Lesson Overview. 7.1 Life is Cellular

Similar documents
Life is Cellular Section 7.1

Chapter Life Is Cellular

How do cell structures enable a cell to carry out basic life processes? Eukaryotic cells can be divided into two parts:

Biology I. Chapter 7

7-2 Eukaryotic Cell Structure

Chapter 7. Cell Structure & Function

Cell Theory Essential Questions

Name: Class: Date: ID: A

7-1 Life Is Cellular. Copyright Pearson Prentice Hall

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

7.1 Life is Cellular. Robert Hooke: Anton van Leeuwenhoek: The smallest unit of any organism- the cell. Robert Hooke

Life is Cellular. Cell Structure and Function. The First Microscope Janssen Brothers/Galileo. Leeuwenhoek s Microscope

Chapter 7: Cell Structure and Function 7.1: Life is Cellular

Name Hour. Section 7-1 Life Is Cellular (pages )

Name Class Date. State the cell theory. Describe how the different types of microscopes work. Distinguish between prokaryotes and eukaryotes.

Life is Cellular. At the cellular level, what is the difference between animal cells and bacterial cells? How do microscopes work?

Cell Theory and Structure. Discoveries What are Cells? Cell Theory Cell Structures Organelles

Chapter 7.2. Cell Structure

Discovery of the Cell

protein synthesis cell theory Centrioles specialization. unicellular ribosomes. mitochondria cell interdependence prokaryotes

Lesson Overview. Homeostasis and Cells. Lesson Overview. 7.4 Homeostasis and Cells

CHARACTERISTICS OF LIFE ORGANIZATION OF LIFE CELL THEORY TIMELINE

Ask yourself. Chapter 3 Cell Structure and Function. Examples of Cells. A is cell the smallest unit that is capable of performing life functions.

What is a cell? 2 Exceptions to The Cell Theory. Famous People. Can You Identify This Object? Basic Unit of all forms of Life. 1.

Honors Biology-CW/HW Cell Biology 2018

BIO.A.1 Basic Biological Principles

Chapter: Life's Structure and Classification

The Basic Unit of Life Copyright Amy Brown Science Stuff

Biology. 7-2 Eukaryotic Cell Structure 10/29/2013. Eukaryotic Cell Structures

Cells Cytology = the study of cells. Nonliving Levels. Organization Levels of Life. Living Levels 11/14/13. More Living Levels

Chapter 4 Cells: The Basic Units of Life The Big Idea All organisms are composed of one or more cells.

Eukaryotic Cell Structure. 7.2 Biology Mr. Hines

II. Eukaryotic Cell Structure A. Boundaries 1. plasma membrane a. serves as a boundary b/w the cell and its environment b. controls movement of

Basic Structure of a Cell

and their organelles

Cells. Modified by the MHJHS SD. [Adopted from James Holden & Clint Tucker]

8.1 Life is cellular

Unit 3: Cells. Objective: To be able to compare and contrast the differences between Prokaryotic and Eukaryotic Cells.

CELL STRUCTURE & FUNCTION

The Discovery of Cells

Chapter 7 Learning Targets Cell Structure & Function

CELL THEORY & FUNCTION

3.1 Cell Theory. KEY CONCEPT Cells are the Basic unit of life.

Cell Theory. The cell is the basic unit of structure and function for all living things, but no one knew they existed before the 17 th century!

The Cell. What is a cell?

Discovery of the Cell

CELL HISTORY, STRUCTURE AND FUNCTION

Chapter 4. Table of Contents. Section 1 The History of Cell Biology. Section 2 Introduction to Cells. Section 3 Cell Organelles and Features

Cell Structure: What cells are made of. Can you pick out the cells from this picture?


Cell Structure and Function Unit 4

The Cell Notes 1 of 11

8/25/ Opening Questions: Are all living things made of cells? What are at least five things you know about cells?

Human biology Cells: The Basic Units of Life. Dr. Rawaa Salim Hameed

BIOLOGY Cell Review Notes (source: SW Biology 11)

CELLS STRUCTURE AND FUNCTION

Overview of Cells. Prokaryotes vs Eukaryotes The Cell Organelles The Endosymbiotic Theory

Biology 1 Notebook. Review Answers Pages 17 -?

UNIT 3 CP BIOLOGY: Cell Structure

Biology: Life on Earth

Cell Types. Prokaryotes

Biology. Mrs. Michaelsen. Types of cells. Cells & Cell Organelles. Cell size comparison. The Cell. Doing Life s Work. Hooke first viewed cork 1600 s

Now starts the fun stuff Cell structure and function

Lesson Overview. Homeostasis and Cells. Lesson Overview. 7.4 Homeostasis and Cells

Name Class Date. c. Solar power plants. f. Main office

The cell. The cell theory. So what is a cell? 9/20/2010. Chapter 3

Bio-CP Chapter 7 Cell Notes

Van Leeuwenhoek. 1 st crude microscope made by the Dutchman

LIFE SCIENCE CHAPTER 3 FLASHCARDS

CELL PART Expanded Definition Cell Structure Illustration Function Summary Location ALL CELLS DNA Common in Animals Uncommon in Plants Lysosome

Cell Structure and Function. Chapter 4

Biology Unit 3 A View of the Cell

CELL THEORY & FUNCTION

Biology. Introduction to Cells. Sunday, November 8, 15

10/1/2014. Chapter Explain why the cell is considered to be the basic unit of life.

T HE C ELL C H A P T E R 1 P G. 4-23

Introduction to Cells. Intro to Cells. Scientists who contributed to cell theory. Cell Theory. There are 2 types of cells: All Cells:

Cell Structure. Chapter 4

CELL Readings BCMS 1/1/2018

Cell Structure. Chapter 4. Cell Theory. Cells were discovered in 1665 by Robert Hooke.

THE CELL THEORY (R+R+R+E+G+N+T+S) 3).

What Are the Main Characteristics of organisms?

Cell Structure and Function How do the structures and processes of a cell enable it to survive?

Lesson Overview. Homeostasis and Cells. Lesson Overview. 7.4 Homeostasis and Cells

Human Biology. THEORY Conceptual Scheme

CELL STRUCTURE AND FUNCTION. Chapter 3 Day 1

Biology Cell Test. Name: Class: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question.

Cellular basis of life History of cell Biology Year Name of the scientist Importance

Biology Exam #1 Study Guide. True/False Indicate whether the statement is true or false. F 1. All living things are composed of many cells.

Turns sunlight, water & carbon dioxide (CO 2 ) into sugar & oxygen through photosynthesis

CELL TYPE. Unit #4: Cell Structure & Func2on. Classifica(on, Endosymbiosis, Cell Type, Cell Organelles

Class Work 31. Describe the function of the Golgi apparatus? 32. How do proteins travel from the E.R. to the Golgi apparatus? 33. After proteins are m

What is a cell? (*Know the parts of the microscope!)

5. The cells in the liver that detoxify poison substances contain lots of a. smooth ER b. rough ER c. Golgi apparatus d. lysosomes e.

It helps scientists understand the workings of the human body and of other animals and plants

Topic 3: Cells Ch. 6. Microscopes pp Microscopes. Microscopes. Microscopes. Microscopes

STUDY GUIDE SECTION 4-1 The History of Cell Biology

Discovering Cell/ The Cell Theory. * Cells are the basic, smallest units of structure and function of living things.

What in the Cell is Going On?

Transcription:

7.1 Life is Cellular

Life Is Cellular The Discovery of the Cell What is the cell theory? The cell theory states: All living things are made up of cells. Cells are the basic units of structure and function in living things. New cells are produced from existing cells.

Life Is Cellular Early Microscopes It was not until the mid-1600s that scientists began to use microscopes to observe living things. In 1665, Englishman Robert Hooke used an early compound microscope to look at a nonliving thin slice of cork, a plant material. Under the microscope, cork seemed to be made of thousands of tiny, empty chambers that Hooke called cells. The term cell is used in biology to this day. Today we know that living cells are not empty chambers, but contain a huge array of working parts, each with its own function.

Life Is Cellular Early Microscopes In Holland, Anton van Leeuwenhoek examined pond water and other things, including a sample taken from a human mouth. He drew the organisms he saw in the mouth which today we call bacteria.

Life Is Cellular The Cell Theory Soon after Leeuwenhoek, observations made by other scientists made it clear that cells were the basic units of life. In 1838, German botanist Matthias Schleiden concluded that all plants are made of cells. The next year, German biologist Theodor Schwann stated that all animals were made of cells. In 1855, German physician Rudolf Virchow concluded that new cells could be produced only from the division of existing cells, confirming a suggestion made by German Lorenz Oken 50 years earlier.

Life Is Cellular The Cell Theory These discoveries are summarized in the cell theory, a fundamental concept of biology. The cell theory states: -All living things are made up of cells. -Cells are the basic units of structure and function in living things. -New cells are produced from existing cells.

Life Is Cellular Exploring the Cell How do microscopes work? Most microscopes use lenses to magnify the image of an object by focusing light or electrons.

Life Is Cellular Light Microscopes and Cell Stains A typical light microscope allows light to pass through a specimen and uses two lenses to form an image. The first set of lenses, located just above the specimen, produces an enlarged image of the specimen. The second set of lenses magnifies this image still further. Because light waves are diffracted, or scattered, as they pass through matter, light microscopes can produce clear images of objects only to a magnification of about 1000 times.

Life Is Cellular Light Microscopes and Cell Stains Another problem with light microscopy is that most living cells are nearly transparent, making it difficult to see the structures within them. Using chemical stains or dyes can usually solve this problem. Some of these stains are so specific that they reveal only compounds or structures within the cell.

Life Is Cellular Light Microscopes and Cell Stains Some dyes give off light of a particular color when viewed under specific wavelengths of light, a property called fluorescence. Fluorescent dyes can be attached to specific molecules and can then be made visible using a special fluorescence microscope. Fluorescence microscopy makes it possible to see and identify the locations of these molecules, and even to watch them move about in a living cell.

Life Is Cellular Electron Microscopes Light microscopes can be used to see cells and cell structures as small as 1 millionth of a meter. To study something smaller than that, scientists need to use electron microscopes. Electron microscopes use beams of electrons, not light, that are focused by magnetic fields. Electron microscopes offer much higher resolution than light microscopes. There are two major types of electron microscopes: transmission and scanning.

Life Is Cellular Electron Microscopes Transmission electron microscopes make it possible to explore cell structures and large protein molecules. Because beams of electrons can only pass through thin samples, cells and tissues must be cut first into ultra thin slices before they can be examined under a transmission electron microscope. Transmission electron microscopes produce flat, two-dimensional images.

Life Is Cellular Electron Microscopes In scanning electron microscopes, a pencil-like beam of electrons is scanned over the surface of a specimen. Because the image is of the surface, specimens viewed under a scanning electron microscope do not have to be cut into thin slices to be seen. Scanning electron microscopes produce threedimensional images of the specimen s surface.

Life Is Cellular Electron Microscopes Because electrons are easily scattered by molecules in the air, samples examined in both types of electron microscopes must be placed in a vacuum in order to be studied. Researchers chemically preserve their samples first and then carefully remove all of the water before placing them in the microscope. This means that electron microscopy can be used to examine only nonliving cells and tissues.

Life Is Cellular Prokaryotes and Eukaryotes How are prokaryotic and eukaryotic cells different? Prokaryotic cells do not separate their genetic material within a nucleus. In eukaryotic cells, the nucleus separates the genetic material from the rest of the cell.

Life Is Cellular Prokaryotes and Eukaryotes Although typical cells range from 5 to 50 micrometers in diameter, the smallest Mycoplasma bacteria are only 0.2 micrometers across, so small that they are difficult to see under even the best light microscopes. In contrast, the giant amoeba Chaos chaos may be 1000 micrometers in diameter, large enough to be seen with the unaided eye as a tiny speck in pond water. Despite their differences, all cells contain the molecule that carries biological information DNA. In addition, all cells are surrounded by a thin, flexible barrier called a cell membrane.

Life Is Cellular Prokaryotes and Eukaryotes Cells fall into two broad categories, depending on whether they contain a nucleus. The nucleus is a large membrane-enclosed structure that contains the cell s genetic material in the form of DNA. The nucleus controls many of the cell s activities.

Life Is Cellular Prokaryotes and Eukaryotes Eukaryotes are cells that enclose their DNA in nuclei. Prokaryotes are cells that do not enclose DNA in nuclei.

Life Is Cellular Prokaryotes Prokaryotic cells are generally smaller and simpler than eukaryotic cells. Despite their simplicity, prokaryotes grow, reproduce, and respond to the environment, and some can even move by gliding along surfaces or swimming through liquids. The organisms we call bacteria are prokaryotes.

Life Is Cellular Eukaryotes Eukaryotic cells are generally larger and more complex than prokaryotic cells. Most eukaryotic cells contain dozens of structures and internal membranes. Many eukaryotes are highly specialized. There are many types of eukaryotes: plants, animals, fungi, and organisms commonly called protists.

Cell Structure The Fluid Mosaic Model Although many substances can cross biological membranes, some are too large or too strongly charged to cross the lipid bilayer. If a substance is able to cross a membrane, the membrane is said to be permeable to it. A membrane is impermeable to substances that cannot pass across it. Most biological membranes are selectively permeable, meaning that some substances can pass across them and others cannot. Selectively permeable membranes are also called semipermeable membranes.

7.2 Cell Structure

Cell Structure Cell Organization What is the role of the cell nucleus? The nucleus contains nearly all the cell s DNA and, with it, the coded instructions for making proteins and other important molecules.

Cell Structure Cell Organization The eukaryotic cell can be divided into two major parts: the nucleus and the cytoplasm. The cytoplasm is the fluid portion of the cell outside the nucleus. Prokaryotic cells have cytoplasm as well, even though they do not have a nucleus.

Cell Structure Cell Organization Many cellular structures act as if they are specialized organs. These structures are known as organelles, literally little organs. Understanding what each organelle does helps us to understand the cell as a whole.

Cell Structure Comparing the Cell to a Factory The eukaryotic cell is much like a living version of a modern factory. The specialized machines and assembly lines of the factory can be compared to the different organelles of the cell. Cells, like factories, follow instructions and produce products.

Cell Structure The Nucleus In the same way that the main office controls a large factory, the nucleus is the control center of the cell. The nucleus contains nearly all the cell s DNA and, with it, the coded instructions for making proteins and other important molecules.

Cell Structure The Nucleus The nucleus is surrounded by a nuclear envelope composed of two membranes.

Cell Structure The Nucleus The nuclear envelope is dotted with thousands of nuclear pores, which allow material to move into and out of the nucleus.

Cell Structure The Nucleus Like messages, instructions, and blueprints moving in and out of a main office, a steady stream of proteins, RNA, and other molecules move through the nuclear pores to and from the rest of the cell.

Cell Structure The Nucleus Chromosomes contain the genetic information that is passed from one generation of cells to the next. Most of the time, the threadlike chromosomes are spread throughout the nucleus in the form of chromatin a complex of DNA bound to proteins.

Cell Structure The Nucleus When a cell divides, its chromosomes condense and can be seen under a microscope.

Cell Structure The Nucleus Most nuclei also contain a small, dense region known as the nucleolus. The nucleolus is where the assembly of ribosomes begins.

Cell Structure Organelles That Store, Clean Up, and Support What are the functions of vacuoles, lysosomes, and the cytoskeleton? Vacuoles store materials like water, salts, proteins, and carbohydrates. Lysosomes break down lipids, carbohydrates, and proteins into small molecules that can be used by the rest of the cell. They are also involved in breaking down organelles that have outlived their usefulness. The cytoskeleton helps the cell maintain its shape and is also involved in movement.

Cell Structure Vacuoles and Vesicles Many cells contain large, saclike, membrane-enclosed structures called vacuoles that store materials such as water, salts, proteins, and carbohydrates.

Cell Structure Vacuoles and Vesicles In many plant cells, there is a single, large central vacuole filled with liquid. The pressure of the central vacuole in these cells increases their rigidity, making it possible for plants to support heavy structures such as leaves and flowers.

Cell Structure Vacuoles and Vesicles Vacuoles are also found in some unicellular organisms and in some animals. The paramecium contains an organelle called a contractile vacuole. By contracting rhythmically, this specialized vacuole pumps excess water out of the cell.

Cell Structure Vacuoles and Vesicles Nearly all eukaryotic cells contain smaller membrane-enclosed structures called vesicles. Vesicles are used to store and move materials between cell organelles, as well as to and from the cell surface.

Cell Structure Lysosomes Lysosomes are small organelles filled with enzymes that function as the cell s cleanup crew. Lysosomes perform the vital function of removing junk that might otherwise accumulate and clutter up the cell.

Cell Structure Lysosomes One function of lysosomes is the breakdown of lipids, carbohydrates, and proteins into small molecules that can be used by the rest of the cell.

Cell Structure Lysosomes Lysosomes are also involved in breaking down organelles that have outlived their usefulness. Biologists once thought that lysosomes were only found in animal cells, but it is now clear that lysosomes are also found in a few specialized types of plant cells as well.

Cell Structure The Cytoskeleton Eukaryotic cells are given their shape and internal organization by a network of protein filaments known as the cytoskeleton. Certain parts of the cytoskeleton also help to transport materials between different parts of the cell, much like conveyer belts that carry materials from one part of a factory to another. Microfilaments and microtubules are two of the principal protein filaments that make up the cytoskeleton.

Cell Structure Microfilaments Microfilaments are threadlike structures made up of a protein called actin. They form extensive networks in some cells and produce a tough, flexible framework that supports the cell. Microfilaments also help cells move. Microfilament assembly and disassembly is responsible for the cytoplasmic movements that allow cells, such as amoebas, to crawl along surfaces.

Cell Structure Microtubules Microtubules are hollow structures made up of proteins known as tubulins. They play critical roles in maintaining cell shape. Microtubules are also important in cell division, where they form a structure known as the mitotic spindle, which helps to separate chromosomes.

Cell Structure Microtubules In animal cells, structures known as centrioles are also formed from tubulins. Centrioles are located near the nucleus and help to organize cell division. Centrioles are not found in plant cells.

Cell Structure Microtubules Microtubules help to build projections from the cell surface, which are known as cilia and flagella, that enable cells to swim rapidly through liquids. Microtubules are arranged in a 9 + 2 pattern. Small cross-bridges between the microtubules in these organelles use chemical energy to pull on, or slide along, the microtubules, allowing cells to produce controlled movements.

Cell Structure Organelles That Build Proteins What organelles help make and transport proteins? Proteins are assembled on ribosomes. Proteins made on the rough endoplasmic reticulum include those that will be released, or secreted, from the cell as well as many membrane proteins and proteins destined for lysosomes and other specialized locations within the cell. The Golgi apparatus modifies, sorts, and packages proteins and other materials from the endoplasmic reticulum for storage in the cell or release outside the cell.

Cell Structure Organelles That Build Proteins Cells need to build new molecules all the time, especially proteins, which catalyze chemical reactions and make up important structures in the cell. Because proteins carry out so many of the essential functions of living things, a big part of the cell is devoted to their production and distribution. Proteins are synthesized on ribosomes, sometimes in association with the rough endoplasmic reticulum in eukaryotes.

Cell Structure Ribosomes Ribosomes are small particles of RNA and protein found throughout the cytoplasm in all cells. Ribosomes produce proteins by following coded instructions that come from DNA. Each ribosome is like a small machine in a factory, turning out proteins on orders that come from its DNA boss.

Cell Structure Endoplasmic Reticulum Eukaryotic cells contain an internal membrane system known as the endoplasmic reticulum, or ER. The endoplasmic reticulum is where lipid components of the cell membrane are assembled, along with proteins and other materials that are exported from the cell.

Cell Structure Endoplasmic Reticulum The portion of the ER involved in the synthesis of proteins is called rough endoplasmic reticulum, or rough ER. It is given this name because of the ribosomes found on its surface. Newly made proteins leave these ribosomes and are inserted into the rough ER, where they may be chemically modified.

Cell Structure Endoplasmic Reticulum The other portion of the ER is known as smooth endoplasmic reticulum (smooth ER) because ribosomes are not found on its surface. In many cells, the smooth ER contains collections of enzymes that perform specialized tasks, including the synthesis of membrane lipids and the detoxification of drugs.

Cell Structure Golgi Apparatus Proteins produced in the rough ER move next into the Golgi apparatus, which appears as a stack of flattened membranes. The proteins are bundled into tiny vesicles that bud from the ER and carry them to the Golgi apparatus.

Cell Structure Golgi Apparatus The Golgi apparatus modifies, sorts, and packages proteins and other materials from the ER for storage in the cell or release outside the cell. It is somewhat like a customization shop, where the finishing touches are put on proteins before they are ready to leave the factory.

Cell Structure Golgi Apparatus From the Golgi apparatus, proteins are shipped to their final destination inside or outside the cell.

Cell Structure Organelles That Capture and Release Energy What are the functions of chloroplasts and mitochondria? Chloroplasts capture the energy from sunlight and convert it into food that contains chemical energy in a process called photosynthesis. Mitochondria convert the chemical energy stored in food into compounds that are more convenient for the cells to use.

Cell Structure Organelles That Capture and Release Energy All living things require a source of energy. Most cells are powered by food molecules that are built using energy from the sun. Chloroplasts and mitochondria are both involved in energy conversion processes within the cell.

Cell Structure Chloroplasts Plants and some other organisms contain chloroplasts. Chloroplasts are the biological equivalents of solar power plants. They capture the energy from sunlight and convert it into food that contains chemical energy in a process called photosynthesis.

Cell Structure Chloroplasts Two membranes surround chloroplasts. Inside the organelle are large stacks of other membranes, which contain the green pigment chlorophyll.

Cell Structure Mitochondria Nearly all eukaryotic cells, including plants, contain mitochondria. Mitochondria are the power plants of the cell. They convert the chemical energy stored in food into compounds that are more convenient for the cell to use.

Cell Structure Mitochondria Two membranes an outer membrane and an inner membrane enclose mitochondria. The inner membrane is folded up inside the organelle.

Cell Structure Mitochondria One of the most interesting aspects of mitochondria is the way in which they are inherited. In humans, all or nearly all of our mitochondria come from the cytoplasm of the ovum, or egg cell. You get your mitochondria from Mom!

Cell Structure Mitochondria Chloroplasts and mitochondria contain their own genetic information in the form of small DNA molecules. The endosymbiotic theory suggests that chloroplasts and mitochondria may have descended from independent microorganisms.

Cell Structure Cellular Boundaries What is the function of the cell membrane? The cell membrane regulates what enters and leaves the cell and also protects and supports the cell.

Cell Structure Cellular Boundaries A working factory has walls and a roof to protect it from the environment outside, and also to serve as a barrier that keeps its products safe and secure until they are ready to be shipped out.

Cell Structure Cellular Boundaries Similarly, cells are surrounded by a barrier known as the cell membrane. Many cells, including most prokaryotes, also produce a strong supporting layer around the membrane known as a cell wall.

Cell Structure Cell Walls The main function of the cell wall is to provide support and protection for the cell. Prokaryotes, plants, algae, fungi, and many prokaryotes have cell walls. Animal cells do not have cell walls. Cell walls lie outside the cell membrane and most are porous enough to allow water, oxygen, carbon dioxide, and certain other substances to pass through easily.

Cell Structure Cell Membranes All cells contain a cell membrane that regulates what enters and leaves the cell and also protects and supports the cell.

Cell Structure Cell Membranes The composition of nearly all cell membranes is a double-layered sheet called a lipid bilayer, which gives cell membranes a flexible structure and forms a strong barrier between the cell and its surroundings.

Cell Structure The Properties of Lipids Many lipids have oily fatty acid chains attached to chemical groups that interact strongly with water. The fatty acid portions of such a lipid are hydrophobic, or water-hating, while the opposite end of the molecule is hydrophilic, or water-loving.

Cell Structure The Properties of Lipids When such lipids are mixed with water, their hydrophobic fatty acid tails cluster together while their hydrophilic heads are attracted to water. A lipid bilayer is the result.

Cell Structure The Properties of Lipids The head groups of lipids in a bilayer are exposed to water, while the fatty acid tails form an oily layer inside the membrane from which water is excluded.

Cell Structure The Fluid Mosaic Model Most cell membranes contain protein molecules that are embedded in the lipid bilayer. Carbohydrate molecules are attached to many of these proteins.

Cell Structure The Fluid Mosaic Model Because the proteins embedded in the lipid bilayer can move around and float among the lipids, and because so many different kinds of molecules make up the cell membrane, scientists describe the cell membrane as a fluid mosaic.

Cell Structure The Fluid Mosaic Model Some of the proteins form channels and pumps that help to move material across the cell membrane. Many of the carbohydrate molecules act like chemical identification cards, allowing individual cells to identify one another.

Cell Structure The Fluid Mosaic Model Although many substances can cross biological membranes, some are too large or too strongly charged to cross the lipid bilayer. If a substance is able to cross a membrane, the membrane is said to be permeable to it. A membrane is impermeable to substances that cannot pass across it. Most biological membranes are selectively permeable, meaning that some substances can pass across them and others cannot. Selectively permeable membranes are also called semipermeable membranes.

7.3 Cell Transport

Cell Transport Passive Transport What is passive transport? The movement of materials across the cell membrane without using cellular energy is called passive transport.

Cell Transport Passive Transport Every living cell exists in a liquid environment. One of the most important functions of the cell membrane is to keep the cell s internal conditions relatively constant. It does this by regulating the movement of molecules from one side of the membrane to the other side.

Cell Transport Diffusion The cytoplasm of a cell is a solution of many different substances dissolved in water. In any solution, solute particles tend to move from an area where they are more concentrated to an area where they are less concentrated. The process by which particles move from an area of high concentration to an area of lower concentration is known as diffusion. Diffusion is the driving force behind the movement of many substances across the cell membrane.

Cell Transport Diffusion Suppose a substance is present in unequal concentrations on either side of a cell membrane.

Cell Transport Diffusion If the substance can cross the cell membrane, its particles will tend to move toward the area where it is less concentrated until it is evenly distributed.

Cell Transport Diffusion At that point, the concentration of the substance on both sides of the cell membrane is the same, and equilibrium is reached.

Cell Transport Diffusion Even when equilibrium is reached, particles of a solution will continue to move across the membrane in both directions. Because almost equal numbers of particles move in each direction, there is no net change in the concentration on either side.

Cell Transport Diffusion Diffusion depends upon random particle movements. Substances diffuse across membranes without requiring the cell to use additional energy. The movement of materials across the cell membrane without using cellular energy is called passive transport.

Cell Transport Facilitated Diffusion Cell membranes have proteins that act as carriers, or channels, making it easy for certain molecules to cross. Molecules that cannot directly diffuse across the membrane pass through special protein channels in a process known as facilitated diffusion. Hundreds of different proteins have been found that allow particular substances to cross cell membranes. The movement of molecules by facilitated diffusion does not require any additional use of the cell s energy.

Cell Transport Osmosis: An Example of Facilitated Diffusion The inside of a cell s lipid bilayer is hydrophobic or water-hating. Because of this, water molecules have a tough time passing through the cell membrane. Many cells contain water channel proteins, known as aquaporins, that allow water to pass right through them. Without aquaporins, water would diffuse in and out of cells very slowly. The movement of water through cell membranes by facilitated diffusion is an extremely important biological process the process of osmosis.

Cell Transport Osmosis: An Example of Facilitated Diffusion Osmosis is the diffusion of water through a selectively permeable membrane. Osmosis involves the movement of water molecules from an area of higher concentration to an area of lower concentration.

Cell Transport How Osmosis Works In the experimental setup below, the barrier is permeable to water but not to sugar. This means that water molecules can pass through the barrier, but the solute, sugar, cannot.

Cell Transport How Osmosis Works There are more sugar molecules on the right side of the barrier than on the left side. Therefore, the concentration of water is lower on the right, where more of the solution is made of sugar.

Cell Transport How Osmosis Works There is a net movement of water into the compartment containing the concentrated sugar solution. Water will tend to move across the barrier until equilibrium is reached. At that point, the concentrations of water and sugar will be the same on both sides.

Cell Transport How Osmosis Works When the concentration is the same on both sides of the membrane, the two solutions will be isotonic, which means same strength.

Cell Transport How Osmosis Works The more concentrated sugar solution at the start of the experiment was hypertonic, or above strength, compared to the dilute sugar solution. The dilute sugar solution was hypotonic, or below strength.

Cell Transport Osmotic Pressure For organisms to survive, they must have a way to balance the intake and loss of water. The net movement of water out of or into a cell exerts a force known as osmotic pressure.

Cell Transport Osmotic Pressure Because the cell is filled with salts, sugars, proteins, and other molecules, it is almost always hypertonic to fresh water. As a result, water tends to move quickly into a cell surrounded by fresh water, causing it to swell. Eventually, the cell may burst.

Cell Transport Osmotic Pressure In plants, the movement of water into the cell causes the central vacuole to swell, pushing cell contents out against the cell wall. Since most cells in large organisms do not come in contact with fresh water, they are not in danger of bursting.

Cell Transport Osmotic Pressure Instead, the cells are bathed in fluids, such as blood, that are isotonic and have concentrations of dissolved materials roughly equal to those in the cells. Cells placed in an isotonic solution neither gain nor lose water.

Cell Transport Osmotic Pressure In a hypertonic solution, water rushes out of the cell, causing animal cells to shrink and plant cell vacuoles to collapse.

Cell Transport Osmotic Pressure Some cells, such as the eggs laid by fish and frogs, must come into contact with fresh water. These types of cells tend to lack water channels. As a result, water moves into them so slowly that osmotic pressure does not become a problem.

Cell Transport Osmotic Pressure Other cells, including those of plants and bacteria, that come into contact with fresh water are surrounded by tough cell walls that prevent the cells from expanding, even under tremendous osmotic pressure.

Cell Transport Osmotic Pressure Notice how the plant cell holds its shape in hypotonic solution, while the animal red blood cell does not. However, the increased osmotic pressure makes such cells extremely vulnerable to injuries to their cell walls.

Cell Transport Active Transport What is active transport? The movement of materials against a concentration difference is known as active transport. Active transport requires energy.

Cell Transport Active Transport Cells sometimes must move materials against a concentration difference. The movement of material against a concentration difference is known as active transport. Active transport requires energy.

Cell Transport Active Transport The active transport of small molecules or ions across a cell membrane is generally carried out by transport proteins, or protein pumps, that are found in the membrane itself.

Cell Transport Active Transport Larger molecules and clumps of material can also be actively transported across the cell membrane by processes known as endocytosis and exocytosis. The transport of these larger materials sometimes involves changes in the shape of the cell membrane.

Cell Transport Molecular Transport Small molecules and ions are carried across membranes by proteins in the membrane that act like pumps. Many cells use such proteins to move calcium, potassium, and sodium ions across cell membranes. Changes in protein shape seem to play an important role in the pumping process.

Cell Transport Molecular Transport A considerable portion of the energy used by cells in their daily activities is devoted to providing the energy to keep this form of active transport working. The use of energy in these systems enables cells to concentrate substances in a particular location, even when the forces of diffusion might tend to move these substances in the opposite direction.

Cell Transport Bulk Transport Larger molecules and even solid clumps of material may be transported by movements of the cell membrane known as bulk transport. Bulk transport can take several forms, depending on the size and shape of the material moved into or out of the cell.

Cell Transport Endocytosis Endocytosis is the process of taking material into the cell by means of infoldings, or pockets, of the cell membrane. The pocket that results breaks loose from the outer portion of the cell membrane and forms a vesicle or vacuole within the cytoplasm.

Cell Transport Endocytosis Large molecules, clumps of food, and even whole cells can be taken up by endocytosis. Two examples of endocytosis are phagocytosis and pinocytosis.

Cell Transport Endocytosis In phagocytosis, extensions of cytoplasm surround a particle and package it within a food vacuole. The cell then engulfs it. Amoebas use this method for taking in food. Engulfing material in this way requires a considerable amount of energy and, therefore, is a form of active transport.

Cell Transport Endocytosis In pinocytosis, cells take up liquid from the surrounding environment by forming tiny pockets along the cell membrane. The pockets fill with liquid and pinch off to form vacuoles within the cell.

Cell Transport Exocytosis Many cells also release large amounts of material from the cell, a process known as exocytosis. During exocytosis, the membrane of the vacuole surrounding the material fuses with the cell membrane, forcing the contents out of the cell.

Homeostasis and Cells Lesson Overview 7.4 Homeostasis and Cells

Homeostasis and Cells The Cell as an Organism How do individual cells maintain homeostasis? To maintain homeostasis, unicellular organisms grow, respond to the environment, transform energy, and reproduce.

Homeostasis and Cells The Cell as an Organism A single-celled, or unicellular, organism does everything you would expect a living thing to do. Just like other living things, unicellular organisms must achieve homeostasis, relatively constant internal physical and chemical conditions. To maintain homeostasis, unicellular organisms grow, respond to the environment, transform energy, and reproduce.

Homeostasis and Cells The Cell as an Organism In terms of their numbers, unicellular organisms dominate life on Earth. Unicellular organisms include both prokaryotes and eukaryotes. Prokaryotes, especially bacteria, are remarkably adaptable and live almost everywhere in the soil, on leaves, in the ocean, in the air, and even within the human body.

Homeostasis and Cells The Cell as an Organism Many eukaryotes also spend their lives as single cells. Some types of algae, which contain chloroplasts and are found in oceans, lakes, and streams around the world, are single celled. Yeasts, or unicellular fungi, are also widespread. Yeasts play an important role in breaking down complex nutrients, which makes them available for other organisms.

Homeostasis and Cells The Cell as an Organism Whether a prokaryote or a eukaryote, homeostasis is an issue for each unicellular organism. Every unicellular organism needs to find sources of energy or food, to keep concentrations of water and minerals within certain levels, and to respond quickly to changes in its environment.

Homeostasis and Cells Multicellular Life How do the cells of multicellular organisms work together to maintain homeostasis? The cells of multicellular organisms become specialized for particular tasks and communicate with one another to maintain homeostasis.

Homeostasis and Cells Multicellular Life The cells of multicellular organisms are interdependent, and like the members of a successful baseball team, they work together. In baseball, players take on a particular role, such as pitcher, catcher, infielder, or outfielder. Messages and signals are sent and understood by teammates and coaches to play the game effectively. Cells in a multicellular organism work the same way. The cells of multicellular organisms become specialized for particular tasks and communicate with one another in order to maintain homeostasis.

Homeostasis and Cells Cell Specialization The cells of multicellular organisms are specialized, with different cell types playing different roles. Some cells are specialized to move, others to react to the environment, and still others to produce substances that the organism needs. No matter what the role, each specialized cell contributes to the overall homeostasis of the organism.

Homeostasis and Cells Specialized Animal Cells Particles of dust, smoke, and bacteria are part of even the cleanest air. Specialized animal cells act like street sweepers to keep the particles out of the lungs. These cells are full of mitochondria, which provide a steady supply of the ATP that powers the cilia on their upper surfaces.

Homeostasis and Cells Specialized Plant Cells Pollen grains are highly specialized cells that are tiny and light, with thick cell walls to protect the cell s contents. Pine pollen grains have two tiny wings that enable the slightest breeze to carry them great distances.

Homeostasis and Cells Levels of Organization The specialized cells of multicellular organisms are organized into tissues, then into organs, and finally into organ systems.

Homeostasis and Cells Levels of Organization A tissue is a group of similar cells that performs a particular function.

Homeostasis and Cells Levels of Organization To perform complicated tasks, many groups of tissues work together as an organ. Each type of tissue performs an essential task to help the organ function. In most cases, an organ completes a series of specialized tasks.

Homeostasis and Cells Levels of Organization A group of organs that work together to perform a specific function is called an organ system. For example, the stomach, pancreas, and intestines work together as the digestive system.

Homeostasis and Cells Levels of Organization The organization of the body s cells into tissues, organs, and organ systems creates a division of labor among those cells that allows the organism to maintain homeostasis.

Homeostasis and Cells Cellular Communication Cells in a large organism communicate by means of chemical signals that are passed from one cell to another. These cellular signals can speed up or slow down the activities of the cells that receive them, and can cause a cell to change what it is doing.

Homeostasis and Cells Cellular Communication Some cells form connections, or cellular junctions, to neighboring cells. Some junctions hold cells firmly together.

Homeostasis and Cells Cellular Communication Other junctions allow small molecules carrying chemical messages to pass directly from one cell to the next. To respond to one of these chemical signals, a cell must have a receptor to which the signaling molecule can bind. Sometimes these receptors are on the cell membrane, although the receptors for certain types of signals are inside the cytoplasm. The chemical signals sent by various types of cells can cause important changes in cellular activity. For example, such junctions enable the cells of the heart muscle to contract in a coordinated fashion.