QUANTUM SPIN DYNAMICS OF RARE-EARTHS IONS

Similar documents
Recent Developments in Quantum Dynamics of Spins

B. Barbara, Institut Néel, CNRS, Grenoble. Brief history. Quantum nanomagnetism. Conclusion

Quantum Tunneling of Magnetization in Molecular Magnets. Department of Physics, New York University. Tutorial T2: Molecular Magnets, March 12, 2006

Spins Dynamics in Nanomagnets. Andrew D. Kent

Intermolecular interactions (dipolar and exchange)

NYU Spin Dynamics in Single Molecule Magnets. Andrew D. Kent

Quantum tunneling of magnetization in lanthanide single-molecule. magnets, bis(phthalocyaninato)terbium and bis(phthalocyaninato)-

Andrea Morello. Nuclear spin dynamics in quantum regime of a single-molecule. magnet. UBC Physics & Astronomy

Decoherence in molecular magnets: Fe 8 and Mn 12

Quantum dynamics in Single-Molecule Magnets

Centro Universitario de la Defensa. Academia General Militar, Zaragoza, Spain.

Supplementary Figure 1: Spin noise spectra of 55 Mn in bulk sample at BL =10.5 mt, before subtraction of the zero-frequency line. a, Contour plot of

Chapter 8 Magnetic Resonance

Electron spins in nonmagnetic semiconductors

The First Cobalt Single-Molecule Magnet

Landau-Zener tunneling in the presence of weak intermolecular interactions in a crystal of Mn 4 single-molecule magnets

Beyond the Giant Spin Approximation: The view from EPR

Design and realization of exotic quantum phases in atomic gases

Joint Project between Japan and Korea M. Jeong, M. Song, S. Lee (KAIST, Korea) +KBSI T. Ueno, M. Matsubara (Kyoto University, Japan)+Fukui Univ.

Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego

Magnetism and Magnetic Switching

Lecture 2: Double quantum dots

Quantum step heights in hysteresis loops of molecular magnets

MolNanoSpin: Spintronique moléculaire avec des molécules-aimants

Chemistry 431. Lecture 23

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University

Spectral Broadening Mechanisms

Radiation- and phonon-bottleneck induced tunneling in the Fe 8 single-molecule magnet

Voyage dans le nanomonde des aimants

Nuclear spin spectroscopy for semiconductor hetero and nano structures

Lecture 4. Feshbach resonances Ultracold molecules

Magnetization relaxation in the single-molecule magnet Ni 4 under continuous microwave irradiation

NYU An Introduction to Quantum Tunneling of the Magnetization and Magnetic Ordering in Single Molecule Magnets. Andrew D. Kent

I. Molecular magnetism and single-molecule magnets

Non-linear driving and Entanglement of a quantum bit with a quantum readout

arxiv:cond-mat/ v1 1 Dec 1999

Quantum technologies based on nitrogen-vacancy centers in diamond: towards applications in (quantum) biology

Coherent spin manipulations in Yb 3+ : CaWO_4 at X - and W -band EPR frequencies

Introduction to Relaxation Theory James Keeler

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

LARGE-SCALE QUANTUM PHENOMENA COURSE. UNIVERSITY of INNSBRUCK. (June 2010)

NMR: Formalism & Techniques

Supplementary Information

Electronic Spectra of Complexes

Origin (and control?) of the anisotropy in tetranuclear star shaped molecular nanomagnets

Photon-induced magnetization changes in single-molecule magnets invited

Quantum phase transitions

Magnetic Resonance in magnetic materials

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

High Frequency Electron Paramagnetic Resonance Studies of Mn 12 Wheels

Non-equilibrium magnetization dynamics in the Fe 8 single-molecule magnet induced by high-intensity microwave radiation

Supplemental Material to the Manuscript Radio frequency magnetometry using a single electron spin

Condon domains in the de Haas van Alphen effect. Magnetic domains of non-spin origine

We have already demonstrated polarization of a singular nanodiamond (or bulk diamond) via Nitrogen-Vacancy (NV) centers 1

CONTENTS. 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon 2.2 The vector picture for pulse EPR experiments 2.3 Relaxation and the Bloch equations

Spectral Broadening Mechanisms. Broadening mechanisms. Lineshape functions. Spectral lifetime broadening

Decoherence in Josephson and Spin Qubits. Lecture 3: 1/f noise, two-level systems

Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots

D. Sun, A. Abanov, and V. Pokrovsky Department of Physics, Texas A&M University

Towards Landau-Zener-Stückelberg Interferometry on Single-molecule Magnets

Quantum computation and quantum information

Solid-state NMR of spin > 1/2

Spin Dynamics Basics of Nuclear Magnetic Resonance. Malcolm H. Levitt

Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008).

Chapter 5 Nanomanipulation. Chapter 5 Nanomanipulation. 5.1: With a nanotube. Cutting a nanotube. Moving a nanotube

Electron Spin Resonance and Quantum Dynamics. Masaki Oshikawa (ISSP, University of Tokyo)

Giant Enhancement of Quantum Decoherence by Frustrated Environments

SUPPLEMENTARY INFORMATION

Concepts in Spin Electronics

Herre van der Zant. interplay between molecular spin and electron transport (molecular spintronics) Gate

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

Nuclear spins in semiconductor quantum dots. Alexander Tartakovskii University of Sheffield, UK

Universal Post-quench Dynamics at a Quantum Critical Point

9. Transitions between Magnetic Levels Spin Transitions Between Spin States. Conservation of Spin Angular Momentum

Geometrical frustration, phase transitions and dynamical order

Quantum Confinement in Graphene

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

New example of Jahn-Teller isomerism in [Mn 12 O 12 (O 2 CR) 16 (H 2 O) 4 ] complexes

Ultracold molecules - a new frontier for quantum & chemical physics

Spin electric coupling and coherent quantum control of molecular nanomagnets

Magnetism of Atoms and Ions. Wulf Wulfhekel Physikalisches Institut, Karlsruhe Institute of Technology (KIT) Wolfgang Gaede Str. 1, D Karlsruhe

NMR in Strongly Correlated Electron Systems

Magnetic domain theory in dynamics

arxiv:cond-mat/ Jan 2000

Mesoscopic field state superpositions in Cavity QED: present status and perspectives

Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime

Splitting of a Cooper pair by a pair of Majorana bound states

7.2 Dipolar Interactions and Single Ion Anisotropy in Metal Ions

Classical and quantum magnetisation reversal studied in single nanometer-sized particles and clusters using micro-squids

Cristaux dopés terres rares pour les mémoires quantiques

Semiclassical limit and longtime asymptotics of the central spin problem. Gang Chen Doron Bergman Leon Balents

Hyperfine interaction

X-Ray Magnetic Circular Dichroism: basic concepts and applications for 3d transition metals. Stefania PIZZINI Laboratoire Louis Néel CNRS- Grenoble

Cooperative Phenomena

The Physical Basis of the NMR Experiment

Spinon magnetic resonance. Oleg Starykh, University of Utah

Nomenclature: Electron Paramagnetic Resonance (EPR) Electron Magnetic Resonance (EMR) Electron Spin Resonance (ESR)

Correlations between spin accumulation and degree of time-inverse breaking for electron gas in solid

Transcription:

QUANTUM SPIN DYNAMICS OF RARE-EARTHS IONS B. Barbara, W. Wernsdorfer, E. Bonet, L. Thomas (IBM), I. Chiorescu (FSU), R. Giraud (LPN) Laboratory Louis Néel, CNRS, Grenoble Collaborations with other groups B. Malkin (Kazan) A.M. Tkachuk (S t Petersburg) H. Suzuki (Tsukuba) D. Gatteschi (Florence) A. Müller (Bielefeld) D. Mailly (LPN, Marcoussis)

Nanometer scale S = 5 3 6 Single Molecule Magnetic Protein Cluster Nanoparticle nm 2 nm 3 nm 2 nm

The molecules are regularly arranged in the crystal

Mn2acetate Mn(III) S=2 Mn(IV) S=3/2 Total Spin =

SINGLE MOLECULE «MAGNET» Energy barrier in zero field (symmetrical) H= - DS z2 -BS z 4 - E(S +2 + S -2 ) - C(S +4 + S -4 ) Simplified picture of an isolated spin: Landau-Zener model S, m-n > S, -m > Energy S,-S+2> Thermally activated tunneling S,S-2> ² - P S,-S+> S,-S> spin down Ground state tunneling S Z S,S-> S,S> spin up P energy S, -m > magnetic field S, m-n > If applied field // -M non-symmetrical barrier New resonances at gµ B H n = nd Molecular magnets (S. Miyashita) large spins give extremely small splittings Tunneling probability: P LZ = exp[-π( /ħ) 2 /γc] c = dh/dt

Tunneling of magnetization in Mn 2 -ac: «Technical» hysteresis loop + resonant tunneling Steps at H n =45.n mt,5 M/M S -,5 - -3-2 - 2 3 B L (T).5K.6K.9K 2.4K ICM 94 Barbara et al, JMMM (995); NATO-ASI, QTM 94 ed. Gunther and Barbara; Thomas et al Nature (996); Friedman et al, PRL (996);. Slow quantum spin dynamics of molecule magnets.

Crossover From Classical to Quantum Regime (Mn 2 -ac) n= 5, 4,5 4, 3,5 3, 2,5 2,,5,,5, B n n=9 n=8 n=7 n=6 n=5 n=4 n=3 n=2 n= n= Ground-state Tunneling (Spin-Bath),5,,5 2, 2,5 3, 3,5 4, T (K) Classical (Thermal Activation) Activated Tunneling (Phonon Bath) Measured ( ) and Calculated ( ) Resonance Fields Barbara et al, JMMM 4-44, 89 (995) and J. Phys. Jpn. 69, 383 (2) Paulsen, et al, JMMM 4-44, 379 (995); NATO, Appl. Sci. 3, Kluwer (995)

Resonance width and tunnel window Effects of magnetic couplings and hyperfine Interactions Data points and calculated lines Level Scheme Inhomogeneous dipolar broadening and the electronic spin-bath 4 B n (T) 5, - - 4,5 4, 3,5 3, 9-9- 9-2 8-8- 8-2 7-7- 7-2 6-6- 6-2,4,6,8,,2,4 T(K) 2 E (K) - -2-3 (n-p) : -S+p S-n-p 6-2 6-6- 7-2 7-7- 8-2 8-8- 9-2 - 9- - 9-3, 3,5 4, 4,5 5, B (T) Chiorescu et al, PRL, 83, 947 (999) Barbara et al, J. Phys. Jpn. 69, 383 Homogeneous (2) broadening of the tunnel Kent et al, EPL, 49, 52 (2) window by nuclear spins: Wernsdorfer et al, PRL (999) Prokofiev and Stamp (998) dm / db 3 2 n=8 T=.95 K 3,75 3,8 3,85 3,9 3,95 4, 4,5 4, 4,5 B (T) 8-8- t =5s -6-5 t =s 8-6 t =2s 6-6 t =4s 4-6 -.5.5-7 -.4 -.2.2.4.6.8 µ H(T) Γ sqrt (s - ) -5 2-5 t =s M in = -.2 M s Weak HF coupling: Broadens the tunnel window ( 5 ) Decoherence mechanisms

Landau-Zener model For For an an ensemble isolated of spin spins energy H= - DS z2 -BS z4 - E(S +2 + S -2 ) - C(S +4 + S -4 ) - gµ B S z H z /2,/2> /2,-/2> S, m-n > ² S, -m > -P - P _ hω H = 2 +(2µ B B ) 2 Tunneling probability: P LZ = exp[-π( /ħ) 2 /γc] c = dh/dt Single Molecule Magnets: large spins very small tunnel splittings: ~ (E/D) -2S P energy /2,-/2> S, -m > magnetic field, P /2,/2> S, m-n > applied field very small tunnel probabilities: P LZ ~ 2 /c ~ (E/D) 4S / - c P PS ~ ( 2 /ω )e - ξ /ξ Larger tunneling rate Strong decoherence

energy /2,/2> /2,-/2> /2,-/2> _ hω H = 2 +(2µ B B ) 2, applied field V 5, a molecule with S=/2 Dipolar interactions 3 times smaller but I=7/2 -P P /2,/2> M/M s.5 -.5 Absorption of sub-centimetric waves.4 K GHz. T/s - -.6 -.4 -.2.2.4.6 µ H (T) M ( B) M ( B) eq 2Γ( B) τ = + 2Γ( B) τ period: ms s. ms.5 ms ms 2 ms 3 ms Γ Max ~ 5 s - I. Chiorescu, W. Wernsdorfer, A. Müller, H. Boggë, and B. Barbara et al, PRL (2) W. Wernsdorfer, D.Mailly, A. Müller, and B. Barbara, EPL, 24

Gaussian absorption lines W. Wernsdorfer, D.Mailly, A. Müller, and B. Barbara, EPL, 24 Important broadening by nuclear spins and other molecule spins Loss of coherence Ω R ~ γb ~ 3 khz << /τ 2 ~ γσ ~.2 GHz Rabi oscillations, require much larger b. N = B Max /2πσ = γbτ 2 /2π ~2 Precession ~ 2 turns ( ) [ ] + + = t b B b B b P 2 2 2 2 2 2 2 ) ( 2 sin ) ( ) ( ) ( γ ν γ γ ω γ γ ) ( ) ( 4 2 L B L f b γ ν γ π = = Γ

Tunneling of the angular momentum of Isolated Rare-earths ions (ensemble measurements of «paramagnetic» ions) An extention of the slow quantum dynamics studies of SMM to the cases of strong spin-orbit and hyperfine coupling.2 % Ho 3+ in substitution of Y 3+ In YLiF 4 Tetragonal symmetry (Ho in S4); (J = L+S = 8; g J =5/4) Dipolar interactions ~ 2 mk << 2 mk (levels separation)

CF levels and energy barrier of Ho 3+ in Y.998 Ho.2 LiF 4 Strong mixing H CF = B + 4 4 4 4 2O2 + B4O4 + B6 O6 + B4O4 B6 O6 a) E (K) Barrier short-cuts 5 5-5 -4 b) -8-2 -6 E (K) - -5-2 -6-4 -2 2 4 6 <J z > -2-24 -9-6 -3 3 6 9 µ H z (T) R. Giraud, W. Wernsdorfer, D. Mailly, A. Tkachuk, and B. Barbara, PRL, 87, 5723- (2) Singlet excited state + Doublet ground-state + Large τ (Orbach process) B2 =.66 K, B4 = -3.253 mk, B44 =- 42.92 mk, B6 =-8.4mK, B64 =- 87.3mK Sh. Gifeisman et al, Opt. Spect. (USSR) 44, 68 (978); N.I. Agladze et al, PRL, 66, 477 (99) Energy barrier ( ~ K)

Hysteresis loop of weakly interacting Ho 3+ ions in YLiF 4 Comparison with Mn2-ac Many steps! M/M S,5 -,5 - -3-2 - 2 3 B L (T).5K.6K.9K 2.4K,,5, -,5 -, M/M S 2 mk 5 mk 5 mk dh/dt=.55 mt/s 3 2-8 -4 4 8 2 µ H z (mt) /µ dm/dh z (/T) n= dh/dt > n=2 n= n=- n=3-2 2 4 6 8 L.Thomas, F. Lionti, R. Ballou, R. Sessoli, R. Giraud, W. Wernsdorfer, D. Mailly, A.Tkachuk, D. Gatteschi,and B. Barbara, Nature, 996. and B. Barbara, PRL, 2 Steps at B n = 45.n (mt) Nuclear spins Steps at B n = 23.n (mt) Tunneling of Mn 2 -ac Molecules Tunneling of Ho 3+ ion

Quasi-Ising CF Ground-state + Hyperfine Interactions H = H CF-Z + A{J z I z +(J + I - + J - I + )/2} The ground-state doublet 2(2 x 7/2 + ) = 6 states E (K) -78,5-79, -79,5-8, I = 7/2-7/2-2 -5 - -5 5 5 2 µ H z (mt) -7/2 g J µ B H n = n.a/2-5/2-5/2 7/2 7/2 5/2 3/2,,5, -,5 -, M/M S 2 mk 5 mk 5 mk 3 2-8 -4 4 8 2 µ H z (mt) /µ dm/dh z (/T) n= dh/dt > n=2 n= n=- n=3-2 2 4 6 8 A = 38.6 mk, Linewidth ~ mk ~ Dip. Int. Avoided Level Crossings between Ψ, I z > and Ψ +, I z > if I= (I z -I z )/2= odd Co-Tunneling of electronic and nuclear momenta: Electro-nuclear entanglement (2-bodies)

Application of a transverse magnetic field: (slow sweeping field: sample at the cryostat temperature)..5. -.5 -. M/M S H T = mt H T =3 mt H T =5 mt H T =9 mt H T =7 mt H T =5 mt H T =3 mt H T = mt H T =9 mt H T =7 mt T = 3 mk v =.6 mt/s -75-5 -25 25 5 75 µ H z (mt) Acceleration of quantum dynamics the remanent magnetization vanishes Quantum fluctuations destroy the local moment Transition from «Classical» to Quantum Paramagnet (QPT) Nature of the mixing: entangled electro-nuclear states

,,5, -,5 4 2 a) M/M S 5 mk.3 5 mk T/s.3 T/s E (K) -79, -79,5-8 -6-4 -2 2 4 6 8 n -, -3-2 - 2 3 µ H z (mt) 6 b) n= 8 n = 6 /µ dm/dh z (/T) Additional steps at fields: H n = (23/2).n (mt) (single Ho 3+ tunneling being at avoided level crossings at H n = 23.n mt) n= µ H n (mt) 4 24 8 2-6 -2-8 2 6 2 24-8, -5-75 75 5 225 µ H z (mt) 6 linear fit µ H n = n x 23 mt n = 7 integer n half integer n n = 8 n = 9 dh/dt< Giraud et al, PRL 87, 5723 (2) Simultaneous tunneling of Ho 3+ pairs due to dipolar interactions (4-bodies entanglement) Two Ho 3+ Hamiltonian avoided level -2-5 - -5 crossings at H n = (23/2).n H (m

Ac susceptibility (SQUID measurements) Single-ion and dipolar-bias Tunneling Co-tunneling Tunneling rates and ac measurement frequency R. Giraud, A. Tkachuk, B. Barbara, PRL, 23.

a) -78.5 Energy (K) -79. -79.5-8. I = 7/2...... m I =+5/2 m I =+7/2 m I =+7/2 m I =+5/2 Single-ion level structure E n = E ± gµ B H n Tunneling: gµ B H n = (n -n)α/2 Co-tunneling: gµ B H n =(n -n+/2)α/2 (A= Ho hyperfine constant) b) Energy (K) -2-2 n=-9 H n=-8 n=3/2 z (Oe) -357-358 -359-36 n = n = n = 2-359.6 n = /2 n = 3/2-36. 2 3 4 5-2 - 2 H z (Oe) 2 3 4 Energy (K) 5 6 7 H bias 8 H z (Oe) Two-ions Level structure Electronic Spin-bath: Co-tunneling Biais tunneling Diffusive tunneling Nuclear spin-bath (Li, F, Y): Linewidths R. Giraud, A. Tkachuk, and B. Barbara PRL (23).

Ho-dimer satellites in the EPR signal in 7 LiYF4 (% Ho): Bias-tunneling transitions only Boris Malkin group, Kazan 2 3 4 ν=75 GHz 2+3 2 3 2 3 4 2 5-3 ν=25 GHz,2,4 Magnetic field (T),4,6 Magnetic field (T) In the 7 Li.% sample the width of single ions ~3.5 mt and of dimers ~ 2mT G. Shakurov, B. Malkin, B. Barbara, Appl. Magn. Res. 25

Toy model of two coupled effective spins, with g z /g x >> H/J = Σ ij S i z S j z + ασ ij (S i + S j - + S j + S i - )/2 + βσ ij (S i + S j + + S j - S i - ) with α = (J x + J y )/4J β = (J x -J y )/4J Diffusive tunneling Co-tunneling This is why dipolar interactions induce co-tunneling

Direct check of hyperfine sublevels from EPR In Ho:YLiF 4 (B. Malkin group) J 24 frequency GHz 3,5 3, Hyperfine sublevels of Ho 3+ ion in LiYF 4 22 2 8 6 Energy (GHz) 2,5 2,,5,,5, -,5-75 -2 m= Γ 2 Γ 34 ν, GHz 8 6 4 7LiYF4:Ho.% B B c 4 2 8 6 4 2,8 3,2 3,6 4, 4,4 4,8 5,2 5,6 6, 6,4 6,8 7,2 7,6 Magnetic field (koe) -225-25 m=2,,5,,5,2,25,3 Magnetic field B (T) 2 2 3 4 5 6 7 B, KGs G. Shakurov, B. Malkin, B. Barbara, Appl. Magn. Res. 25

Direct observation of levels repulsions Hyperfine sublevels ( m=2) in the EPR spectra 7 ν (GHz) 2.9 2.8 2.55 2.35 2.25,,5,,5 Magnetic field B (T) G. Shakurov, B. Malkin, B.Barbara, Appl. Magn. Res. 25

9 F_NMRM. J. Graf, A. Lascialfari, F. Borsa, A. M. Tkachuk, and B. Barbara (cond-ma.2 (b) /T (msec - ).. 8 2 4 6 H z (m T) Phenomenological fit: /T = B 2 W/ [W 2 + (ω N - ) 2 ], = [.3x 8 (H-23n) 2 + n2 ] /2 with n ~2 mk, Levels broadening at crossing is extremely small (~ 2 mt): Decoherence strongly suppressed : possible to measure directly level repulsion

Case of a metallic matrix: Ho 3+ ions in Y.999 Ho. Ru 2 Si 2.5 n=2 n= n=.4 K M/M s.36 mt/s.68 mt/s.34 mt/s.7 mt/s -.5 - -.8 -.4.4.8 µ H (T) These steps come from tunneling transitions of J+I of single Ho 3+ ions, in a sea of free electrons. B. Barbara, R. Giraud, W. Wernsdorfer, D. Mailly, A. Tkachuk, H. Suzuki, ICM-Rome, JMMM (24)

CONCLUSION Molecular magnets Coexistence of classical hysteresis loop and resonant quantum tunneling non-adiabatic Landau-Zener (single-ion picture) Observation of tunneling made possible by environmental spins (nuclear spins) Spin tunneling asssited by photons (photons bath) Strong decohrence by environmental spins (nuclear spins) Highly diluted Ho 3+ in LiYF 4 Tunneling of the total angular momentum J = L+S of Ho 3+ single ions two-bodies entanglement Quasi-isolated Ho 3+ ions: J and I tunnel simultaneously (in a metal also: Ho in YSi 2 Ru 2 ). Relevant quantum number of Ho 3+ is not J but I+J (Kramers, QPT ). Co-tunneling, bias-tunneling, spin-diffusion in Ho 3+ dimmers four-bodies entanglements, Co-tunneling of dimmers is observed. Crucial role of the anisotropic character of dipolar interactions. Microscopic basis for the study of QPT (concentrated systems) and coherent quantum dynamics.. Molecular magnets with Rare-Earths R-E Double-Deckers also show single-ion tunneling on electro-nuclear states (M. Ruben)

Some perspectives Higher order many-body tunneling and decoherence by the environment (quantum phase transitions) Spin-echo experiment and Rabi oscillations on electronic states of - Molecular magnets (intra-molecules hyperfine interactions ~ mk) - Entangled E-N pairs of Ho 3+ (dipolar interactions, hyperfine interactions ~ mk) Metallic systems : Decoherence by free carriers on spin tunneling in meta Injection of polarized spins.. (Tunneling, Kondo, Heavy fermions, Spintronics) Spin qubits manipulated by photons

Manipulating the exchange interactions between two spins Qubit de spins coupled by the injection of an electron and manipulated by transfert of photo-electrons Photon hν 3 e- Photon hν Photon hν 2 Far infra-red : variations of charges (S) Sub-centimeter: variations of spin projections(m S ) Collaborations: J. Bonvoisin e t C. Joachim (CEMES, Toulouse F. Ciontu et Ph. Jorrand (IMAG, Grenoble) Remerciements: J.P. Sutter, M. Kahn.

MANY THANKS FOR YOUR ATTENTION!

Mesoscopic Magnetism Nano-magnetism Tunneling of narrow DWs in highly anisotropic systems (Dy 3 Al 2, SmCoCu) Nanomagnetism on distributions (deposited clusters, BaFeO nanoparticles ) Single-particles nano-magnetism (micro-squids) nanoparticles, clusters ( nm): thermally activated reversal (SW, NB models ) Quantum nano-magnetism single molecule magnets ( nm): reversal by tunneling, slow quantum dynamics with different environments: inhomogeneous and homogeneous baths (spin, phonon, radiation, free carriers...) Sub-nanometer scale Atomic magnets (Quantum) Rare-Earths ions (. nm): Crucial role of nuclear spins