by g-factor Measurements

Similar documents
Wolfgang Quint GSI Darmstadt and Univ. Heidelberg. Fundamental Constants Meeting, Eltville, Germany, February 2015, Wolfgang Quint

Atomic Physics in Traps

Forces. Quantum ElectroDynamics. α = = We have now:

The most stringent test of QED in strong fields: The g-factor of 28 Si 13+

Classical Magnetic Dipole

PHYSICS 489/1489 LECTURE 7: QUANTUM ELECTRODYNAMICS

Probing QED in strong fields via the magnetic moment of highly charged ions. Sven Sturm May 25 th, 2016

Standard Model - Electroweak Interactions. Standard Model. Outline. Weak Neutral Interactions. Electroweak Theory. Experimental Tests.

On the Hamiltonian of a Multi-Electron Atom

PH300 Modern Physics SP11 Final Essay. Up Next: Periodic Table Molecular Bonding

Low-energy QED tests (and what we can learn from them)

Atomic Physics with Stored and Cooled Ions

Derivation of Electron-Electron Interaction Terms in the Multi-Electron Hamiltonian

Chapter 7b Electron Spin and Spin- Orbit Coupling

The Relativistic Stern-Gerlach Force C. Tschalär 1. Introduction

The Proton Magnetic Moment

Observing a single hydrogen-like ion in a Penning trap at T = 4K

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks

Continuous Stern-Gerlach effect and the Magnetic Moment of the Antiproton

Progress Towards an (Anti)Proton g - Factor Measurement

Why is a E&M nature of light not sufficient to explain experiments?

Neutrino Probes of Dark Energy and Dark Matter

DIS-Parity. Search for New Physics Through Parity Violation In Deep Inelastic Electron Scattering. The Physics Case

Chapter 1 Late 1800 s Several failures of classical (Newtonian) physics discovered

The pn junction: 2 Current vs Voltage (IV) characteristics

From Classical to Quantum mechanics

BETA DECAY VISUAL PHYSICS ONLINE

good agreement with the experiment. Thus investigations on the magnetic moment anomaly represent one of the most stringent tests of QED of a free part

Particle Physics. Dr M.A. Thomson. e + γ. 1 q 2. e - Part II, Lent Term 2004 HANDOUT II. Dr M.A. Thomson Lent 2004

The Magnetic Moment of the Proton. A. Mooser for the BASE collaboration

Neutrino Mass and Forbidden Beta Decays

(most) due to long range e m forces i.e. via atomic collisions or due to short range nuclear collisions or through decay ( = weak interactions)

Chapter 8: Electron Configurations and Periodicity

Precision tests of fundamental interactions and their symmetries with cooled and stored exotic ions

Two-colour photoassociation spectroscopy of ultracold calcium to determine the ground-state scattering length

The mechanisms of antihydrogen formation

Precision Penning Trap Experiments with Exotic Ions

de/dx Effectively all charged particles except electrons

Searching for chirality flipping interactions in nuclear beta decay. Presentation to REU Students July 2015

Hydrogen Atom and One Electron Ions

High Energy Physics. Lecture 5 The Passage of Particles through Matter

Schrodinger Equation in 3-d

PHYSICS 2150 EXPERIMENTAL MODERN PHYSICS. Lecture 3 Statistical vs. Systematic Errors,Rejection of Data; Weighted Averages

HYSTERESIS AND BLEACHING OF ABSORPTION BY ELECTRONS ON HELIUM

IV. e + e annihilation experiments 1. Experimental methods Discovery of the Tau-Lepton 5. hadrons 6. Hadronic resonances

Intro to Nuclear and Particle Physics (5110)

High-precision measurements of the fundamental properties of the antiproton

September 23, Honors Chem Atomic structure.notebook. Atomic Structure

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches.

Today. Wave-Matter Duality. Quantum Non-Locality. What is waving for matter waves?

The Interpretation of Atomic Electric Dipole Moments: Schiff Theorem and Its

Pair (and Triplet) Production Effect:

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012

Neutrino Physics. Caren Hagner, Universität Hamburg

Department of Radiation Sciences, Uppsala University, Sweden The Svedberg Laboratory, Uppsala, Sweden. 1 Introduction

Precision Penning Trap Experiments with Exotic Ions

Notes 4: Experimental evidence for electroweak

8 Foldy-Wouthuysen Transformation

Antonio Pich. IFIC, CSIC Univ. Valencia.

CERN Accelerator School. Beam Cooling. Håkan Danared Manne Siegbahn Laboratory. Daresbury, 27 September2007

APP-IV Introduction to Astro-Particle Physics. Maarten de Jong

University of Illinois at Chicago Department of Physics. Thermodynamics & Statistical Mechanics Qualifying Examination

Ch. 24 Molecular Reaction Dynamics 1. Collision Theory

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals.

F i n a l C i r c u l a r (revised 99/7/9) International Workshop on Atomic Collisions and Atomic Spectroscopy with Slow Antiprotons

Lecture 2. Interaction of Radiation with Matter

Self-interaction mass formula that relates all leptons and quarks to the electron

4E : The Quantum Universe. Lecture 5, April 5 Vivek Sharma

Atomic energy levels. Announcements:

Physics 2D Lecture Slides Lecture 14: Feb 1 st 2005

A 680-fold improved comparison of the antiproton and proton magnetic moments

PLASMA PHYSICS VIII. PROCESSING PLASMAS

New Muon Lifetime and the Fermi Coupling Constant G F. Kevin Giovanetti James Madison University

Structure of the Atom. Thomson s Atomic Model. Knowledge of atoms in Experiments of Geiger and Marsden 2. Experiments of Geiger and Marsden

Introduction to the quantum theory of matter and Schrödinger s equation

Nonlinear electron dynamics in metallic nanostructures

Precision Standard Model Tests (at JLab)

Lecture Series: Atomic Physics Tools in Nuclear Physics IV. High-Precision Penning Trap Mass Spectrometry

Atomic Physics with Stored and Cooled Ions

THE MTV EXPERIMENT FROM T-VIOLATION TO LORENTZ-VIOLATION. Jiro Murata Rikkyo University for the MTV collaboration INPC2016, Sydney, Sep 11-16, 2016

Lecture 28 Title: Diatomic Molecule : Vibrational and Rotational spectra

The failure of the classical mechanics

The DELPHI experiment at the LEP accelerator at the CERN laboratory

11: Echo formation and spatial encoding

Magnetic Neutron Scattering and Spin-Polarized Neutrons

Workshop on Nano-Opto-Electro-Mechanical Systems Approaching the Quantum Regime September 2010

ELECTRONIC AND OPTICAL PROPERTIES OF GRAPHENE. J. González Instituto de Estructura de la Materia, CSIC, Spain

PLASMA PHYSICS VII. PLASMA DIAGNOSTICS

Storage Ring Measurements of the DR Rate of Rotationally Cold H

orbiting electron turns out to be wrong even though it Unfortunately, the classical visualization of the

1.2 Faraday s law A changing magnetic field induces an electric field. Their relation is given by:

Physics 2D Lecture Slides Lecture 12: Jan 28 th 2004

Chemical Engineering 412

0 +1e Radionuclides - can spontaneously emit particles and radiation which can be expressed by a nuclear equation.

4 The Electron Cyclotron Resonance Ion Source (ECRIS) HF ion sources

ELECTRON-MUON SCATTERING

Relativistic electron microscopy of hadron dynamics

Global Hybrid Simulations of Mercury s Magnetosphere and Comparison with MESSENGER Spacecraft Observations

fiziks Institute for NET/JRF, GATE, IIT JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

Outline. Thanks to Ian Blockland and Randy Sobie for these slides Lifetimes of Decaying Particles Scattering Cross Sections Fermi s Golden Rule

Transcription:

Intrnational Bound-Stat Acclrator Quantum Facility Elctrodynamics for Bams in Strong of Ions and Filds Antiprotons Byond at Darmstadt th Furry Pictur by g-factor Masurmnts Wolfgang Quint GSI Darmstadt and Univ. Hidlbrg

Quantum mchanics, Rlativity, and P.A.M. Dirac Quantum mchanics Spcial Rlativity Dirac thory lctron magntic momnt nrgy lvls of bound lc. ngativ nrgy stats xistnc of antimattr g-factor Lamb-shift fw-l. ions CPT tsts

Dirac sa of ngativ nrgy stats Ngativ nrgy stats: obsrvabl in nrgy lvls and g-factors of fw-lctron ions Rf.: W. Grinr, Adv. in Quantum Chmistry, vol. 53, 99 (2008)

Quantum Elctrodynamics (QED) QED = Dirac thory + quantizd radiation fild basic procsss in QED: slf nrgy vacuum polarization vrtx corrction QED coupling paramtr: fin-structur constant α = 2 /2ε 0 hc 1/137 0.007 Rf.: T. Bir, Physics Rports 339, 79 (2000)

Quantum Elctrodynamics Th g-factor: r µ = Most stringnt tst: r s g µ B h g-factor of th fr lctron: h Bohr magnton: µ B 2m Schwingr trm: g 2 1 α α = 1 + C1 + C 2 + π π = 1.001 159 652 181 2 3 α C3 π 78 (77) [T. Aoyama t al., PRL 109, 111807 (2012)] g 2 =1.001 + C 4 α π 4 + C 5 α π 5 +... 159 652 180 73 (28) [D. Hannk t al., Phys. Rv. A 83, 052122 (2011)] 5

Fr lctron: QED contributions of 2 nd and 3 rd ordr g fr = 2 (1 + C 1 α/π + C 2 (α /π) 2 + C 3 (α /π) 3 + C 4 (α /π) 4 + C 5 (α /π) 5 +... 2 nd ordr in α: C 2 = - 0.328 478 966 7 graphs 3 rd ordr in α: C 3 = 1.1765 72 graphs not shown: 4 th ordr in α: C 4 = -1.9108 891 graphs Rf.: B. Lautrup t al., Phys. Rp. 3, 193 (1972)

Fr lctron: QED contributions of 5 th ordr g fr = 2 (1 + C 1 α/π + C 2 (α/π) 2 + C 3 (α/π) 3 + C 4 (α/π) 4 + C 5 (α/π) 5 +... Harvard g-2 masurmnt 2011: g fr = 2 (1.001 159 652 180 73 (28)) dtrmination of α 5 th ordr in α: C 5 = 9.16 12672 graphs I am digging at th roots of physics to s whthr thr is som trasur thr. Toichiro Kinoshita Rf.: Kinoshita t al., arxiv:1205.5368v1 [hp-ph] 24 May 2012

ω Larmor prcssion frquncy: L = g 2 g-factor of th fr lctron m or rathr B g g = 2 2 = 2 ω ω L c ω ω B: magntic fild in Pnning trap a c cyclotron frquncy: ω c = m B (gt 3 ordrs of magnitud in accuracy by Natur)

Intrnational Acclrator Hans Facility Dhmlt for Nobl Priz 1989 "for th dvlopmnt of th ion trap tchniqu" 9

g-factor of th lctron and positron Elctron: g = 2 1.001 159 652 188 4 (43)* Positron: g = 2 1.001 159 652 187 9 (43)* *CODATA

QED and highly chargd ions (HCI) bound-stat QED: quantum physics in strong filds basic procsss in bound-stat QED: slf nrgy vacuum polarization vrtx corrction bound-stat QED coupling paramtr for H-lik uranium U 91+ : Zα 0.67 Rf.: T. Bir, Physics Rports 339, 79 (2000)

Intrnational Bound-lctron Acclrator Facility g-factor: for Bams of Fynman Ions and Antiprotons graphs at 1 st Darmstadt ordr in α/π g bound /g fr 1 - (Zα) 2 /3 + α(zα) 2 /4π +... Dirac thory SELF ENERGY bound-stat QED VACUUM POLARIZATION Rf.: T. Bir, Physics Rports 339, 79 (2000)

Bams of Ions and QED Antiprotons in strong at Darmstadt filds Common thortical approach: Furry pictur of bound-stat QED - for 28 Si 13+ : < E > 2 10 15 V/m for 40 Ca 19+ : < E > 8 10 15 V/m Wndll Hinkl Furry 1907-1984 Prof. at Harvard Univrsity 13

Masurmnt principl E spin = hv L Larmor prcssion frquncy v L g = 4π m B B - - Cyclotron frquncy of th ion B ν c qion = 2π m ion B g= 2 m m ion q ion v v L c Our task: Masurmnt of Г=v L /v c 14

A singl highly chargd ion stord in a Pnning trap z U 0 radial confinmnt ndcap axial confinmnt ring ion B AXIAL MOTION z ndcap MAGNETRON DRIFT - B 0 potntial (MODIFIED) CYCLOTRON MOTION + magntic physical lctric combind ion motion

7mm Tripl Pnning trap systm Prcision trap (PT) Vry homognous magntic fild ~14 cm Analysis trap (AT) Magntic bottl for spin dtction Cration trap (CT) In-trap ion cration of highly chargd ions

Highly chargd ion g-factor apparatus SUPERCONDUCTING MAGNET WITH ROOM TEMPERATUR BORE MICROWAVE INLET CRYOSTAT CRYO ELECTRONICS @ 4 K SINGLE ION IN TRAP PRECISION TRAP `DOUBLE TRAP MAGNETIC BOTTLE SUPERCONDUCTING SOLENOIDS PENNING TRAP @ 4K MINI EBIS TARGET FEP

Ion oscillation frquncis Masurmnt of th tiny imag currnts (~ fa) on th trap lctrods rquirs: Suprconducting tank circuit: Ultra-low nois cryognic amplifirs: A Fourir transformation: FFT: 25 Hlical rsonator: Q= 3200 n = 400 pv/ Hz i n 10 fa/ Hz Voltag-Nois Dnsity (dbv) 20 15 10 5 0-1500 -1000-500 0 500 1000 1500 (Axial Frquncy / Hz) -671000 A hot ion is dtctd as a pak abov th Johnson nois of th rsonator. 18

High-rsolution cyclotron frquncy masurmnt of a singl highly chargd silicon ion 28 Si 13+

Continuous Strn-Grlach ffct: Dtrmination of spin dirction CLASSICAL STERN-GERLACH SEPARATION IN POSITION SPACE CONTINUOUS STERN-GERLACH SEPARATION IN FREQUENCY SPACE z B 1 B 2 L 2 z B1 2KE z B2 m z

Quantum jump spctroscopy: Spin-flip transitions in th analysis trap

Bound lctron magntic momnt masurmnt Intrnational Acclrator Facility for Bams on of hydrogn-lik Ions and Antiprotons silicon at 28 Darmstadt Si 13+ Spinflip probability (%)

Bound lctron magntic momnt masurmnt on lithium-lik silicon 28 Si 11+ g xp ( 28 Si 11+ ) = 2.000 889 889 9(21) g tho ( 28 Si 11+ ) = 2.000 889 909 (51) thortical calculations by D.A. Glazov, A.V. Volotka, V.M. Shabav Larmor rsonanc Prcision tst of lctron-lctron intraction scrnd QED contributions Rf.: A. Wagnr t al. PRL 110, 033003 (2013)

Dirac Intrnational sa: contribution Acclrator of Facility ngativ for nrgy stats to Bams bound of Ions lctron and Antiprotons magntic at momnt Darmstadt in Li-lik HCI intgration ovr ngativ nrgy stats for intrnal lctron lins Rf.: D. Glazov

Quantum Elctrodanymics in strong filds: Intrnational Acclrator Facility for non-prturbativ Bams of Ions and Antiprotons tratmnt Darmstadt in Zα byond th Furry pictur - Extrnal fild approximation: Nuclus approximatd as an xtrnal Coulomb fild, V(r), r r [ iα + β + V( r) ] ψ( r) = Eψ( r) r r Common thortical approach: Furry pictur of bound-stat QED - rducing a 2-body systm to a 1-body systm Wndll Hinkl Furry 1907-1984 Prof. at Harvard Univrsity

Quantum Elctrodanymics in strong filds: Intrnational Acclrator Facility for non-prturbativ Bams of Ions and Antiprotons tratmnt Darmstadt in Zα byond th Furry pictur Isotop shift in bound-lctron g-factors All contributions cancl xcpt for: - Nuclar rcoil - Nuclar siz Not includd in Furry pictur Our tst systm: g( 40 Ca 17+ ) g( 48 Ca 17+ ) - nuclar rcoil dominats th isotop shift (99.96%), sinc nuclar siz: Rf.: F. Köhlr, S. Sturm r nucl. ( 40 Ca) = 3.4776(19) 10-15 fm r nucl. ( 48 Ca) = 3.4771(20) 10-15 fm [I. Angli t al., Atomic Data and Nuclar Data Tabls 99 (2013)]

g-factors of lithium-lik calcium 40 Ca 17+ and 48 Ca 17+ snsitiv tst of QED byond th Furry pictur Masurd g-factors: m g=2γ m ion (stat) (syst) (m ion ) g( 40 Ca 17+ ) = 1.999 202 040 55 (10) (12) (110) 10-10 δg/g = 5.6 10-10 g( 48 Ca 17+ ) = 1.999 202 028 85 (12) (13) (80) 10-10 δg/g = 4.1 10-10 g xp = g( 40 Ca 17+ ) - g( 48 Ca 17+ ) = 11.70 (16) (3) (138) 10-9 q ion Most prcis g-factors of lithium-lik ions! g tho = g( 40 Ca 17+ ) - g( 48 Ca 17+ ) = 10.305 (27) 10-9 [Sz. Nagy t al. Eur. Phys. J. D 39, (2006)] comparison to thory: [A. V. Volotka t. al., PRL 112, 253004 (2014)] V. Shabav t al.

g-factors of lithium-lik calcium 40 Ca 17+ and 48 Ca 17+ snsitiv tst of QED byond th Furry pictur

HITRAP at th Exprimntal Storag Ring ESR at GSI Darmstadt UNILAC xprimnts with particls at rst or at low nrgis coolr Pnning trap postdclrator SIS EXPERIMENTS WITH HIGHLY CHARGED IONS AND ANTIPROTONS AT EXTREMELY LOW ENERGIES: g-factor masurmnts of th bound lctron lasr spctroscopy mass masurmnts of xtrm accuracy raction microscop, collisions at vry low vlocitis surfac studis and hollow-atom spctroscopy x-ray spctroscopy U 91+ strippr targt ESR lctron cooling and dclration down to 4 MV/u U 73+ U 91+

Acknowldgmnts Hlmholtz-Institut Jna Fridrich-Schillr-Univrsität Jna Thank you for your attntion!