COMPUTERS IN PHARMACEUTICAL RESEARCH & DEVELOPMENT

Similar documents
Medicinal Chemistry/ CHEM 458/658 Chapter 4- Computer-Aided Drug Design

Cheminformatics Role in Pharmaceutical Industry. Randal Chen Ph.D. Abbott Laboratories Aug. 23, 2004 ACS

COMBINATORIAL CHEMISTRY: CURRENT APPROACH

Reaxys Improved synthetic planning with Reaxys

History of Scientific Computing!

AMRI COMPOUND LIBRARY CONSORTIUM: A NOVEL WAY TO FILL YOUR DRUG PIPELINE

Receptor Based Drug Design (1)

October 6 University Faculty of pharmacy Computer Aided Drug Design Unit

CSD. CSD-Enterprise. Access the CSD and ALL CCDC application software

Data Quality Issues That Can Impact Drug Discovery

Quantitative structure activity relationship and drug design: A Review

CSD. Unlock value from crystal structure information in the CSD

Ping-Chiang Lyu. Institute of Bioinformatics and Structural Biology, Department of Life Science, National Tsing Hua University.

JCICS Major Research Areas

Early Stages of Drug Discovery in the Pharmaceutical Industry

Fondamenti di Chimica Farmaceutica. Computer Chemistry in Drug Research: Introduction

Everyday NMR. Innovation with Integrity. Why infer when you can be sure? NMR

MSc Drug Design. Module Structure: (15 credits each) Lectures and Tutorials Assessment: 50% coursework, 50% unseen examination.

RECENT TRENDS IN PHARMACEUTICAL CHEMISTRY FOR DRUG DISCOVERY

In Silico Investigation of Off-Target Effects

The Quantum Landscape

Introduction to Chemoinformatics and Drug Discovery

Data Mining in the Chemical Industry. Overview of presentation

INTENSIVE COMPUTATION. Annalisa Massini

Modeling Biomolecular Systems II. BME 540 David Sept

Ignasi Belda, PhD CEO. HPC Advisory Council Spain Conference 2015

PROVIDING CHEMINFORMATICS SOLUTIONS TO SUPPORT DRUG DISCOVERY DECISIONS

Decision Support Systems for the Practicing Medicinal Chemist

Additional background material on the Nobel Prize in Chemistry 1998

Biology Slide 1 of 34

Bridging the Dimensions:

Chemoinformatics and information management. Peter Willett, University of Sheffield, UK

Modifying natural products: a fresh look at traditional medicine

Interactive Feature Selection with

QSAR of Microtubule Stabilizing Dictyostatins

COMBINATORIAL CHEMISTRY IN A HISTORICAL PERSPECTIVE

CONTINUOUS FLOW CHEMISTRY (PROCESSING) FOR INTERMEDIATES AND APIs

PIOTR GOLKIEWICZ LIFE SCIENCES SOLUTIONS CONSULTANT CENTRAL-EASTERN EUROPE

Navigation in Chemical Space Towards Biological Activity. Peter Ertl Novartis Institutes for BioMedical Research Basel, Switzerland

Analog Computing: a different way to think about building a (quantum) computer

Introduction. OntoChem

May the force be with you

Unlocking the potential of your drug discovery programme

From soup to cells the origin of life

The Case for Use Cases

TRAINING REAXYS MEDICINAL CHEMISTRY

The shortest path to chemistry data and literature

Intro to ab initio methods

Computational Chemistry in Drug Design. Xavier Fradera Barcelona, 17/4/2007

Statistical concepts in QSAR.

Development of Pharmacophore Model for Indeno[1,2-b]indoles as Human Protein Kinase CK2 Inhibitors and Database Mining

EMPIRICAL VS. RATIONAL METHODS OF DISCOVERING NEW DRUGS

ACD/Structure Elucidator

QSAR Study of Quinazoline Derivatives as Inhibitor of Epidermal Growth Factor Receptor-Tyrosine Kinase (EGFR-TK)

Section 1: Work and Power. Section 2: Using Machines. Section 3: Simple Machines

Preface. See for options on how to legitimately share published articles.

Pharmaceutical e-learning at the University of Innsbruck

BIOLOGY 111. CHAPTER 1: An Introduction to the Science of Life

Sunil Khilari IMED Research Center, Pune. Dr. Sachin Kadam Bharti Vidyapeeth University, Pune

CH MEDICINAL CHEMISTRY

Quantum Series Product Catalog

DivCalc: A Utility for Diversity Analysis and Compound Sampling

An automated synthesis programme for drug discovery

Retrieving hits through in silico screening and expert assessment M. N. Drwal a,b and R. Griffith a

Synthesis and Reactivity of Vinyl Iodonium Salts

Chemical Manufacturing

Dr. Sander B. Nabuurs. Computational Drug Discovery group Center for Molecular and Biomolecular Informatics Radboud University Medical Centre

A Quantum Community in the UK

Molecular descriptors and chemometrics: a powerful combined tool for pharmaceutical, toxicological and environmental problems.

Further information: Basic principles of quantum computing Information on development areas of Volkswagen Group IT

Structural biology and drug design: An overview

Chemists Do you have the Bayer Spirit?

Electrical and Computer Engineering Department University of Waterloo Canada

Knott, M. May Future t r e n d s

MOLECULAR DIVERSITY IN DRUG DESIGN

Electronegativity and Bond Polarity

OF ALL THE CHEMISTRY RELATED SOFTWARE

Unit 3 Exploring Relationships: Lines and Curves of Best Fit

2 4 Chemical Reactions and Enzymes Slide 1 of 34

Chemists are from Mars, Biologists from Venus. Originally published 7th November 2006

Course Plan for Pharmacy (Bachelor Program) No.: (2016/2017) Approved by Deans Council by decision (09/26/2016) dated (03/08/2016) )160) Credit Hours

Using AutoDock for Virtual Screening

Computational chemical biology to address non-traditional drug targets. John Karanicolas

Dispensing Processes Profoundly Impact Biological, Computational and Statistical Analyses

Molecular dynamics simulation. CS/CME/BioE/Biophys/BMI 279 Oct. 5 and 10, 2017 Ron Dror

e-practicals: how to develop a virtual (chemistry) lab class

1) Now there are 4 bacteria in a dish. Every day we have two more bacteria than on the preceding day.

QSAR Modeling of ErbB1 Inhibitors Using Genetic Algorithm-Based Regression

Fundamentals of Quantum Chemistry

Capturing Chemistry. What you see is what you get In the world of mechanism and chemical transformations

Notes of Dr. Anil Mishra at 1

Keywords: anti-coagulants, factor Xa, QSAR, Thrombosis. Introduction

GIS Visualization: A Library s Pursuit Towards Creative and Innovative Research

Computational Methods and Drug-Likeness. Benjamin Georgi und Philip Groth Pharmakokinetik WS 2003/2004

Understanding 1D Motion

Progress of Compound Library Design Using In-silico Approach for Collaborative Drug Discovery

STEM Research Literacy

CHEM-UP! D A Y 3 S P R I N G The Academic Support Daytona State College (Chem-Up 3, Page 1 of 36)

Simplifying Drug Discovery with JMP

GIS = Geographic Information Systems;

Transcription:

COMPUTERS IN PHARMACEUTICAL RESEARCH & DEVELOPMENT Presented by MrsA. Lavanya M.Pharm., Assistant Professor Department of Pharmaceutics Krishna Teja Pharmacy college Subject; Computer Aided Drug Delivery System(17S03203)

DETAILED OUTLINE ABOUT HISTORY Today, computers are so ubiquitous in pharmaceutical research and development that it may be hard to imagine a time when there were no computers to assist the medicinal chemist or biologist. A quarter-century ago, the notion of a computer on the desk of every scientist and company manager was not even contemplated. Now, computers are absolutely essential for generating, managing, and transmitting information. The aim of this chapter is to give a brief account of the historical development. It is a story of ascendancy and one that continues to unfold. Owing to the personal interest and experience of the authors, the emphasis in this presentation is on using computers for drug discovery. But the use of computers in laboratory instruments and for analysis of experimental and clinical data is no less important.

As science advanced scientist began understanding the relation between the chemical structure of a molecule and its molecular properties including biological activity. On the basis of molecular properties of any molecule then its structure can be predicted & investigated in laboratory. Also at the same time concepts of how a drug exerts its biological activity through binding to some receptor in the body stemmed from Fischer s lock and key hypothesis. Quantum mechanics took a leap forward in explaining the movement of electrons in molecules and how electronic structure impacts biological activity. In the 1950 s papers began to be published mathematically relating chemical structure to biological activity. These developments finally led to the introduction to QSAR (Quantitative Structure Activity Relationships) which basically assigned molecular descriptors in describing biological activity. These molecular descriptors are nothing but a calculated or experimental numerical value that describes the chemical structure of that molecule. QSAR were the result of the engineering development of computers and their use. Thus the computer, which was initially designed to be used in the military and for accounting applications, gradually became a tool for scientific innovation.

Today computational biology stands at the forefront of innovation and has reduced the time for finding potential candidates by matching molecular structure databases against target molecules and finding an appropriate match thus generating a lead compound. With the advancement in computer technology and faster and more efficient supercomputers like the Blue Gene and Red Storm being made, the task is only made simpler. In the early 1960s drug discovery was by trial and error. The chemists at that time manually read literature of products patented by competitors and used their creativity and expertise to synthesize therapeutically active compounds. These compounds would then be tested by in house microbiologists and biochemists. The compounds were not only tested against its target but also screened for bioactivity against other targets for which research was being conducted at that time. The most potent compound discovered led to a series of other structures which were tested hence leading to the creation of a table comparing the potency and activity, which finally led to one compound that could be effectively called the drug and after development called a pharmaceutical product. However, these methods involved time and cost and were inaccurate.

Companies such as Abbott, Schering-Plough, Upjohn and Dow Chemical s took the initiative to explore using computers for drug discovery. These initiatives involved either adding resources with computer proficiency or training inhouse scientists on the new methodology. One of the first break-through in computational drug discovery was at Lilly which revealed the relationship between the calculated electronic structure of beta-lactam ring of cephalosporins and antibacterial activity. Even though some of the companies initiated these efforts, some of these companies lost out as they quit these efforts due to lack of management support. It was Lilly, whose persistence paid off as it established its base in such expertise. The companies at that time invested in hardware and software from the money they gained from the sale of their products. Widely used models at that time included the IBM360 and the 370 series and input methods slowly advanced from punch cards to dumb terminals (terminals or PCs that had no local processing capability).

Software was still written in FORTRAN, followed by the well known MMPI program used for molecular mechanics. Since molecular mechanics seems to predict the organic chemical structures more accurately than quantum mechanics (with bond lengths predicted correctly up to 0.01À), this program was an important development. With these developments the pharmaceutical industry began transitioning to using molecular mechanics, QSAR and statistics rather than restricting to quantum mechanics. However at the back of all this a war raged between the medicinal and computational chemists. The computational chemists emphasized that computationally it was easier to change a nitrogen atom to carbon or any other element or to attach a subsistent at any position in whatever stereochemistry which would make the compound more active. It was easy to change a six member ring to a five member ring and so on

Lilly took a positive step in this opening communication channels between the two groups and organized a series of workshops for the medicinal chemists to operate on computational programs to perform calculations on molecules. This was followed by Merck which conducted a similar workshop. Despite these initiatives the medicinal chemists were slow to accept what computers were able to provide. Sometimes they would go to the computational chemists for help with some of the research computationally like activity listing of a set of compounds and if the computational methods failed the medicinal chemists would start dismissing the idea of computational chemistry as a whole. The truth is that computational techniques should be considered like another apparatus in a lab. Sometime it would give a positive result, and sometime fail like the rest of the experimental methods. In the 1970s two new computer resources were launched namely the Cambridge Structural Database (CSD) and the PDB (Protein Data Bank). Computational chemists found this as a boon as these databases would yield more therapeutically active compounds as more compounds were deposited into them. The advancement came in the 1980s. The pharmaceutical companies noted the development of the IBM personal computer (PC), but it had DOS, which made it difficult to use.

In 1984, the Apple Macintosh was introduced which set a new standard of user friendliness to the computer. These machines were great at word processing, graphics and managing small laboratory databases and suddenly all medicinal chemists took a liking to it. Also there were advancements on the software front which made most medicinal chemists enthusiastic about computers. One was the electronic mail. This saw great advancement in communication and also with this one could easily connect to other computers and tap into large databases as the cabling and networking capability advanced. The second important development was development of certain software like ChemDraw which allowed chemists to quickly create two dimensional chemical diagrams which could be cut and pasted into reports, article and patents. The third important advancement was the ability to view 3D structures of compounds on a computer screen using either the ball and stick model or space filling representations of 3D molecular structures and this introduced a whole new field of molecular graphics.

On a larger scale pharmaceutical companies started becoming aware of the potential for computer aided methods of drug design. According to a survey a few years later, 48 chemical and pharmaceutical companies in the US were using computer aided molecular design methods. Between 1975 and 1985 the number of computational chemists employed by these chemists increased from 30 to 150 which were more than doubling every five years. The 1990s saw the results of the efforts put in the 1980s which yielded a large number of NCEs (new chemical entities) reaching the pharmaceutical marketplace.

Supercomputers began to appear in the scene too as faster processing and number crunching became a necessity. Initially no company wanted to make an investment in a supercomputer and it seems that the market would never break open. It was CEO of Cray research who strategically took a bold step of paying a visit to the CEO of Lilly to offer a supercomputer to the company at an irresistible price. His strategy paid off, as not only Lilly purchased the supercomputer but other pharmaceutical companies like Merck, Bristol- Myers Squibb, Marion Merrell Dow, Johnson and Johnson and Bayer either purchased or leased a supercomputer from Cray research to stay competitive in the pharmaceutical marketplace. With computational drug discovery becoming more an more important, the attitude towards the computational chemists changed, so much so that Lilly and other companies made computational chemists co-inventors on patents if a computational chemist had contributed to the discovery. These factors led to the growth of the computational scientist pool and computers have become an indispensable factor in the process of drug discovery and development ever since.

HISTORY OF COMPUTATIONALCHEMISTRY 1951 UNIVAC- 1 st 1925, warner heisenberg, Max born & pascal jordan developed matrix mechanics 1925, walter & fritz published 1 st calculation on chemical bonding 1927, Douglas hartee published selfconsistent field method 1947 ENIAC first general purpose comp was built 1950 Clemens roothaan formulated LCAO theory 1930 Vldamir fock formulated hartee-fock theory Commercial comp. was built 1955 1 st ab iniitio calculation on large molecules 1964, hohenberg & Walter kohn introduced density functional theory 1971, commercially available intel 4004 microprosser 1970 john pople introduced Gaussian software

IMPORTANCE OF COMPUTERS IN PHARMA INDUSTRY

SUMMARY

REFERENCES REVIEW ARTICLE History of Computers in Pharmaceutical Research and Development by ClinSkill Dec 19, 2017 Pharmaceutical Research BOOK Computer Applications in Pharmaceutical Research and Development S.Ekins (Wiley, 2006) WW.