DAMIETTA UNIVERSITY CHEM-405: PERICYCLIC REACTIONS LECTURE

Similar documents
Chapter 27 Pericyclic Reactions

Pericyclic Reactions 6 Lectures Year 3 Handout 2 Michaelmas 2017

ORGANIC - BROWN 8E CH DIENES, CONJUGATED SYSTEMS, AND PERICYCLIC REACTIONS

ORGANIC - BRUICE 8E CH.8 - DELOCALIZED ELECTRONS AND THEIR EFFECT

Answers To Chapter 4 Problems.

Pericyclic reactions

Exam. Name. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Conjugated Systems, Orbital Symmetry and UV Spectroscopy

17.1 Classes of Dienes

Chem 634. Pericyclic Reactions. Reading: CS-B Chapter 6 Grossman Chapter 4

17.1 Classes of Dienes

Pericyclic Reactions and Organic Photochemistry S. Sankararaman Department of Chemistry Indian Institute of Technology, Madras

Chapter 13 Conjugated Unsaturated Systems

Answers To Chapter 7 Problems.

Alcohols, Ethers, & Epoxides

3) The delocalized π system in benzene is formed by a cyclic overlap of 6 orbitals. A) s B) p C) sp D) sp2 E) sp3

CHAPTER 9 THEORY OF RESONANCE BY, G.DEEPA

6.8 The HOMO and LUMO Concept of Electronic Transitions The Selection Rules for Electronic Transitions Physical Properties of

New σ bond closes a ring. Loss of one π bond and gain of one σ bond

Pericyclic Reactions and Organic Photochemistry S. Sankararaman Department of Chemistry Indian Institute of Technology, Madras

Diels-Alder Cycloaddition

Chapter 15 Dienes, Resonance, and Aromaticity

Exam (6 pts) Show which starting materials are used to produce the following Diels-Alder products:

Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320

Pericyclic Reaction. Molecular Orbitals in Conjugated Systems (Review)

Pericyclic Reactions - Continued

Pericyclic Reactions and Organic Photochemistry S. Sankararaman Department of Chemistry Indian Institute of Technology, Madras

Chapter 13. Conjugated Unsaturated Systems. +,., - Allyl. What is a conjugated system? AllylicChlorination (High Temperature)

4. Organic photosynthetic reactions

PERICYCLIC REACTIONS NOTES

Pericyclic Reactions: Electrocyclic Reaction

Chem 263 Notes Sept. 26, 2013

CHEMISTRY Topic #3: Addition Reactions of Conjugated Dienes Spring 2017 Dr. Susan Findlay

Answers To Chapter 4 In-Chapter Problems.

Chap 11. Carbonyl Alpha-Substitution Reactions and Condensation Reactions

Allylic and Benzylic Reactivity

Chapter 15: Conjugated Systems, Orbital Symmetry, and UV Spectroscopy

Pericyclic reactions

Organic Chemistry II / CHEM 252 Chapter 13 Conjugated Unsaturated Systems

Suggested solutions for Chapter 34

Lecture Notes Chem 51B S. King I. Conjugation

THE DIELS-ALDER REACTION

This syllabus is printed on both sides of each page in the hard-copy version.

Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group

Pericyclic Reactions and Organic Photochemistry S. Sankararaman Department of Chemistry Indian Institute of Technology, Madras

12/27/2010. Chapter 15 Reactions of Aromatic Compounds

Chapter 15 Reactions of Aromatic Compounds

11/5/ Conjugated Dienes. Conjugated Dienes. Conjugated Dienes. Heats of Hydrogenation

Conjugated Systems. With conjugated double bonds resonance structures can be drawn

REARRANGEMENTS NOTES Mechanistic Aspects of Rearrangements

Organic Chemistry II KEY March 27, Which of the following reaction intermediates will form the fastest in the reaction below?

Pericyclic Reactions

DAMIETTA UNIVERSITY. Energy Diagram of One-Step Exothermic Reaction

ADDITION OF HYDROGEN HALIDES TO CONJUGATED DIENES A. 1,2- and 1,4-Additions 700 CHAPTER 15 DIENES, RESONANCE, AND AROMATICITY

Chapter 16 Aldehydes and Ketones I Nucleophilic Addition to the Carbonyl Group

CHEM 347 Organic Chemistry II (for Majors) Instructor: Paul J. Bracher. Quiz # 4. Due in Monsanto Hall 103 by: Friday, April 4 th, 2014, 7:00 p.m.

Electrocyclic and Cycloaddition Reactions

Learning Guide for Chapter 17 - Dienes

CYCLOADDITIONS IN ORGANIC SYNTHESIS

240 Chem. Aromatic Compounds. Chapter 6

Chapter 16. Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group. Physical Properties of Aldehydes and Ketones. Synthesis of Aldehydes

1. Radical Substitution on Alkanes. 2. Radical Substitution with Alkenes. 3. Electrophilic Addition

Dienes & Polyenes: An overview and two key reactions (Ch )

Pericyclic Reactions and Organic Photochemistry S. Sankararaman Department of Chemistry Indian Institute of Technology, Madras

MO THEORY FOR CONJUGATED MOLECULES

PAPER No. 5:Organic Chemistry-2(Reaction Mechanism-1) MODULE No. 6: Generation, Structure, Stability and Reactivity of Carbocations

Just Chemistry Department Organic Chemistry 217

Lecture Topics: I. Electrophilic Aromatic Substitution (EAS)

3 - CONJUGATION. More than one double bond can be in a given compound: n=0

Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of H X 2. Addition of H OH and addition of Y X 3. Addition to allene and

JEFFERSON COLLEGE COURSE SYLLABUS CHM201 ORGANIC CHEMISTRY II. 5 Credit Hours. Prepared by: Richard A. Pierce

[3,3]-Sigmatropic rearrangements

Organic Chemistry II KEY March 27, 2013

Chapter 15. Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution on Arenes. The first step is the slow, rate-determining step

Aromatic Compounds II

Fundamentals of Organic Chemistry

Ethers. Chapter 14: Ethers, Epoxides, & Sulfides. General Formula: Types: a) Symmetrical: Examples: b) Unsymmetrical: Examples: Physical Properties:

Organic Chemistry II KEY March 25, a) I only b) II only c) II & III d) III & IV e) I, II, III & IV

Chapter 7: Alcohols, Phenols and Thiols

DAMIETTA UNIVERSITY CHEM-103: BASIC ORGANIC CHEMISTRY LECTURES Dr Ali El-Agamey. Organic Chemistry, 7 th Edition L. G. Wade, Jr.

Basic Organic Chemistry Course code : CHEM (Pre-requisites : CHEM 11122)

and Ultraviolet Spectroscopy

Organic Chemistry I (Chem340), Spring Final Exam

Topic 9. Aldehydes & Ketones

Electrophilic Aromatic Substitution

Real life example 1 Let s look at this series of chloroalcohols, and how fast the chloride gets displaced by an external nucleophile.

Units-1 & 2: Pericyclic Reactions

Pericyclic Reactions page 29

235 Organic II. Final Exam Review REACTIONS OF CONJUGATED DIENES 1,2 VS 1,4 ADDITION REACTIONS OF CONJUGATED DIENES

Alcohols: Contain a hydroxy group( OH) bonded to an sp 2 or sp 3 hybridized

Organic Chemistry. Alkynes

Conjugated Systems & Pericyclic Reactions

August 10, Prospective Chemistry 5511 Students. SUBJECT: Course Syllabus for Chemistry 5511 Fall 2011

Mass Spectrometry. Introduction EI-MS and CI-MS Molecular mass & formulas Principles of fragmentation Fragmentation patterns Isotopic effects

Name: CHEM 633: Advanced Organic Chem: Physical Problem Set 5 Due 11/10/17

5. (6 pts) Show how the following compound can be synthesized from the indicated starting material:

Solution problem 22: Non-Benzoid Aromatic Sytems

Chapter 25: The Chemistry of Life: Organic and Biological Chemistry

When H and OH add to the alkyne, an enol is formed, which rearranges to form a carbonyl (C=O) group:

Chapter 21. Phenols and Aryl Halides. Nucleophilic Aromatic Substitution. Ch. 21-1

Transcription:

DAMIETTA UNIVERSITY CHEM-405: PERICYCLIC REACTIONS LECTURE 8 Dr Ali El-Agamey 1

LEARNING OUTCOMES LECTURE 8 (1) The Woodward-Hoffmann rules for [1,n] sigmatropic rearrangements -[1,2] cationic shift -[1,2] anionic shift (2) Photochemical Sigmatropic Rearrangements (3) [m,n] Sigmatropic Rearrangements (a) [3,3] sigmatropic rearrangements: -Cope rearrangement -oxy-cope rearrangement -anionic oxy- Cope rearrangement -Claisen rearrangement -Ireland-Claisen rearrangement (b) [5,5] sigmatropic rearrangements 2

The Woodward-Hoffmann rules for [1,n] sigmatropic rearrangements 1 (4n + 2) electrons (4n) electrons e.g. 2 or 6 or 10 electrons e.g. 4 or 8 or 12 electrons (4n + 2) electrons suprafacial shift with retention (or antarafacial shift with inversion but impossible in practice) 3

The Woodward-Hoffmann rules for [1,n] sigmatropic rearrangements 1 (4n) electrons are the opposite (4n) electrons suprafacial shift with inversion (or antarafacial shift with retention) Photochemical reactions follow the reverse of the thermal rule. 4

Sigmatropic Rearrangements 1 [1,2] cationic shift: In the cationic [1,2] hydride shift (two-electron reaction), there are one-atom component, the H atom, and two-atom component. No matter how the two electrons are distributed between the two components, the dominant HOMO LUMO interaction in the TS is between the 1s orbital of the one-atom component and Ψ 1 of the two-atom component. Ψ 2 Ψ 1 The H atom is always classified as a suprafacial component, as the 1s orbital is monophasic.

Sigmatropic Rearrangements 1 [1,2] cationic shift: Likewise, in the cationic [1,2] alkyl shift, both components must be suprafacial. The migrating group retains its configuration because of the requirement for suprafaciality. 6

Sigmatropic Rearrangements 1 [1,2] anionic shift: By contrast, in the [1,2] anionic H shift, the dominant FMO interaction is between the 1s orbital of the one-atom component and Ψ 2 of the two-atom component. The H atom must have partial bonds to the top and bottom faces of the two-atom component simultaneously. Because this arrangement is geometrically impossible, [1,2] anionic H shifts are thermally disallowed reactions. Ψ 2 Ψ 1 7

Sigmatropic Rearrangements 1 [1,2] anionic shift: In the case of the alkyl shift, the configuration is inverted. In fact, the geometric requirements for anionic [1,2] alkyl shifts are so stringent (severe, inflexible) that the reactions are extremely rare. 8

Photochemical Sigmatropic Rearrangements Migration of Hydrogen Photochemical sigmatropic rearrangements are extremely rare. 3-4 For photochemical rearrangements, predictions are exactly reversed. 1 In a photochemical [1,3] sigmatropic rearrangement, the stereochemical requirement changes because under these conditions, the HOMO of the three-atom component is Ψ 3 (symmetrical), not Ψ 2 (antisymmetrical). 2 Ψ 3 Ψ 2 Ψ 1 9

Mechanism??? 10

Photochemical Sigmatropic Photochemical [1,3] alkyl shift: Rearrangements This photochemical [1,3] sigmatropic rearrangement proceeds suprafacially with respect to both components, resulting in retention of configuration about the migrating one-atom component, a stereogenic alkyl group. 1 The reaction fails to proceed at all under thermal conditions. 1 11

[3,3] sigmatropic rearrangements: The [3,3] sigmatropic rearrangements (Cope and Claisen rearrangements) are the most widely used sigmatropic rearrangements and are probably the most widely used pericyclic reactions after the Diels Alder reaction. In the Cope rearrangement, a 1,5-diene isomerizes to another 1,5-diene. 1 The Cope rearrangement is a [3,3]-sigmatropic rearrangement with only carbon atoms in the ring. In its simplest version it is not a reaction at all. 2-3 12

[3,3] sigmatropic rearrangements: The [3,3] sigmatropic rearrangement is a six-electron reaction. No matter how the six electrons are distributed between the two three-atom components, the dominant FMO interaction in the TS is between Ψ 2 of one component and Ψ 2 of the other component. The reaction proceeds suprafacially with respect to both components. 1 Ψ 3 Ψ 3 Ψ 2 Ψ 2 Ψ 1 Ψ 1 13

[3,3] sigmatropic rearrangements: The Cope rearrangement of the simplest 1,5-diene, 1,5-hexadiene, is degenerate: the starting material is identical with the product, and the equilibrium constant for the rearrangement is 1. 1 Substituents may shift the equilibrium to one side or the other. For example, the equilibrium between 3,4-dimethyl-1,5-hexadiene and 2,6-octadiene lies on the side of the more substituted pi bonds. 1 14

[3,3] sigmatropic rearrangements: Cope rearrangement occurs at exceptionally low temperatures when the single bond is part of a small strained ring and the two double bonds are cis to each other. 1 15

[3,3] sigmatropic rearrangements: The position of the Cope equilibrium can also be altered by removing the product 1,5-diene from the reaction mixture. 1 In the oxy-cope rearrangement, a 3-hydroxy-1,5-diene undergoes the Cope rearrangement to give an enol, which isomerizes quickly to a δ,ε-unsaturated carbonyl compound. The latter compound is a 1,6-diene, not a 1,5-diene, so it is incapable of undergoing the Cope rearrangement in the retro direction. 1 16

[3,3] sigmatropic rearrangements: Oxy-Cope rearrangements proceed at especially low temperatures when the alcohol is deprotonated. The anionic oxy-cope rearrangement is accelerated compared with the neutral reaction because the negative charge is more delocalized in the TS than in the starting material. The driving force for the anionic oxy-cope rearrangement is no longer removal of the product diene from the equilibrium but simply delocalization of the negative charge. 1 17

[3,3] sigmatropic rearrangements: Base catalysis That is to say sigmatropic rearrangements are catalyzed by bases. For example; the "oxy-cope rearrangements" of the potassium salts of 3-hydroxy-1,5-hexadienes, such as 38, have been found to proceed as much as 10 12 times as rapidly as the rearrangements of the parent alcohols. 1 18

[3,3] sigmatropic rearrangements: 19

[3,3] sigmatropic rearrangements: Claisen rearrangement: In the Claisen rearrangement, an allyl vinyl ether isomerizes to a γ,δ-unsaturated carbonyl compound. 1 20

[3,3] sigmatropic rearrangements: Claisen rearrangement: Mechanism 21

[3,3] sigmatropic rearrangements: Claisen rearrangement: How do we know that this is the mechanism? 1 22

[3,3] sigmatropic rearrangements: Claisen rearrangement: Studies using migrating groups labelled with 14 C. 2 These results indicate that Claisen rearrangement proceed by a concerted mechanism. 2 23

[3,3] sigmatropic rearrangements: Claisen rearrangement: Which way will they go? Orbital symmetry tells us that [3,3]-sigmatropic rearrangements are allowed but says nothing about which way they will go. They are allowed in either direction. So why does the Claisen rearrangement always go in this direction? 1 24

[3,3] sigmatropic rearrangements: Claisen rearrangement: The combination of a carbonyl group and a C C sigma bond made the keto form more stable than the enol form with its combination of a C=C pi bond and a C O sigma bond. The same is true here. It is the formation of the carbonyl group that drives the reaction to the right. 1-2 The key to identifying Cope and Claisen rearrangements is the 1,5-diene in the starting material or in the product. - A γ,δ-unsaturated carbonyl compound (a 1,5-heterodiene) can be made by a Claisen rearrangement, and - a δ,ε-unsaturated carbonyl compound can be made by an oxy-cope rearrangement. 2 25

[3,3] sigmatropic rearrangements: Claisen rearrangement: Mechanism One might expect that in this particular case, the equilibrium would lie on the side of the aromatic compound, not the carbonyl. However, the carbonyl quickly tautomerizes (by a nonconcerted mechanism!) to the aromatic 2-allylphenol, which can t undergo the reaction in the reverse direction. 1 26

[3,3] sigmatropic rearrangements: Claisen rearrangement: When both ortho positions on the aromatic ring are already substituted (and even, to small degree, when one or both are not substituted), the migrating allylic group will shift to the para position, resulting in a p-susbtituted phenol. 1-2 27

[3,3] sigmatropic rearrangements: Claisen rearrangement: The direct [1,5] shift mechanism seems unlikely, in view of the distance between the oxygen atoms and the para positions. 1 In fact, para-claisen rearrangements have been demonstrated to proceed by two successive [3,3] shifts (Eq 46). The allylic group first migrates to the ortho position and then undergoes a second [3,3] shift (a Cope migration step) to the para position. 1 Finally, the para-cyclohexadienone formed in the second migration step tautomerizes to form a phenol-a process presumably catalyzed by acids or bases. 1

[3,3] sigmatropic rearrangements: Claisen rearrangement: 29

[3,3] sigmatropic rearrangements: Claisen rearrangement: Several lines of evidence demonstrate that para-claisen rearrangements proceed via two successive [3,3] shifts rather than a single [1,5] shift: (1) The ortho-cyclohexadienone, 32, formed as the initial intermediate in the rearrangement of ether 31, has been trapped as its Diels-Alder adduct with maleic anhydride. 1 30

[5,5] sigmatropic rearrangements: Claisen rearrangement: A longer conjugated system 5.65 allows a more direct delivery to the para position, giving the phenol 5.67 as the major product along with some of the product of a normal Claisen rearrangement. 1 31

[5,5] sigmatropic rearrangements: Claisen rearrangement: Similarily, the terminal methyl group in 5.65 shows that this is a [5,5] rearrangement (5.65 to 5.66) rather than two successive [3,3] rearrangements. The [5,5] rearrangement is allowed if it is all-suprafacial, a geometry 5.68 that is not difficult to achieve. 1 32

Homework: In the previous reaction, what is (are) the structure(s) of the product(s) resulting from two successive [3,3] rearrangements? 33

Questions Homework: Write the mechanism of the following reaction? 34

LEARNING OUTCOMES LECTURE 8 (1) Sigmatropic rearrangements -Acid catalysis - [2,3] sigmatropic rearrangements 35

Sigmatropic Rearrangements Acid catalysis Some types of sigmatropic shifts were reported to occur solely as acid-catalyzed processes. The best known example is benzidine rearrangements. 1 Homework: Write the mechanism of the previous reaction? 36

Sigmatropic Rearrangements Acid catalysis Other examples : The addition of Lewis acid catalysts, e.g. BCl 3, lowers the temperatures necessary for Claisen rearrangements of allyl phenyl ethers from about 200 o C to below RT. 37

Sigmatropic Rearrangements Acid catalysis [1,5] shifts of benzyl groups in cyclohexadienones, which requires temperatures above 150 o C in the absence of catalysis, proceed at RT when catalyzed by solutions of sulfuric acid in acetic acid. Homework: Write the mechanism of the previous reaction? 38

[2,3] sigmatropic rearrangements: The [2,3]-sigmatropic rearrangement is a thermal isomerization reaction involving six electrons and a five-membered cyclic TS. 1 The [2,3] sigmatropic rearrangement of alloxycarbanions is known as the Wittig rearrangement. 2 i 39

[2,3] sigmatropic rearrangements: The starting material is a benzyl allyl ether and undergoes [2,3]-sigmatropic rearrangement to make a new C C sigma bond at the expense of a C O sigma bond a bad bargain this as the C O bond is stronger. 1 The balance is tilted by the greater stability of the oxyanion in the product than of the carbanion in the starting material. The new bond has a 2,3 relationship to the old and the TS is a five-membered ring. 1 40

[2,3] sigmatropic rearrangements: The dominant FMO interaction in the TS of the [2,3] sigmatropic rearrangement is between Ψ 2 of both components. The reaction proceeds suprafacially with respect to both components. 1,2 Ψ 2 Ψ 3 Ψ 2 Ψ 1 Ψ 1 41

[2,3] sigmatropic rearrangements: 42

[2,3] sigmatropic rearrangements: The key to identifying a [2,3] sigmatropic rearrangement is that an allylic group migrates from a heteroatom to an adjacent atom (which may be C or another heteroatom). 1 43

Questions Homework: Write the structure of A and the mechanism of the following reaction? 44