods & Algorithms

Probabilistic Robotics SLAM

Probabilistic Robotics SLAM

Using the Kalman filter Extended Kalman filter

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II

CSE-473. A Gentle Introduction to Particle Filters

Two Popular Bayesian Estimators: Particle and Kalman Filters. McGill COMP 765 Sept 14 th, 2017

SEIF, EnKF, EKF SLAM. Pieter Abbeel UC Berkeley EECS

Recursive Bayes Filtering Advanced AI

CSE-571 Robotics. Sample-based Localization (sonar) Motivation. Bayes Filter Implementations. Particle filters. Density Approximation

Uncertainty & Localization I

Tracking. Many slides adapted from Kristen Grauman, Deva Ramanan

Robot Motion Model EKF based Localization EKF SLAM Graph SLAM

Tracking. Many slides adapted from Kristen Grauman, Deva Ramanan

Augmented Reality II - Kalman Filters - Gudrun Klinker May 25, 2004

Sequential Importance Resampling (SIR) Particle Filter

Introduction to Mobile Robotics SLAM: Simultaneous Localization and Mapping

AUTONOMOUS SYSTEMS. Probabilistic Robotics Basics Kalman Filters Particle Filters. Sebastian Thrun

Probabilistic Fundamentals in Robotics

Announcements. Recap: Filtering. Recap: Reasoning Over Time. Example: State Representations for Robot Localization. Particle Filtering

7630 Autonomous Robotics Probabilistic Localisation

2016 Possible Examination Questions. Robotics CSCE 574

EKF SLAM vs. FastSLAM A Comparison

2.160 System Identification, Estimation, and Learning. Lecture Notes No. 8. March 6, 2006

Data Fusion using Kalman Filter. Ioannis Rekleitis

Anno accademico 2006/2007. Davide Migliore

Localization and Map Making

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter

Estimation of Poses with Particle Filters

Notes on Kalman Filtering

Chapter 14. (Supplementary) Bayesian Filtering for State Estimation of Dynamic Systems

CS 4495 Computer Vision Tracking 1- Kalman,Gaussian

Fundamental Problems In Robotics

Linear Gaussian State Space Models

Introduction to Mobile Robotics Summary

An recursive analytical technique to estimate time dependent physical parameters in the presence of noise processes

Temporal probability models

מקורות לחומר בשיעור ספר הלימוד: Forsyth & Ponce מאמרים שונים חומר באינטרנט! פרק פרק 18

Monte Carlo data association for multiple target tracking

Georey E. Hinton. University oftoronto. Technical Report CRG-TR February 22, Abstract

Improved Rao-Blackwellized H filter based mobile robot SLAM

Algorithms for Sensor-Based Robotics: Kalman Filters for Mapping and Localization

Probabilistic Robotics The Sparse Extended Information Filter

AUV positioning based on Interactive Multiple Model

Financial Econometrics Kalman Filter: some applications to Finance University of Evry - Master 2

Data Assimilation. Alan O Neill National Centre for Earth Observation & University of Reading

Applications in Industry (Extended) Kalman Filter. Week Date Lecture Title

Excel-Based Solution Method For The Optimal Policy Of The Hadley And Whittin s Exact Model With Arma Demand

Simultaneous Localisation and Mapping. IAR Lecture 10 Barbara Webb

Recursive Least-Squares Fixed-Interval Smoother Using Covariance Information based on Innovation Approach in Linear Continuous Stochastic Systems

Kriging Models Predicting Atrazine Concentrations in Surface Water Draining Agricultural Watersheds

FastSLAM: An Efficient Solution to the Simultaneous Localization And Mapping Problem with Unknown Data Association

Temporal probability models. Chapter 15, Sections 1 5 1

Multi-Robot Simultaneous Localization and Mapping (Multi-SLAM)

Planning in Information Space for a Quadrotor Helicopter in a GPS-denied Environment

Open loop vs Closed Loop. Example: Open Loop. Example: Feedforward Control. Advanced Control I

An introduction to the theory of SDDP algorithm

Localization. Mobile robot localization is the problem of determining the pose of a robot relative to a given map of the environment.

Tracking. Announcements

Object Tracking. Computer Vision Jia-Bin Huang, Virginia Tech. Many slides from D. Hoiem

Kalman filtering for maximum likelihood estimation given corrupted observations.

m = 41 members n = 27 (nonfounders), f = 14 (founders) 8 markers from chromosome 19

Testing the Random Walk Model. i.i.d. ( ) r

A Fast Numerical Fitting Approach to Calculate the Likelihood of Particles in Particle Filters

Smoothing. Backward smoother: At any give T, replace the observation yt by a combination of observations at & before T

Subway stations energy and air quality management

Hidden Markov Models

A Distributed Multiple-Target Identity Management Algorithm in Sensor Networks

OBJECTIVES OF TIME SERIES ANALYSIS

Mapping in Dynamic Environments

On Solving the Perturbed Multi- Revolution Lambert Problem: Applications in Enhanced SSA

Speech and Language Processing

Modeling Economic Time Series with Stochastic Linear Difference Equations

Stochastic Signals and Systems

References are appeared in the last slide. Last update: (1393/08/19)

Simultaneous Localization and Mapping with Unknown Data Association Using FastSLAM

Computer Vision 2 Lecture 6

(1) (2) Differentiation of (1) and then substitution of (3) leads to. Therefore, we will simply consider the second-order linear system given by (4)

Recursive Estimation and Identification of Time-Varying Long- Term Fading Channels

Lecture 1 Overview. course mechanics. outline & topics. what is a linear dynamical system? why study linear systems? some examples

FastSLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping that Provably Converges

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Overview. COMP14112: Artificial Intelligence Fundamentals. Lecture 0 Very Brief Overview. Structure of this course

MCMC-Based Particle Filtering for Tracking a Variable Number of Interacting Targets. Zia Khan, Tucker Balch, and Frank Dellaert

CptS 570 Machine Learning School of EECS Washington State University. CptS Machine Learning 1

WATER LEVEL TRACKING WITH CONDENSATION ALGORITHM

F2E5216/TS1002 Adaptive Filtering and Change Detection. Likelihood Ratio based Change Detection Tests. Gaussian Case. Recursive Formulation

Vectorautoregressive Model and Cointegration Analysis. Time Series Analysis Dr. Sevtap Kestel 1

Ordinary differential equations. Phys 750 Lecture 7

Chapter 1 Fundamental Concepts

hen found from Bayes rule. Specically, he prior disribuion is given by p( ) = N( ; ^ ; r ) (.3) where r is he prior variance (we add on he random drif

Filtering Turbulent Signals Using Gaussian and non-gaussian Filters with Model Error

Motion Planning under Uncertainty using Iterative Local Optimization in Belief Space

Presentation Overview

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model

Fixed-lag Sampling Strategies for Particle Filtering SLAM

Institute for Mathematical Methods in Economics. University of Technology Vienna. Singapore, May Manfred Deistler

A PROBABILISTIC MULTIMODAL ALGORITHM FOR TRACKING MULTIPLE AND DYNAMIC OBJECTS

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010

Transcription:

Probabilisic Roboics Bayes Filer Implemenaions Gaussian filers

Bayes Filer Reminder Predicion bel p u bel d Correcion bel η p z bel

Gaussians : ~ π e p N p - Univariae / / : ~ μ μ μ e p Ν p d π Mulivariae

~ ~ a b a N Y b ax Y N X Properies of Gaussians ~ ~ ~ N X p X p N X N X

~ ~ A A B A N Y B AX Y N X Mulivariae Gaussians ~ ~ ~ N X p X p N X N X

Discree Kalman Filer Esimaes he sae of a discree-ime conrolled process ha is governed by he linear sochasic difference equaion A B u ε wih a measuremen z C δ 6

Componens of a Kalman Filer A B C ε δ Mari nn ha describes how he sae evolves from o - wihou conrols or noise. Mari nl ha describes how he conrol u changes he sae from o -. Mari kn ha describes how o map he sae o an observaion z. Random variables represening he process and measuremen noise ha are assumed o be independen and normally disribued wih covariance R and Q respecively. 7

Kalman Filer Updaes in D 8

9 Kalman Filer Updaes in D wih Q C C C K K C I C z K bel wih obs K K z K bel

0 Kalman Filer Updaes in D R A A B u A bel ac a b u a bel

Kalman Filer Updaes

Linear Gaussian Sysems: Iniializaion Iniial belief is normally disribued: bel N ; 0 0 0 0

3 Dynamics are linear funcion of sae and conrol plus addiive noise: u B A ε Linear Gaussian Sysems: Dynamics R B u A N u p ; ; ~ ; ~ N R B u A N d bel u p bel

4 Linear Gaussian Sysems: Dynamics R A A B u A bel d B u A R B u A bel N R B u A N d bel u p bel ep ep ; ~ ; ~ η

5 Observaions are linear funcion of sae plus addiive noise: C z δ Linear Gaussian Sysems: Observaions Q C z N z p ; N Q C z N bel z p bel ; ~ ; ~ η

6 Linear Gaussian Sysems: Observaions wih ep ep ; ~ ; ~ Q C C C K K C I C z K bel C z Q C z bel N Q C z N bel z p bel η η

Kalman Filer Algorihm. Algorihm Kalman_filer - - u z :. Predicion: A B u 3. 4. 5. Correcion: K C C C Q K z C 6. 7. 8. A A 9. Reurn R I K C 7

8 he Predicion-Correcion-Cycle R A A B u A bel ac a b u a bel Predicion

9 he Predicion-Correcion-Cycle Q C C C K K C I C z K bel obs K K z K bel Correcion

0 he Predicion-Correcion-Cycle Q C C C K K C I C z K bel obs K K z K bel R A A B u A bel ac a b u a bel Correcion Predicion

Kalman Filer Summary Highly efficien: Polynomial in measuremen dimensionaliy k and sae dimensionaliy n: Ok.376 n Opimal for linear Gaussian sysems! Mos roboics sysems are nonlinear!

Nonlinear Dynamic Sysems Mos realisic roboic problems involve nonlinear funcions g u z h

Lineariy Assumpion Revisied 3

Non-linear Funcion 4

EKF Linearizaion 5

EKF Linearizaion 6

EKF Linearizaion 3 7

8 Predicion: Correcion: EKF Linearizaion: Firs Order aylor Series Epansion G u g u g u g u g u g H h h h h h

9 EKF Algorihm. Eended_Kalman_filer - - u z :. Predicion: 3. 4. 5. Correcion: 6. 7. 8. 9. Reurn u g R G G Q H H H K h z K H K I u g G h H u A B R A A Q C C C K C z K C K I

Localizaion Using sensory informaion o locae he robo in is environmen is he mos fundamenal problem o providing a mobile robo wih auonomous capabiliies. [Co 9] Given Map of he environmen. Sequence of sensor measuremens. Waned Esimae of he robo s posiion. Problem classes Posiion racking Global localizaion Kidnapped robo problem recovery 30

Landmark-based Localizaion 3

3. EKF_localizaion - - u z m: Predicion:. 3. 4. 5. 6. u g V V M G G θ θ θ θ θ θ ' ' ' ' ' ' ' ' ' y y y y y y u g G v y v y v u u g V ω θ θ ω ω ' ' ' ' ' ' 4 3 0 0 v v M ω α α ω α α Moion noise Jacobian of g w.r. locaion Prediced mean Prediced covariance Jacobian of g w.r. conrol

33. EKF_localizaion - - u z m: Correcion:. 3. 4. 5. 6. 7. 8. ˆ z z K H K I θ θ ϕ ϕ ϕ y y r r r m h H θ aan ˆ y y y y m m m m z Q H H S S H K 0 0 r r Q Prediced measuremen mean Pred. measuremen covariance Kalman gain Updaed mean Updaed covariance Jacobian of h w.r. locaion

EKF Predicion Sep 34

EKF Observaion Predicion Sep 35

EKF Correcion Sep 36

Esimaion Sequence 37

Esimaion Sequence 38

Comparison o Groundruh 39

EKF Summary Highly efficien: Polynomial in measuremen dimensionaliy k and sae dimensionaliy n: Ok.376 n No opimal! Can diverge if nonlineariies are large! Works surprisingly well even when all assumpions are violaed! 40

Linearizaion via Unscened ransform EKF UKF 4

UKF Sigma-Poin Esimae EKF UKF 4

UKF Sigma-Poin Esimae 3 EKF UKF 43

44 Unscened ransform n i n w w n n w n w i c i m i i c m... for 0 0 0 ± λ λ χ β α λ λ λ λ χ Sigma poins Weighs i i g χ ψ n i i i i c n i i i m w w 0 0 ' ' ψ ψ ψ Pass sigma poins hrough nonlinear funcion Recover mean and covariance

45 UKF_localizaion - - u z m: Predicion: 4 3 0 0 v v M ω α α ω α α 0 0 r r Q a 0 0 0 0 a Q M 0 0 0 0 0 0 a a a a a a γ γ χ u u g χ χ χ L i i i i w c 0 χ χ L i i i w m 0 χ Moion noise Measuremen noise Augmened sae mean Augmened covariance Sigma poins Predicion of sigma poins Prediced mean Prediced covariance

UKF_localizaion - - u z m: Correcion: Ζ z χ h χ Measuremen sigma poins L i zˆ w m S i 0 L w z i 0 L i 0 i c w Ζ i Ζ z Ζ zˆ i c i ˆ i χ Ζ zˆ i i Prediced measuremen mean Pred. measuremen covariance Cross-covariance K S z K zˆ z Kalman gain Updaed mean K S K Updaed covariance 46

47. EKF_localizaion - - u z m: Correcion:. 3. 4. 5. 6. 7. 8. ˆ z z K H K I θ θ ϕ ϕ ϕ y y r r r m h H θ aan ˆ y y y y m m m m z Q H H S S H K 0 0 r r Q Prediced measuremen mean Pred. measuremen covariance Kalman gain Updaed mean Updaed covariance Jacobian of h w.r. locaion

UKF Predicion Sep 48

UKF Observaion Predicion Sep 49

UKF Correcion Sep 50

EKF Correcion Sep 5

Esimaion Sequence EKF PF UKF 5

Esimaion Sequence EKF UKF 53

Predicion Qualiy EKF UKF 54

UKF Summary Highly efficien: Same compleiy as EKF wih a consan facor slower in ypical pracical applicaions Beer linearizaion han EKF: Accurae in firs wo erms of aylor epansion EKF only firs erm Derivaive-free: No Jacobians needed Sill no opimal! 55

Kalman Filer-based Sysem [Arras e al. 98]: Laser range-finder and vision High precision <cm accuracy [Couresy of Kai Arras] 56

Mulihypohesis racking 57

Localizaion Wih MH Belief is represened by muliple hypoheses Each hypohesis is racked by a Kalman filer Addiional problems: Daa associaion: Which observaion corresponds o which hypohesis? Hypohesis managemen: When o add / delee hypoheses? Huge body of lieraure on arge racking moion correspondence ec. 58

MH: Implemened Sysem Hypoheses are eraced from LRF scans Each hypohesis has probabiliy of being he correc one: H i { ˆ i i P H i } Hypohesis probabiliy is compued using Bayes rule P H i s P s H i P H P s Hypoheses wih low probabiliy are deleed. New candidaes are eraced from LRF scans. C j { z j R j} i [Jensfel e al. 00] 59

MH: Implemened Sysem Couresy of P. Jensfel and S. Krisensen 60

MH: Implemened Sysem 3 Eample run # hypoheses PH bes Map and rajecory Couresy of P. Jensfel and S. Krisensen #hypoheses vs. ime 6