Electron Density at various resolutions, and fitting a model as accurately as possible.

Similar documents
X-ray Crystallography

Fourier Syntheses, Analyses, and Transforms

Crystal lattice Real Space. Reflections Reciprocal Space. I. Solving Phases II. Model Building for CHEM 645. Purified Protein. Build model.

Anomalous dispersion

Molecular Biology Course 2006 Protein Crystallography Part II

Protein crystallography. Garry Taylor

Scattering by two Electrons

Protein Crystallography Part II

Protein Structure Determination 9/25/2007

Basic Crystallography Part 1. Theory and Practice of X-ray Crystal Structure Determination

SOLID STATE 9. Determination of Crystal Structures

Direct Method. Very few protein diffraction data meet the 2nd condition

Phase problem: Determining an initial phase angle α hkl for each recorded reflection. 1 ρ(x,y,z) = F hkl cos 2π (hx+ky+ lz - α hkl ) V h k l

Resolution: maximum limit of diffraction (asymmetric)

Structure factors again

Macromolecular Crystallography Part II

X-ray Crystallography. Kalyan Das

Molecular Modeling lecture 2

Table 1. Crystallographic data collection, phasing and refinement statistics. Native Hg soaked Mn soaked 1 Mn soaked 2

What is the Phase Problem? Overview of the Phase Problem. Phases. 201 Phases. Diffraction vector for a Bragg spot. In General for Any Atom (x, y, z)

Orientational degeneracy in the presence of one alignment tensor.

Protein Structure Determination. Part 1 -- X-ray Crystallography

SUPPLEMENTARY INFORMATION

Scattering Lecture. February 24, 2014

Determination of the Substructure

SI Text S1 Solution Scattering Data Collection and Analysis. SI references

Basics of protein structure

Electronic Supplementary Information (ESI) for Chem. Commun. Unveiling the three- dimensional structure of the green pigment of nitrite- cured meat

Pymol Practial Guide

Structure Factors. How to get more than unit cell sizes from your diffraction data.

Presentation Outline. Prediction of Protein Secondary Structure using Neural Networks at Better than 70% Accuracy

Image definition evaluation functions for X-ray crystallography: A new perspective on the phase. problem. Hui LI*, Meng HE* and Ze ZHANG

The structure of liquids and glasses. The lattice and unit cell in 1D. The structure of crystalline materials. Describing condensed phase structures

Roger Johnson Structure and Dynamics: X-ray Diffraction Lecture 6

From x-ray crystallography to electron microscopy and back -- how best to exploit the continuum of structure-determination methods now available

Why do We Trust X-ray Crystallography?

4. Constraints and Hydrogen Atoms

Materials 286C/UCSB: Class VI Structure factors (continued), the phase problem, Patterson techniques and direct methods

Two Lectures in X-ray Crystallography

Macromolecular X-ray Crystallography

Schematic representation of relation between disorder and scattering

The ideal fiber pattern exhibits 4-quadrant symmetry. In the ideal pattern the fiber axis is called the meridian, the perpendicular direction is

Introduction to Comparative Protein Modeling. Chapter 4 Part I

X-ray Diffraction. Diffraction. X-ray Generation. X-ray Generation. X-ray Generation. X-ray Spectrum from Tube

Principles of Physical Biochemistry

PSD '18 -- Xray lecture 4. Laue conditions Fourier Transform The reciprocal lattice data collection

Determining Protein Structure BIBC 100

SUPPLEMENTARY INFORMATION

Proteins. Central Dogma : DNA RNA protein Amino acid polymers - defined composition & order. Perform nearly all cellular functions Drug Targets

SUPPLEMENTARY INFORMATION. doi: /nature07461

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i

Anisotropy in macromolecular crystal structures. Andrea Thorn July 19 th, 2012

Structure Factors F HKL. Fobs = k I HKL magnitude of F only from expt

Full wwpdb X-ray Structure Validation Report i

Introduction to" Protein Structure

Handout 12 Structure refinement. Completing the structure and evaluating how good your data and model agree

Full wwpdb X-ray Structure Validation Report i

Probing Atomic Crystals: Bragg Diffraction

SHELXC/D/E. Andrea Thorn

1. What is an ångstrom unit, and why is it used to describe molecular structures?

3.012 Structure An Introduction to X-ray Diffraction

Biology III: Crystallographic phases

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i

SUPPLEMENTARY INFORMATION

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i

PART 1 Introduction to Theory of Solids

PX-CBMSO Course (2) of Symmetry

Lagrange Multipliers

Road map (Where are we headed?)

The Reciprocal Lattice

D. Antiparallel β Domains

Summary of Experimental Protein Structure Determination. Key Elements

Mechanical behavior of Tendon and Skin 1. The nonlinear mechanical behavior of tendon. 2. The extensibility of skin.

SUPPLEMENTARY INFORMATION

RNA protects a nucleoprotein complex against radiation damage

Full wwpdb X-ray Structure Validation Report i

mathematical objects can be described via equations, functions, graphs, parameterization in R, R, and R.

Handout 7 Reciprocal Space

wwpdb X-ray Structure Validation Summary Report

Introduction to. Crystallography

Experimental Determination of Crystal Structure

Chapter 2 Kinematical theory of diffraction

Experimental phasing in Crank2

Rigid body Rigid body approach

Bioinformatics. Macromolecular structure

APPENDIX E. Crystallographic Data for TBA Eu(DO2A)(DPA) Temperature Dependence

Macromolecular Crystallography Part II

PSD '17 -- Xray Lecture 5, 6. Patterson Space, Molecular Replacement and Heavy Atom Isomorphous Replacement

Table S1. Overview of used PDZK1 constructs and their binding affinities to peptides. Related to figure 1.

Supporting Information

Ramachandran and his Map

Outline. Levels of Protein Structure. Primary (1 ) Structure. Lecture 6:Protein Architecture II: Secondary Structure or From peptides to proteins

General theory of diffraction

Practical Manual. General outline to use the structural information obtained from molecular alignment

SUPPLEMENTARY INFORMATION

Reaction Landscape of a Pentadentate N5-Ligated Mn II Complex with O 2

Transcription:

Section 9, Electron Density Maps 900 Electron Density at various resolutions, and fitting a model as accurately as possible. ρ xyz = (Vol) -1 h k l m hkl F hkl e iφ hkl e-i2π( hx + ky + lz ) Amplitude (Amplitude-factors) (Phase-factors) (electron density has no phase, just use the real part of computed result.) The x,y,z coordinates actually used in the calculaton are fractions of the unit cell edges a,b,c. This is in accord with the h,k,l actually representing spacings defined in terms of Bragg planes that cut the edges of the unit cell into integral fractions. Just as h,k,l defines directions h y,z ; k z,x ; l x,y perpendicular to the planes of the unit cell parallelepiped, the x,y,z directions are aligned with the edges of the unit cell. Thus the natural coordinate system of the model is (often) non-orthogonal and non-normalized. However, most graphics programs (and most people) work with ortho-normal Cartesian coordinates in standard units (usually Ångstroms). Since a,b,c can be expressed in Å at the known angles of the unit cell, Cartesian model atom coordinates are calculated from the size and shape of the unit cell. Experimental Phases, Model Phases When some sort of starting values of the phases are available, a model can be built into the electron density. This electron density is dependent on both the amplitudes and the phases of the h,k,l data points. The appearance of the image turns out to be most dependent on the phases, i.e. on the part not known directly from experiment, and thus quite susceptible to errors and misconceptions. Initially errors in deriving the starting phases, and later as the model itself is used to calculate phases, from errors and misconceptions about molecule. When we know (some) of the coordinates of a model, we can use a Fourier transform of these to get calculated phases for each reflection in order to make a (hopefully) better electron-density image. A diffracted wave is the sum of contributions from all atoms. F hkl = F hkl e iφ hkl = n O n f n,θ e -B n (sinθ n /λ)2 ei2π(hx + ky + lz) Residuals, R-values, assess agreement between datasets. (amplitudes F calculated from the model and F observed from the experiment)

R cryst = F obs - F calc / F obs But since R cryst can be forced to appear good by warping the model -- the model must also be evaluated by other criteria. Also, a small subset (e.g. 5%) of the data is now standardly withheld from the refinement process. These data points can be used to calculate an R free which should get better as R cryst gets better as long as the model changes are really an improvement toward matching what the molecule really is. R free is a very valuable control against over-fitting. R free is usually just a few percentage points greater than R cryst Refinement F hkl = F hkl e iφ hkl = n O n f n,θ e -B n(sinθ n /λ) 2 ei2π(hx + ky + lz) (Note: equations at the bottom of section "3.2 Molecular Scatter" where symbols are defined.) Model improvement involves (re)building a model into the electron density (real space refinement ), and shifting parameters to improve the fit of the calculated structure factors (data) to the observed data (reciprocal space refinement -- what is commonly called Refinement Cycles since the relationship of parameters to data is non-linear and is matched through a series of successive approximations). The main target is to match the calculated F with that observed. The parameters are x n y n z n B n For macromolecules there are essentially only these four parameters. B n is the place where all errors are lumped, including, of course, uncertainty in location e.g. from motion of the atom. (At the best obtainable resolutions, sometimes rather than the single isotropic B factor, it is possible to use a 6 parameter aniostropic expression. O n (occupancy) is usually presumed to be 100% except where there is evidence of alternate conformations or the genuine partial occupancy of ions or ligands). The molecule has a certain number of atoms, which sets the number of parameters, but the number of data points increases by the volume of reciprocal space that is measured. So at poorer resolutions there is a problem of numbers of parameters with respect to the number of data points.

Geometrical target functions can be defined based on previous knowledge like bond lengths and bond angles. Now many of the criteria used to validate final structural models are checked as refinement is done. There is a compromise between making the best possible model and being able to fairly validate the final model. However, meeting all known criteria is so complicated and difficult that the meeting all validation criteria is still a very strict accounting. Even at the best (highest) (smallest-value) resolution, there can be regions where the electron density is weak and geometrical target functions are needed. Refinement balances fit to data and fit to stereo-chemistry.

Electron Density Maps Now that we know the φ P for each reflection, we can use the Fourier transform formula to get a picture of the electron density in the molecule: ρ xyz = (Vol) -1 h k l m hkl F hkl e iφ hkl e-i2π( hx + ky + lz ) For each chosen grid point x,y,z in the repeating unit of the crystal, the above expression must be summed over all the measured reflections h, k, l. The top illustration shows part of one layer of such a map, where each number is the value of the electron density (on an arbitrary scale) at that grid point. Contours have been drawn at 10, 20, 30, etc. The middle illustration shows 7 superimposed layers of a part of the 2.5 Å resolution map of staphylococcal nuclease. In the bottom illustration this same piece of map is shown interpreted as two residues of backbone in extended chain conformation, with arginine and phenylalanine side groups.

Example of summing waves of 1, 2, 3, 4 wavelengths across a unit cell, of different amplitudes and different relative phases to get different number and positions of reconstructed atoms.

Stereo views of the electron density for an α- helix in staphylococcal nuclease at (from top to bottom) 2, 3, 4, 5, and 6 Å resolution. All maps were made using F obs, the original MIR phases, and the same grid spacing. Viewpoint is the same, and contour levels were adjusted to be approximately equivalent. All carbonyl oxygens are clear at 2 Å, but almost all of them are absent at 3 Å, although side chains can still be judged. At 4 Å, density has begun to coalesce along the helix axis, and there is a false connection between side chains at the lower left. This and the next two figures are from JS and DC Richardson (1985) Interpretation of Electron Density Maps in Methods in Enzymology; HW Wyckoff, CHW Hirs, SN Timasheff, eds.; 115: 189-206.

Side views of the same helix as on previous page, at 2, 3, and 3.5 Å resolution. At intermediate resolution the density connects through a hydrogen bond (lower right) more strongly than through the nearby helical main chain, although the connectivity is correct at both higher and lower resolutions.

Stereo views of the electron density for two strands of antiparallel β-sheet in staphylococcal nuclease at 2, 3, 4, 5, and 6 Å resolution. In this case the strands separate correctly at 4 Å but that would not always be true. At 5 and 6 Å the density is sheetlike, but with holes in variable locations. At 6 Å the right-hand side extends further out because it is no longer separated from a third strand. bottom 9, Electron Density Maps